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The optimality of (s,S) inventory policies in the infinite period 

model - total discounted cost criterion. 

Swnmary The infinite period stationa;ryinventory model is considered. 

There is a constant lead time, a.nonnegative set-up cost, a linear 

purchase: cost, a holding and shortage function, a discount factor 

0,;. B < 1, and total backlogging of unfilled demand. The optimality 

criterion is the total expected discounted cost. It is assumed that the 

negatives of the one period expected holding and shortage costs are .. , 
unimodal. Under that assumption and a weak assumption about the demand 

distribution,a new proof of the existence of an optimal (s,S) policy 

is given and further it is shown that any sand S which minimize a 

quantity depending only on the parameters sand Sare optimal for all 

starting conditions. 

1. Introduction 

We consider the infinite period stationary inventory model in which 

demands for a single product in periods 1,2, ••• are independent, identi

cally dLstributed random variables. At the beginning of each period an 

order may be placed for any nonnegative quantity of stock. There is a 

constant lead time, a fixed set-up cost, a linear purchase cost, a 

holding and shortage function, a fixed discount factor S, 0,;. S < 1, 

and total backlogging of unfilled demand. The optimality criterion is. 

the total expected discounted cost. 

Using Scarf's results for the finite period model [JJ Iglehart [3] 

has proved that if the one period holding and shortage costs are convex, 

then an e>ptimal (s,S) policy exists. Veinott notes in [8] that a modi

fication of Iglehart' s proof with the aid of the results of [8] shows 

that an optimal (s,S) policy also exists under the weaker assumption 

that the negatives of the one period holding and shortage costs are 

unimodal .. A different proof, based on Howard's policy improvent method, 

is given in [4]. However that proof seems typically for the discrete 

demand case. 

*). This assumption will be dropped later ( see remark 3. 2, p. 9). 



2 

Under the assumption that the negatives of the one period holding 

and shortage costs are unimodal and a weak assumption about the demand 

distribution we give in this paper a new proof of the existence of an 

optimal (s,S) policy. The new result of this paper is that any sand S 

which minimize a quantity depending only on the parameters sand S, are 

optimal for all starting conditions. Further upper and lower bounds on 

the optimal values of both sand Sare found. By imposing natural bounds 

on the choice of an ordering decision, our proof will not use any result 

for the finite period model and it follows immediately from the results 

of [1,6,7]. We give the proof for the discrete demand case, in which 

there is a positive probability that the demand in a period equals 1. 

The proof carries over immediately to the continuous demand case, in 

which the demand distribution has a positive probability density. 

2. Model formulation. 

We consider the infinite period stationary model in which demands 

s_1,~,··· for a single item in periods 1,2, ... are independent, non

negative, discrete random variables with the common probability dis

tribution pj = P{It=j}, (j 2:.. O; t ~ 1). Assumeµ= Eit < 00 and p 1 > O. 

Only at the beginning of each period the stock on hand plus on order 

is reviewed. An order may then be placed for any nonnegative, integral 

quantity of stock. An order placed in period tis delivered at the 

beginning of period t+A, where A is a known nonnegative integer. The 

demand takes place at the end of each period. All unsatisfied demand 

is backlogged and there is no obsolescence of stock. 

There is a specified a fixed discount factor S, 0 ~ S < 1, so that 

a unit cost incurred n periods in future has a present value Sn. 

The following costs are considered. In any period the cost of 

ordering z units is Ko(z) + cz, where K ~ O, o(O) = O, and o(z) = 1 for 

z > O. Assume that the ordering cost is incurred on the time of delivery 

of the oirder. We can always take care that this assumption is satisfied 

by an appropriate discounting of the ordering cost. Let g(i) be the 

holding and shortage cost in a period when the amount of stock on hand 

at the beginning of that period is i just after any additions to stock. 
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Let~= 0 and let T =, + ... +, , n __ > 1. Define p~n) = P{T =J·} , 
V -n -1 ---rJ. J ---rJ. 

( j ~ 0; n ~ 0) . Assume that for each integer k 

( 2. 1 ) 

00 

L(k) = I 
j=O 

and 

exist and are finite. The function L(k) represents the expected holding 

and shortage cost in period t+\ when k is the stock on hand plus on order 

just after ordering in period t. The following conditions are imposed 

on the function GS(k): 

(i) There exists a finite integer s0 , such that GS(i) .::_ GS(j) for 

j ~ i ,;;, s0 and GS ( i) ~ GS ( j) for i ~ j ~ s0 

(ii) :Lim G(3(k) > L(S0 ) + K,. 
\kj-+oo 

Because of (ii) we may assume that s0 is the largest integer for which 

(i) holds, Let s 1 be the smallest integer for which 

(2.2) 

and let s1 be the largest integer for which 

(2.3) 

Let us define the state of the system in a period as the stock on 

hand plus on order just before ordering in that period. We take the 

set I of all integers as the set of all possible states. Every ordering 

decision is based on the stock on hand plus on order. We say that in 

state i decision k (k ~ i) is made when k-i uni ts are ordered. We impose 

the fol.lowing mild restrictions on the choice of an ordering decision. 

There are finite integers M1 < s 1 and M2 ~ s1 such that nothing is 

ordered if the stock on hand plus on order i ~M2 , at most M2-i units 

are ordered if i < M2 , and at least M1-i uni ts are ordered if i < M1. 

Let K(i) be the set of feasible decisions in state i. We have K(i) = 

= {kjmax(i,M 1) ~ k .::_M2} for i < M2 , K(i) = {i} for i ~M2 . 

Let C(M1,M2 ) be the class of all possible policies for controlling 

the inventory system considered ( see [6] for a precise description) . 
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GiYen a policy RSC(M1,M2 ) and an initial state iE-I, define it 

and 1t as the state and the decision in period t ( t > 1 ) . We take as 

optimality criterion 

where£ R denotes the expectation under policy R. We note that the 

expectations and the infinite summations exist, since the cost function 

Ko(k-i) + (k-i)c + L(k) is bounded from below. The quantity v8(i;R) re

presents the total expected discounted costs over the periods A+1,A+2, •.. , 

all discounted to the beginning of period A+1, when the state in period 

1 is i and policy R is followed. Observe that the expected discounted 

cost over the first A periods is not taken into account. However this 

is no restriction, since that cost cannot be influenced by any policy. 

Using the fact that ¾+ 1 = J½-It , we have (see also [7]) 

Since M1-µ,:;. ~ R(~+ 11i1=i),:;. max(i,M2 ) and Sn ➔ 0 as n ➔ 00 , we see 

that 

00 

V8(i;R) = tt 8t-1tR{K6(J½-4) + Gs(J½)li1=i} - Cl.+ Sµc/(1-8) . 

Since the term -ci + 8µc/(1-8) is not affected by the choice of the 

policy R :, we find it convenient to redefine V 8 ( i ;R) by setting 

00 

(2.4) I st-1 ~R{Ko(J½-4) + Gs(t.t)li1=i} . 
t=1 

A strategy R*E: C(M1 ,M2 ) is called optimal if 
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Theorem 2 . 1 ( Blackwell) 

.;,,;. 

Let R G C (M1 ,M2 ) and suppose that 

00 

(2.5) Vs(i;R.;,,;.) = min {Ko(k-i)+Gs(k)+S l Vs(k-j;R*)pJ.} 
keK(i) j=O 

i€I. 

* Then the policy R 1.s optimal among the policies from C (M1 ;M2 ). 

Proof 

Fix some integer i 0 e I. Let M = max( i 0 ,M2 ) . Consider the following 

decision model. We have a system with I(M) = {ijiGI,i ,;;.M} as the set 

of possible states. At discrete times t= 1 ,2, ... we observe the current 

state of the system and then one of a number of possible decisions 1.s 

made. Let K( i) be the set of feasible decisions in state i. If the system 

1.s 1.n state i at time t and decision k is made, then two things occur 

(1) we incur an immediate cost Ko(k-i) + G8(k) (2) the system moves at 

time t+l to state j, j,;;. k, with probability pk .. Finally there is 
-J 

specified a discount factor S, 0,;;. S,;;. 1. Obviously we have for this 

model that the total expected discounted cost overt= 1,2, ... , 1.s given 

by (2.4), when the initial state is i(EI(~)) and policy R(GC(M 1 ,M2 )) 1.s 

followed. The equation (2,5) holds for eacn ieI(M). Since Ko(k-i) + 

+ G8(k), keK(i), ier_(M)_~ uniformly bounded ink and i, we can now 

apply theorem 6(f) in {1] (see also L?]). This theorem tells us that 
.;,,;. 

v8(i;R) <Vf;(i;R) for all iGI(M), all RBC(M1,M2 ). Hence in particular 
.;,,;. 

we have found VS ( i 0 ;R ) < VS ( i 0 ;R) for all R ec(M1 ,M2 ). This proofs the 

theorem, since 1.0 was chosen arbitrarily. 

3. The optimality of an (s 2S) policy and bounds on the optimal sand S. 

Define 

00 

( 3. 1 ) 0 n (n) 
µ p. 

J 
j = 0, 1 , • • • • 

The function M8(j) is the renewal function of the defective probability 
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Obviously we have distribution {Bpj,j > O} with defect 1-B. 

M6(j) ~ B/(1-B), j ~ O, so m6(j) + o as j (n) (n-1) + 
+ oo. By pj = Po Pj 

(n-1) (. ) + • • • + P j Po J ~ 0; n ~ 2 , we have 

(3.2) Bp. + B 
J 

J ~ o. 

Using only the fact that G6(k) is bounded from below, it is shown 

in [7] that for an ( s ,S) policy ( order S-i uni ts, when the stock on hand 

plus on order i < s; order nothing, when 1 ~ s) we have that 

(2,3) 
1-s 

G6(i) + l G6(i-j) m6(j) + 
j=O 

1 < S 

+ {a6(s,S)/(1-B)}{B-(1-B)M6(i-s)}, i ~ s, 

where 

(3,4) 
S-s 

a 6(s,S) = {G6(s) + l G6(s-j) m6(j) + K}/{1+M6(S-s)} . 
j=O 

Consider now the function a6(s,S), s < S, s,S€I. The function a,(s,S) 

has been extensively examined in [6] . It is not difficult to verify 

that the function a 6(s,S)~ where B fixed and O ~ B < 1, can be treated 

in a quite similar way. The lemmas 4. 1 and 4. 2 in [6] remain true when 

we replace L(j), a(s,S) and a* by G6(j), a6(s,S) and min a 6(s,S) respec

tively ( use in the proof of lemma 4. 1 that m8 ( j ) + 0 as j➔00 ) • 

* * . From now on s and S are fixed and such that a6 (s,S) assumes its 
*. * absolute minimum for s = s and S = S . 

Define ( see ( 5. 1 ) in [6] ) 

0 

(3.5) 
. * 1-s 

I 
j=O 

* i < s ' 
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* The function vS(i), i&- I, is uniquely deter:piined by (3,5). Iterating 

the renewal equation (3.5) and using~>= , t p~n- 1) pj-k (j ,;;, O; n ,;;, 1), 

yields 

0 ' 

(3,6) 
. .;,:.. 

* i < s ' 

l-S * * * 
GS(i) + _l GS(i-j)mS{j) - aS(s ,S ){1+M(i-s )}, i 

J=O 

It is not difficult to verify that the theorems 5,1 and 5.2 in 

[6] remain true when we replace L( j) , p. and /'''( j ) by GS ( j), Sp. and 
* J * J vS(j) respectively. Only the inequality S ~ s 1, where s 1 is defined 

by (2,3), needs some comment. From the proof of theorem 5,1(f) in [6] 

it follows immediately that for the discounted model considered theorem 

5,1(f) can be sharpened to J(k) - J(i) ~ GS(k) - GS(i) - SK for~,;;, i,;;, s 0 . 

The proof of theorem 5. 2 ( b) in [6] implies now directly that s* ~ S 1 • 

Hence by theorem 5,2 in [6] we have the following theorem. 

Theorem 3. 1 

00 

= mi~{Ko(k-i)+Gs(k)-as(s*,s*)+s_I v;(k-j)p.} ' 
k,;;,l J =0 J 

ier. 

The right side of (3,7) is minimized by k * * = S for i < s and by k = l 

* * * for 1,;;, s . Furthers and S satisfy 

(3.8) 

From (3,3) and (3,6) it follows immediately that 

(3,9) for all i €I, 

Substituting (3,9) in (3,7) yields 

00 

(3.10) vs(i;(s*,s~))= mi~{Ko(k-i)+Gs(k)+s_I vs(k-j;(s*,s*))p.}, 
k,;;,l J =O J 

i€I, 
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where the right side of (3.10) is minimized by k = s* for i < s* and by 

k = i for i ~ s *. Since s* .s_ S 1 .:_ M2 and s * .:_ s 1 .:_ M1 , we have that 

v1/i;(s*,s*)), ieI, also satisfies the optimality equation (2.5). Hence 

by theorem 2.1 the (s*,s*) policy is optimal. So we have proved that 

any sand S for which a 6(s,S) assumes its absolute minimum, are optimal 

for all initial states and satisfy (3,8) 

Remark 3.1. Suppose now that the demand distribution F(s) of the demand 

variables {ft,t ~ 1} has a positive probability density f(s), Define 

now F(n)(s) = P{§..1 + + ~ .S. s}, n 2:. 1 and (cf. (2.1)) 

g ( y ) + ( 1-S ) cy 

f00 

g(y-s) f(J,.)(s) ds + (1-S) cy 

0 

if A= O, 

if A > 1 , 

where f(J,.)(s) is the density of F(;,_)(s). The following assumptions are 

made about the function G8(y): (i) there exists a finite number s 0 
such that G8(y) is nonincreasing for y,;, s 0 and nondecreasing for 

y ~ so, (ii) Gs(y) > Gs(So) + K for !YI sufficient large, (iii) Gs(y) 

is differentiable. Assume that s 0 is the largest number for which (i) 

holds. Let s 1 be the smallest number for which G8(s 1),;, G8(s0 ) +Kand 

let S1 be
00
the largest number for which GS(s 1),;, GS(S0 ) +SK.Define 

M8(s) = n~ 1 Sn F(n)(s), The derivate mS(s) of MS(s) satisfies 

Analogous to the discrete demand case the following result can be 
* * . obtained. Any numbers s and S for which 

a 8(s,S) = {G 6(s)+fS-sGS(S-s)mS(s)+K}/{1+MS(S-s)} 

0 

s ~ s, 

. * * assumes its absolute minimum, satisfy s 1 ,;, s ,;, s0 < S ,;, s 1 and the 

* * (s ,S) policy is optimal for all initial states. 
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-Remark 3.2. When p 1 = 0 it is not difficult to show that integers s 

and S- exist for which a8(s,S) attains its absolute minimum and which 

satisfy G8(s---1) > min a8(s,S),;;. G8(s'~~-"). Lemma 4.2 and the theorems 

5.1 and 5,2 in [6] are valid whens*= s-and s*= S~ Consequently 

the ( s -·,s-) policy is optimal for all starting conditions and s-- . - -and S satisfy s 1 ~ s ~ s 0 ~ S ~ s1. Such a policy is found by 

choosing from {(s*,s*)IGs(s*-1) ~ as(s*,s*') = min as(s,S)} a policy for 

which s* - s* is minimal. (see remark 3.6 in [6]). 
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