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A Simple Proof of the Equivalence of the Limiting Distributions of the 

Continuous-Time and the Embedded Process of the Queue Size in the M/G/1 

Queue 

by 

A. Hordijk & H.C. Tijms 

ABSTRACT 

This paper presents an extremely simple proof of the known remarkable' 

fact that for the M/G/1 queue the continuous-time process describing the 

number of'customers in the system has the same limiting distribution as 

the embedded process describing the number of customers in the system just 

after service completion epochs. 
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1. INTRODUCTION 

We consider the M/G/1 queue where customers arrive in accordance with 

a Poisson process with rate A and the service times of the customers are 

independent random variables having a common probability distribution 

function F with finite meanµ. It is assumed that p =Aµ< 1. The purpose 

of this paper is to present an extremely simple proof of the known remarkable 

result that the continuous-time process describing the number of customers 

in the system and the embedded process describing the number of customers 

present just after service completion epochs have the same limiting distri

butions. In COHEN [1] this result was proved by calculating each of these 

distributions and verifying that they are the same, cf. also COHEN [2] for 

a more simple approach. Another proof of the above result may be obtained 

by using the rather deep Theorem 3 in STIDHAM [4] and by observing that the 

embedded process describing the number of customers present just before 

arrival epochs has the same limiting distribution as the one describing the 

number of customers present just after service completion epochs. The proof 

that will be given in this paper is short and simple and is based on a well

known standard result in the theory of regenerative processes. For other 

applications of this powerful theory to queueing problems we refer to COHEN . 
[2] and STIDHAM [4]. In particular COHEN [2] gives a large number of elegant 

derivations of known results in queueing theory by using the theory of 

regenerative processes. 

2. PROOF 

For ease we assume throughout this paper that at epoch O a service is 

completed and the system becomes empty. Denote by T the next epoch at which 

a service is completed and the system becomes empty. Let N be the number of 

customers served in the busy cycle (O,T]. By a simple standard argument from 

busy period analysis the following well-known results are easily obtained 

(cf. COHEN [1]), 

(1) ET= 1/A(l-p) and EN= 1/(I-p). 
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For j = 0,1, ••• , let T. be the amount of time during which j customers are 
J 

in the system in (O,T] and let N. be the number of service completion epochs 
J 

at which j customers are left behind in (O,T]. Denote by X(t), t ~ 0 the num-

ber of customers in the system at epoch t and, for n = 0,1, ••• , let X be 
n 

the number of customers present just after the nth service completion epoch 

(the 0th service completion occurs at epoch 0). 

By a basic result in the theory of regenerative processes (see SMITH 

[3] and STIDHAM [4]), we have that, for all j = 0,1, ••• , the limits 

v. = lim Pr{X(t) = j} and 'IT. = lim Pr{X = j} 
J t-+oo J ~ n 

exist and are given by 

(2) v. = ET./ET and 'IT. = EN ./EN for all j = 0,1, ••• 
J J J J 

Further, both {v.} and {'IT.} are probability distributions. A famous result 
J J 

in queueing theory states (cf. p.247 in COHEN [I]) 

(3) V • = 'IT• 
J J 

for all j = 0,1, •••• 

We shall now give a simple derivation of (3) by using (2). By (1)-(2), we 

have that (3) is equivalent to 

(4) ;\.ET.= EN. 
J J 

for all j = 0,1, •••• 

We shall give now two proofs of (4). The first one proceeds as follows. 
Since ET0 = I/A and EN0 = I we have that (4) holds for j = 0. Also, observe 

that, by (1)-(2), 

(5) 

To verify 

'IT = 1 - p. 
0 

(4), we first 

I: -;\.t 
p = e 
k 

introduce 

k (~f) dF(t) 

some notation. Fork = 0,1, ••• , let 

00 

and I q = p., k j=k+l J 

ioeo pk is the probability of k arrivals during the service time of a cus-

tomer. Further, let T and S be independent random variables which are dis

tributed as the interarrival time between two successive arrivals and the 

servic~ time of a customer, respectively. We easily get 
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(6) 

Now, by using Wald's equation and the well-known fact that given that n ar

rivals occurred in (O,t) then arrival epochs have the same distribution as 

the order statistics corresponding ton independent random variables uni

formly distributed on (O,t) (e.g. p. 70 in COHEN [I]), it is easily seen 

that 

(7) ET 
n 

n-1 Ioo { oo t -At (At)k} . 
+ l EN. l . k+l e k! dF(t) 

j=l J O k=n-J 
for all n ?:: 1. 

The first term in the right side of (7) arises from the service time of the 

first customer served in (O,T]. Under the condition that this service time 

is t and that k?:: n-1 arrivals occur during this time t, we get from this 

service time a contribution of t/(k+l) to ET. Similarly, we get the other 
n 

terms in the right side of (7). By (6) and the fact that q0 = 1 - p0 , we 

can write (7) as 

(8) AET = 
n 

We now introduce 

00 

T(s) = 1 
n=l 

00 

Q(s) = I 
n=O 

n 
\ EN. q . + q I 
l J n-J n-j=l 

the following generating 

00 

ET s n N(s) 1 EN s n = , 
n n=l 

n 

00 

n II(s) I n q s 
' 

= 1T s 
n n=O 

n 

for all n ?:: I. 

functions for Is I :,; I ' 

00 

P(s) 1 n = p s , 
n=O n 

As already noted AET
0 

= EN
0

, so (4) holds when we can show that AT(s) = N(s) 

for Isl < I. From (8), it follows ~hat AT(s) = N(s)Q(s) + sQ(s) for Isl :,; I. 

Hence relation (4) follows by verifying that N(s) = N(s)Q(s) + sQ(s) for 

all Isl < I, or 

(9) N(s) = sQ(s)/{l -Q(s)} for Isl < I. 
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Now, by using (I), (3) and the steady state equation TI = TIOPn + 
\n+I n 

+ lk=I Tikpn-k+I' n ~ 0 for the Markov chain {Xn}' we have for Isl < J 

I+N(s) = IT(s)/(I-p), IT(s) = TI
0
{sP(s)-P(s)}/{s-P(s)}, Q(s) = {1-P(s)}/(1-s). 

Together these relations and (5) verify (9) which completes the proof. 
We now give another proof of (4). This proof which was suggested by 

Prof. J,W. Cohen proceeds as follows. Clearly, EN. can be interpreted as 
J . 

the expected number of downcrossings of the process {X(t)} to state j 

during (O,T]. Since this expectation equals the expected number of upcross

ings of the process {X(t)} to state j+l during (O,T], relation (4) follows 

when we can show that, for all j = 0,1, ••• , 

(10) AET. = expected number of upcrossings of the process {X(t)} to 
J 

state j+I during (O,T]. 

To prove this, define for any u > 0 and j = 0,1, ..• , K.(u) = number of 
J 

upcrossings of the process {X(t)} to state j+l during (O,u] and A.(u) = 
J 

amount of time during which j customers are present in (O,u]. Then, by 

virtue of the fact that the arrival process is a Poisson process, we have 

for all j = 0,1, .•. , 

(I 1) EK. (t) = AEA. (t) 
J J 

for all t > O. 

Now, by a basic result in the theory of regenerative processes (see [3] and 

[4]), we have for all j = 0,1, ... , 

(12) lim EK.(t)/t = EK.(T)/ET and lim EA.(t)/t = EA.(T)/ET = ET./ET. 
t-+m J J t➔m J J J 

Together (II) and (12) prove (IO) which ends the proof, 
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