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A LIMIT THEOREM FOR THE PERIODIC REVIEW INVENTORY MODEL WITH NO SET-UP COST*) 

H.C. Tijms 

Mathematical Centre, Amsterdam, The Netherlands. 

The periodic review, single item, ~tationary inventory model is considered. 

There is a constant lead time, a linear purchase cost, no set-up cost, 

a holding and shortage cost function, no discounting of cost, and total 

backlogging of unfilled demand. In the finite period model there is 

included a salvage value for stock remaining or required at the end of 

the final period. A weak condition is imposed on the one period expected 

holding and shortage cost. In this paper a limit theorem is proved which 

relates the minimal total expected cost in then-period model for large n 

to the minimal average expected cost per period in the infinite period model. 

We consider a stationary inventory model in which the demands D1, D2 , •.• for a single 

item in periods 1,2, .•. are independent, nonnegative, discrete random variables with 

the common pro"babili ~y distribution dJ ( j) = P{Dt = j}, ( j ~ 0; t ~ 1). It is assumed 

thatµ= EDt is finite and positive. At the beginning of each period the stock on 

hand and on order is reviewed. An order may then be placed for any nonnegative integral 

quantity of stock. An order placed at the beginning of period tis delivered at the 

beginning of period t + A, where A is a known nonnegative integer. We assume that all 

excess demands are backlogged and satisfied by future deliveries. 

Let xt denote the stock on hand and on order prior to placing any order in period t. 

Let y t denote the sto.ck on hand and on order after ordering in period t. The range of 

both xt and yt is given by the set I of all integers. 

The ordering decision in period tis based upon Ht= (x1 , ••• ,xt• y 1 , ••• ,yt_ 1). The 

vector Ht represents 'the history of the process up to the beginning of period t. An 

ordering policy is a sequence R = (R 1, R2 , ••• ) of finite integral valued functions 

to be used as follows. At the beginning of period t, after having observed the past 

history-·Ht, a quantity Rt (Ht) - xt ~ 0 is ordered. 

The following costs are considered. The cost of' ordering z units is cz. Let g(i) 

be the holding and shortage cost in a period when i is the amount of' stock on hand 

just af'ter any additions to stock in that period. 

Let q,n{j) = P{D 1+ ... +Dn=j}, (j ~ O; n > 1), let 4>°(0) = 1, and let <P°(j) = 0 

for j > 0. We assume that 

L(k) = foo g(k-J") ~A(J") lj=O 'I' 
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exists and is finite for each k € I. L(k) can be interpreted as the expected holding 

and shortage cost in period t + ). when k is the stock on hand and on order after 

ordering in period t. We assume that there exists a finite integer x such that 

L(k) ~ L(x) fork< x and L(k) is nondecreasing ink fork> x. 

In then-period model there are made ordering decisions only in the periods 

1, ••• ,n and the problem is to find a policy which minimizes the total expected cost 

over periods ).+1, ••• ,).+n. In the formulation of then-period model we follow VEINOTT[5,6] 

by assuming that stock left over at the end of period).+ n can be salvaged with a 

return of the initial purchase cost. Similarly, any backlogged demand remaining at 

the end of period A+ n can be satisfied by a purchase at this same cost. 

Denote by f (ilR) the total expected cost over periods A+1, ••• ,A+n when i 
n 

is the amount of stock on hand and on order prior to ordering in period 1'-'&Ild the 

policy R is followed. We have [5,6] 

= 

where~ denotes the expectation under policy R. 

In then-period model a policy R* is called optimal if f (ilRj = min_ f (ilR) n .tt n 
for all i € I. 

( 1 ) 

In the infinite period model a policy R* is called optimal if a(ilR*) = mi~ a(ilR) 

for all i € I, where a(ilR) is defined by 

a(ilR) = lim inf (1/n) f (ilR) • n-+oo n 
(2) 

When the limit in (2) exists a(llR) represents the average expected cost per period 

when i is the stock on hand and on order prior to ordering in period 1 and the policy R is 

followed. 

The (x,x) policy, called the single critical number policy, has the following form. 
V 

When at the beginning of a period the ~tock on hand and on order i < x, order then 

x-i units; otherwise, do not order. The same parameter xis used in each period. 

Let x be any integer such that L(k) is minimal at k = x and L(k) is nondecreasing 

ink fork> x. It is known that the (x,x) policy is optimal for then-period and. 

the infinite period models [1 pp. 387-390, 5] • 

Let 

f (i) = min_ f (ilR), 
n .tt n i € I. (3) 

It is not difficult to verify that E(x,x) (L(yt)lx, = i) converges to L(x) as 

t ~ 00 for each i € I (see the proof of the theorem in the next section). From (1) and 

(2) it follows now that a(ilx,x) = L(x) + cµ, i € I. Hence 

minR a(ilR) = L(-;;) + cµ for all i € I. (4) 
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In the next section we shall prove that [f (i) - n(L(;-) + cµ)J converges to a 
n 

specified function v(i), i E I, IGLEHART [ 3, PP· 16-26] has proved l.n a quite 

different way an analogous result for the case in which L(k) l.S convex and in the 

n-period model stock left over at the end of period>..+ n has no value and backlogged 

demand remaining at the end of period>..+ n is never satisfied. We note that in the 

finite period model without salvage value the optimal single critical numbers are 

usually not the same for any period, 

A LIMIT THEOREM 

Let us define the renewal quanties m(j) and M(j) by 

j > 0 

THEOREM. Let x be any integer such that L(k) is minimal at k = x and L(k) 1.s non­

decreasing in k for k > x. Then 

lim [f (i) 
n~ n 

n(L(x) + cµ)J = v(i), i EI, 

where 

v( i) 
= { -ci + c>..µ, 

L(i) + l ~=~ L(i-j) m(j) L(x) {1 + M(i-x)} - ci + c>..µ, 

i < x, 

i > X 

(t) 
PROOF. Let pix denote the probability that yt = x, given that x1 = i and that the 

policy (x,x) is followed. If i .2. x, then pi~)= 1 for all t > 1. If i > x, then 

(t) t-1 - n 

( 5) 

(6) 

(7) 

pix = - <I>. (i-,,x+1), t :._ 2, where <I> (j) = P{D,+,,,+Dn .2. j}, (j :._ O, n :._ 1). For 

every j > 0 there, ·exists an int·eger r such that <I>r(j) < 1 , since q,(O) < 1. Further, 

we have t;at <I>n(j) < <I>n- 1(j), (j > O; n > 2). It will now be clear that p~!) converges - - - l.X 
exponentially fast to 1 as t ➔ 00 for each i EI. 

Let for any a, 0 <a< 1, the function G (k) be defined by 
CL 

G (k) = L(k) + (1-a.)ck, 
a 

k E I. 

Define for any a, 0 <a< 1 the function V (i) by 
a 

i E I. 

We note that Va(i) exists and is finite, since a< 1 and under the condition x1 = i 

we have that ~~ < y < max( i ,x), t > 1. The quantity V ( i) can be interpreted as the - t - - a 
total expected discounted cost over periods >..+1,>..+2, •.. , all discounted to the 

beginning of period >..+1, when i is the stock on hand and on order prior to ordening 

(8) 

(9) 

rn period 1 and the policy (i°,x) is followed. Using the fact that xt+i = yt - Dt, t :._ 1, 

we have f5,6] 

= i) - ci + acµ/(1-a), iEI.(10) 
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It is shown in [6] that 

i < X, 

V (i) 
a 

[

-ci + acµ/(1-a) + Ga(x)/(1-a), 

= -ci + a.cµ/(1-a.) + G (i) + l ~-x0 G (i-j) m (j) + 
a J= a a 

+ [Ga.(i°)/(1-a.)] [~ -(1-a.) Ma.(i-x)J , i > x, 

where 

ma.(j) = l:~1 a.n$n(j) and Ma.(j) = l ~=O ma.(k) , j > 0 

It follows from (5), (7), (8), (11) and (12) that 

lim +1 {V (i) - (G (x) + a.cµ)/(1-a.)} = v(i) CAµ, i € I. a a a 

( 11 ) 

(12) 

( 13) 

Put for abbreviation E(x,x) (L(yt)lx1 = i) = Lt(i). By (8) and (10) we have that 

Va.(i) - (Ga(x) + a.cµ)/(1-a.) = l :=1 a.t-1 (Lt(i) - L(x)} - ex - ci + 

+ c(1-a) l :=1 at-1 E(x,x) (ytlx1 = i), i E 

(14) 
I. 

Since E(x,x)(ytlx1: i) converges to X as n + OO for each i € I, we have by a well­

known Abel theorem that the last term in the right side of (14) converges to ex as 

at 1. So we have by (13) and (14) that 

Since Lt(i) - L(x) converges exponentially fast to zero as t + 00 for each i EI, 

we can apply a Tauber theorem [4, p.10]. This results in 

l :=1 {Lt(i) - L(x)} ~ v(i) - CAµ+ ci, i € I. 

By l ~=1 Lt(i) + ncµ - ci +CAµ= fn(i/x,x) = fn(i) and (16) the theorem is proved. 

(15) 

( 16) 

We note that a review of the proof reveals that for any (x,x) policy we have that 

[fn(ilx,x) ~ n(L(x) + cµ)J converges to v(i) as n + 00 , where v(i) is given by (7) 
provided that we replace x by x in ( 7). The numbers v( i) play the same role as the 

so-called "relative values" in HOWARD's model [2]. Finally, we note that a discrete 

demand distribution is not necessary in the proof. The proof may be adapted to any 

general demand distribution. 
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