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A Simple Proof of the Equivalence of the Limiting Distributions of the
Continuous-Time and the Embedded Process of the Queue Size in the M/G/1

Queue

by

A. Hordijk & H.C. Tijms

ABSTRACT

This paper presents an extremely simple proof of the known remarkable
fact that for the M/G/1 queue the continuous—time process describing the
number of customers in the system has the same limiting distribution as
the embedded process describing the number of customers in the system just

after service completion epochs.
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1. INTRODUCTION

We consider the M/G/1 queue where customers arrive in accordance with
a Poisson process with rate A and the service times of the customers are
independent random variables having a common probability‘distribution
function F with finite mean uy. It is assumed that p = Ay < 1, The purpose
of this paper is to present an extremely simple proof of the known remarkable
result that the continuous-time process describing the number of customers
in the system and the embedded process describing the number of customers
present just after service completion epochs have the same limiting distri-
butions. In COHEN [1] this result was proved by calculating each of these
distributions and verifying that they are the same, cf. also COHEN [2] for
a more simple approach. Another proof of the above result may be obtained
by using the rather deep Theorem 3 in STIDHAM [4] and by observing that the
embedded process describing the number of customers present just before
arrival epochs has the same limiting distribution as the one describing the
number of customers present just after service completion epochs. The proof
that will be given in this paper is short and simple and is based on a well-
known standard result in the theory of regenerative processes. For other
applications of this powerful theory to queueing problems we refer to COHEN
[2] and STIDHAM [4]. In particular COHEN [2] gives a large number of elegant
derivations of known results in queueing theory by using the theory of

regenerative processes.

2. PROOF

For ease we assume throughout this paper that at epoch 0 a service is
completed and the system becomes empty. Denote by T the next epoch at which
a service is completed and the system becomes empty. Let N be the number of
customers served in the busy cycle (0,T]. By a simple standard argument from
busy period analysis the following well-known results are easily obtained

(cf. COHEN [11),

€D ET = 1/A(1-p) and EN = 1/(1-p).



For j = 0,1,..., let Tj be the amount of time during which j customers are
in the system in (0,T] and let Nj be the number of service completion epochs
at which j customers are left behind in (0,T]. Denote by X(t), t =2 0 the num-
ber of customers in the system at epoch t and, for n = 0,1,..., let Xn be
the number of customers present just after the nth service completion epoch
(the Oth service completion occurs at epoch 0).

By a basic result in the theory of regenerative processes (see SMITH

[3] and STIDHAM [4]), we have that, for all j = 0,1,..., the limits

v, = lim Pr{X(t) = j} and 7, = lim Pr{X = j}
] too J n>o n

exist and are given by
(2) vj = ETj/ET and ﬂj = ENj/EN for all j = 0,1,...

Further, both {vj} and {ﬂj} are probability distributions. A famous result

in queueing theory states (cf. p.247 in COHEN [1])
(3) v, = T, for all j = 0,1,...

We shall now give a simple derivation of (3) by using (2). By (1)-(2), we

have that (3) is equivalent to

(4) )\ETj = ENj for all j = 0,1,...

We shall give now two proofs of (4). The first ome proceeds as follows.

Since ET0 = 1/A and EN_ = 1 we have that (4) holds for j = 0. Also, observe

thata by (1)“(2) ]

0

(5) To = 1 ~op.

To verify (4), we first introduce some notation. For k = 0,1,..., let

0 k ©
-at (At -
P = J e (k') dF(t) and 9 = Y P:os
0 ) j=k+1 J

i.e. Py is the probability of k arrivals during the service time of a cus-
tomer. Further, let T and S be independent random variables which are dis-
tributed as the interarrival time between two successive arrivals and the

service time of a customer, respectively. We easily get



(6) Emin(t,S) = H (1-e *Eydr(e) = %(1—;:0).
0

Now, by using Wald's equation and the well-known fact that given that n ar-
rivals occurred in (0,t) the n arrival epochs have the same distribution as
the order statistics corresponding to n independent random variables uni-

formly distributed on (0,t) (e.g. p. 70 in COHEN [11), it is easily seen

that
R t -t (0)F )
(7) ET = Y  ——e ' ~gy—p dF(t) + EN Emin(t,S) +
n k+1 ke n
0 ‘k=n-1
n-1 © 0 _ k
+ ] EN, o ooE A L gr(e)  for alln x 1.
. j . ktl k.
j=1 0 “k=n-—]

The first term in the right side of (7) arises from the service time of the
first customer served in (0,T]. Under the condition that this service time
is t and that k 2 n—-1 arrivals occur during this time t, we get from this
service time a contribution of t/(k+1) to ETn. Similarly, we get the other
terms in the right side of (7). By (6) and the fact that 9y = 1 - Pys e
can write (7) as

n .
= f =1,
(8) AETn Z] ENj qn—j + 9,1 or all n

We now introduce the following generating functions for [s| =< 1,

0

Z Eann, P(s) = 2 pnsn,

T(s) = § ET s", N(s) =

n=1 © n=1 n=0
Qs) = ¥ qs”,m(s) = § ms".

n=0 " n=0 "

As already noted AETO = ENO, so (4) holds when we can show that AT(s) = N(s)
for |s] < 1, From (8), it follows that AT(s) = N(s)Q(s) + sQ(s) for [s| < 1.
Hence relation (4) follows by verifying that N(s) = N(s)Q(s) + sQ(s) for

all |s| < 1, or

(9) N(s) = sQ(s)/{1 -Q(s)} for |s| < 1.



Now, by using (1), (3) and the steady state equation TS TP, +
n+l .
+ zk=1 P 141> 0 2 0 for the Markov chain {X_}, we have for |s| < 1

14N(s) = N(s)/(1-p), N(s) = ﬂo{sP(s)—P(s)}/{s—P(s)}, Q(s) = {1-P(s)}/(1-s).

Together these relations and (5) verify (9) which completes the proof.
We now give another proof of (4). This proof which was suggested by

Prof. J.W. Cohen proceeds as follows. Clearly, EN., can be interpreted as
the expected number of downcrossings of the process {X(t)} to state j
during (0,T]. Since this expectation equals the expected number of upcross-
ings of the process {X(t)} to state j+!1 during (0,T], relation (4) follows

when we can show that, for all j = 0,1,...,

(10) AETj = expected number of upcrossings of the process {X(t)} to
state j+1 during (0,T].

To prove this, define for any u > 0 and j = 0,1,..., Kj(u) = pumber of
upcrossings of the process {X(t)} to state j+1 during (0,u] and Aj(u) =
amount of time during which j customers are present in (O,ul]. Then, by
virtue of the fact that the arrival process is a Poisson process, we have
for all j = 0,1,...,

(1) EKj(t) = AEAj(t) for all t > 0.

Now, by a basic result in the theory of regenerative processes (see [3] and

[4]), we have for all j = 0,1,...,

(12) lim EKj(t)/t = EKj(T)/ET and lim EAj(t)/t = EAj(T)/ET = ETj/ET.

t>oo oo

Together (11) and (12) prove (10) which ends the proof.
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