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A COUNTEREXAMPLE IN DISCOUNTED DYNAMIC PROGRAMMING 

A. HORDIJK 

1 • INTRODUCTION 

and *) H.C. TIJMS 

We are concerned with a dynamic system which at times t = 0,1, ••• is 

observed to be in one of a possible number of states. Let I denote the 

space of all possible states. We assume I to be denumerable. If at time t 

the system is observed in state i then a decision k must be chosen from a 

given finite set Ki. Let Yt and 6t' t = 0,1, ••• , denote the sequences of 

states and decisions. 

If the system is in state i at time t and decision k is chosen, then 

two things happen: 

(i) We incur a known cost wik and 

(ii) P {Yt+ 1 = j I Y0 , 60 , ••• , Yt = i, 

are known. 

6t = k} = q .. (k), where the q .. (k) 's 
iJ iJ 

Finally there is specified a discount factor a, 0 <a< 1, so that a 

unit of value at time t=n has a value of an at time t=O. 

A rule R for controlling the system is a set of non-negative functions 

Dk(Y0 ,60 , ••• ,Yt), k E K(Yt) ; t ~ O, where in every case LkDk(·) = 1. As 

part of a controlling rule, Dk(Y0,60 , ••• ,Yt) is the instruction at time t 

to make decision k with probability Dk(Y 0,t0 , ••• ,Yt)if the particular 

history Y0 ,60 , ••• ,Yt has occurred. 

Let C denote the class of all possible rules. M Let C denote the class 

Di!) independent of the 

past history except for the present state.A nonrandomized stationary rule 

;s a memoryless rule for wh;ch D~.kt) D · d d t ft d · dd"t' .L .L .L = ik in epen en o ,, an in a i ion 

Dik = 1, or O for all i,k. 

For any rule REC and state i EI, let 
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provided it exists. The quantity ij,(i,a,R) represents the expected total 

discounten cost when the initial state is i and rule R is used. 

We say that a rule R* EC is optimal if ij,(i,a,R*) ~ ij,(i,a,R) for 

all REC, i EI. 

-2-

It is known [1,2] that there exists an optimal nonrandomized stationary 

rule when the cost function wik is bounded. We shall show th.at an optimal 

rule may not exist if the boundedness condition on {wik} is weakened. 'l'he 

counterexample given in [2] does not show this result, but proves only that 

an optimal nonrandomized stationary rule may not exist if the cost function 

wik is not bounded. In that counterexample the rule R, which makes with pro

bability 1/(2~t) decision 2 when in state i at time t, is optimal, since 
a 

for all states i 
a 

•1•( i a R) = - oo 
'I' a' ' 

We shall now give our counterexample. 

2. COUNTEREXAMPLE 

I= {1,1',2,2', ••• }, K., = {1}, K. = {1,2}, 
l. l. 

i ~ 1, 

q. ,.t1) = q. ·+1(1) = 1 
' q .. '(2) = 1 , i ~ 1 , 

l. l. i,i l.l. 

= 0 ( 1) -i i 1 wi'1 = wi1 , wi2 = - 1-:- a , ~ . 
l. 

Clearly, ij,(i',a,R) = 0 for all i ~ 1, REC. Next we shall prove 

and 

inf lj,(i ,a,R) 
R1aC 

= -a 

for all i ~ 1, RE c, 

-i for all i ~ 1. 

( 1 ) 

(2) 

Since the proof of theorem 2 in [3] holds also for a denumerable state space, 

for every i 0 EI and R0 € C there exists a R € CM such that PR(Yt=i,~t=klY0=i0)= 

= PR (Yt=i,~t=klY0=i0 ) for every i,k and t. Hence it suffices to prove (1) 
0 

M for R € C. 

Let rule R € CM and state i € I be fixed. Denote by P.(t) the probability 
l. 

that R makes decision 1 when in state i+t at time t. If P.(t) = 1 for all t ~ O, 
l. 

then ij,(i,a,R) = 0 > -a-1 • Suppose now P.(t) < 1 for at least one t. We have 
l. 



ijJ(i,a,R) = 2 
t=0 

Using the identity 

t-1 
-at { 1-P. ( t)} II 

1 k=0 

00 t-1 
2 { 1-P. ( t)} II 

t=0 1 k=0 

00 

P. (k) 
1 

P. (k) 
1 

t-1 
ijJ(i ,a,R) -i 2 { 1-P. ( t)} II > -a 

l. t=0 k=0 

We have now proved relation (1). 
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00 

= 1 - II P. (t) , we obtain 
t=0 1 

P. (k) ~ 
-i -a 

l. 

If R denotes the rule: Make always decision 1 in the states 1, ••• ,n-1, n 

and make always decision 2 in the states n,n+1, ••• , then 

( ) n-i ( 1) -n -i ( 1) 1jJ i,a,R = -a 1- a. = -a. 1-n n n 

This relation together with (1) proves (2). By (1) and (2), no optimal rule 

exists. 
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