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Some results for the dynamic (s,S) inventory model*) 

by H,C. Tijms 

Summary. The periodic review, single item, stationary (s,S) inventory 

model is considered. There is a fixed lead time, a linear purchase cost, 

a fixed set-up cost, a holding and shortage cost function, a discount 

factor O <a< 1 and backlogging of unfilled demand. The solution for 

the total expected discounted cost for the finite period (s,S) model is 

found. In addition the time dependent behaviour of the inventory process 

is found. Further a limit theorem is given, which relates the total 

expected cost in the finite period (s,S) model with no discounting to 

the average expected cost per period for the infinite period (s,S) model. 

As a by-product we obtain known results for the infinite period (s,S) 

model. 

1. Introduation. 

We consider the dynamic, stationary (s,S) inventory model in which 

the demands 11,~2 , ••• for a single item in periods 1,2, •.. are independent, 
. . t . bl **) . . . non-negative, discre e random varia es with the common probability 

distribution ~(j) = P{It_=j}, (j.:. O; t.:. 1).***) It is assumed that 

µ = ~ It is finite and positive. 

The stock level is reviewed at the beginning of each period and 

only then an ordering decision may be made. We shall assume initially 

that the lead time of an order is zero. If, at review, the stock level 

is belows, we order up to the level S, i.e., S-i units are ordered. If, 

at review, the stock level i > s, then no ordering is done. The numbers 

sand Sare given integers withs< S. We assume that excess demands are 

backlogged. Hence the stock level may take on negative values. 

***) 

Report BW 8/71 of the Operational Research Department of the 
Mathematical Centre, Amsterdam. 

Random variables are underlined. 

The proofs and the results of this paper can be adapted to any 
general demand distribution. 



The cost of ordering z units is Ko(z) + cz, where K > o, o(O) = o, 
and o(z) = 1 for z > O. Let L(k) be the holding and shortage costs in a 

period, where k is the a.mount of stock just after any additions to stock 

in that peri?d· Finally, there is specified a fixed discount factor a, 

O < a < l, with the interpretation that a unit of value t periods hence 
- t 

has a present value of a. 

In the finite period model it is assumed that stock left over at 

the end of the final period can be salvaged with a return of d per unit. 

Similarly, any backlogged demand remaining at the end of the final period 

can be satisfied by a unit cost of d per unit. 

The mathematical techniques of this paper are based mainly on re

newal theory. Therefore we discuss in section 2 a number of known results 

in renewal theory. In section 3 the finite period (s,S) model with no 

discounting (a= 1) is treated. Let f (i) be the total expected cost 
n 

over the periods 1, ••. ,n in then-period (s,S) model with no discounting, 

where i is the stock just before ordering in period 1. A formula for 

f (i) is found. In addition we find in a simpler way than in [3] the 
n 

probability distribution of the stock level at the time of review for 

all periods. In section 4 we determine the Cesarolimit of the sequence 

{f (i)-ng}, n > 1, for any i, where g represents the average expected n - , 
cost per period in the infinite period model. A sufficient condition is 

given under which the sequence {f (i)-ng} is convergent for any i. As a n 
by--product we obtain the known stationary probability distribution of 

the stock level at the time of review [3,4,6,8]. Further, in section 4 

a question of IGLEHART [5] is answered partially. Section 5 is devoted 

to the (s,S) model with discounting (a< 1). The solution for the total 

expected discounted cost for the finite period (s,S) model is found. As 

a direct corollary we obtain the known solution for the total expected 

discounted cost for the infinite period (s,S) model [8]. In section 6 

we indicate the modifications of the results in the case of a non-zero 

lead time. 

2. Pretiminaries. 

In this section we give a number of known results in renewal theory 

that will be needed in the analysis that follows. 
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Let 

When t = 1, we often drop the superscript. Define for convenience 

¢(O)(O) = 1, ¢(O)(j) = 0 for j ,:_ 1, and ~(O)(j) = 1 for j > 0. The 

volutionformula 

J,:_O;t> 

is well known [1:. 

con-

( 2. 1 ) 

Observe that by the assumptionµ= t~ > O, we have ¢(0) < 1. Let 

00 

m( j) = I 
t=1 

00 

and M(j) = I 
t=1 

j > 0 (2.2) 

Clearly, M(j) = m(O) + ••. + m(j), j ,:_ 0. We note that M(j) can be 

interpreted as the expected number of periods before the cumulative 

demand exceeds j • We have from ( 2. 1 ) and ( 2. 2) that the numbers m( j) can 

be computed successively from 

J 
m(j) = ¢(j) + l ¢(j-k) m(k), 

k=O 
j > 0 (2.3) 

A direct conseq_uence of the proof of theorem 1 on p. 183 in [2] is 

the following lemma (see also [8, p,546]). 

Lemma 2.1. The renewal function M(j) is finite. For every j > 0 holds 
(t)(') (1)(') (t)(') . -that~ J and~ J + ... + ~ J converge exponentially fast to 

0 and M(j) as t ➔ 00 

Let {b }, n > O, be a given seq_uence of finite numbers. Consider 
n -

the discrete renewal eq_uation 

n 

un = bn + k~O un-k ¢(k)' n > 0 (2.4) 

This discrete renewal eq_uation has a uniq_ue solution { u } , since the 
n 

numbers u can be computed successively from (2.4). Iterating (2.4) and 
n. 
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using (2.1) and the fact that $(t)(j) ➔ 0 as t ➔ 00 for any J, we obtain 

the known result [2] 

Let 
00 

m(j) = I t$(t)(j) 
t=1 

n > 0 

00 

and M(j) = I t\P(t)(j), J > O 
t=1 

(2.5) 

(2.6) 

Clearly, M( j ) = m( 0) + • . • + m( j ) , J > 0. The numbers m( j ) can be cal

culated explicitly from 

m(j) = m(j) + f m(j-k) m(k), 
k=O 

J > o. 

This relation can be proved as follows. Using (2.1) and (2.3), we obtain 

m(j) = m(j) + {m(j)$(0) + ... + m(O)$(j)}, j .:_ O. This equation is a 

renewal equation as given by (2.4). 

For any i .:_ s, let 

o, k = 0 

P. (k) = 
1 

,._(k-1)(. ) ,._(k)(. ) 
~ i-s - ~ 1-s , k > 1 

We note that p.(k) can be interpreted as the probability that the 
1 

(2.7) 

cumulative demand will first exceed i-s during the ·kth_ period. For any 

i .:_ s, we have 

n 
I 

k=O 
p. (k) 

1 
n > 

and (2.8) 

n 
I kp. (k) = 

k=O 1 

where we adopt the convention lb= 0 if a> b. Using lemma 2.1, we have 
a 

for any i > s that 



00 

I 
k=O 

p.(k) = 1, 
]. 

and 

5 

00 

I kp. (k) = 
k=O l. 

1 + M(i-s) (2,9) 

Hence we have for any i ~ s that {pi(k)}, k ~ O, constitutes a proba

bility distribution with a finite, positive first moment. 

Put for abbreviation 

j > 0 (2.10) 

Let p(l)(j) = p(j), j ~ O, and let 

j,:_O;t>2 (2.11) 

Define 

co 

r(j) = I P(t)(j), j > 0 (2.12) 
t=1 

Observe that r(O) = 0. The numbers r(j) can be computed successively 

from 

r(j) = p(j) + f p(j-k) r(k), 
k=O 

j > 0 

When~ has a geometric distribution, then we can evaluate the 

m(j), p.(j) and r(j) explicitly. Consider now the special case 
]. 

<I> ( j ) = pg_ j-1 j > 1 ' 

(2.13) 

where O < ~ ~ 1 and q_ = 1-p. It is known that f 1 + ••• +~has then 

a negative binomial distribution [1]. Moreover, we have 

"'(k)(. )' ,._(k+1)( ·) _ (m) k m-k 
w m - ~ m ~ k P_ q_ ~ (2.14) 

where we adopt the convention(~)= 0 if k > m. The relation (2.14) can 

be proved by the following probabilistic argument. In a sequence of 

Bernoulli trials with the probability of success p we have that 

<j>(j) = pq_j-l is the probability that the first success occurs at the 
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jth trial. Hence q,(k)(m) is the probability that at least k successes 

occur in m Bernoulli trials. Consequently, q,{k)(m) - q,(k+ 1)(m) is the 

probability that exactly k successes occur in m Bernoulli trials. This 

interpretation proves (2.14). By (2.14) we have found the p.(k) ex-
1 

plicitly. By using the generating function approach we can evaluate the 

m(j) and the r(j) explicitly. We have 

m(O) = O, m(j) = p for j > (2.15) 

and 

j > 1, (2.16) 

where 6 = S-s. We prove only (2.16). The known result (2.15) can be 

proved in an analogous way. Define the power-series 

V(x) = p( 1 )x + p(2)x2 + .. . and R(x) = r( 1 )x + r(2)x2 + ... , lxl < 1. 

We have from (2.7}, (2.10) and (2.14) that V(x) = x(px+q) 6 , lxl < 1. 

We have by (2.13) that R(x) = V(x) + R(x)V(x), lxl < 1, and hence 

R(x) V(x) = = 1-V(x) 

00 

I 
k=1 

k k6 
X (px+q) = 

00 

I 
k=1 

k 
X 

Hence the coefficient of xJ in R(x) is given by (2.16). 

The following lemma is well known. 

Lerro-na 2.2. If the sequence {a}, n ~ O, is convergent, then 
n 

. 1 n 
lim - L a = 
n-+oo n k=O K 

lim a. 
n n-+00 

Leirima 2.3. Let {a}, n > O, and {b }, n > O, be two sequences such that 
n - n -

a > O and ~a < 00 , Suppose bis a finite number. Let the sequence {c }, 
n- 6 n n 

n _> O, be defined by c = a0b + ..• + a b0 , n > O. n n n -

( a) 

(b) 

1 n 
If lim; l bk= b, 

n-+oo k=O 
then 

1 n 
lim - }: 
n-+00 n k=O 

00 
If limb = b, then lim c = b }: a .. 

n n J n-+oo n-+00 j =O 

C = b 
k 

00 

I 
j=O 

a .• 
J 
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Proof. (a) Since the sequence {(b0+ ... +b )/n}, n > 1, has the finite 
n -

limit b, this sequence is bounded by some positive number N. Let b = 0 
n 

for n < -1. We can then write 

n 
I ck= 

n k=O 

n oo 

I I a. bk . = 
n k=O j=O J -J 

00 n 
I a. I bk ., 

j=O J n k=O -J 
n > 1. 

Since for any fixed j > 0 the sequence {(b .+, .. +b .)/n}, n .:::_ 1, is 
-J n,-J 

bounded by N and has limit b, an application of the Lebesque dominated 

convergence theorem [ 2, p. 109] yields (a) . 

(b) The proof of (b) is analogous to that of (a). 

We note that this lemma remains valid when we replace the condition 

a > O, Ia < 00 by the condition Ila I < 00 • n n n 
A proof of the following important theorem can be found in [ 1 , p. 290 J. 

Theorem 2.1. Let {a}, n > O, 
n -

be a sequence such that 

.:::_ O, be a sequence such and O < Ina < 00 • Let {b }, n 
n n 

Let the sequence {u }, n > O, 
n -

be defined by the recursive relation 

un = bn + (aOun + ... + anuO), n > 0, 

(a) 
1 n 

lim - I ~ = 
n➔00 n k=O 

I 
n=O 

b 
n I 

00 

I 
n=O 

na 
n 

(b) If the greatest common divisor of the indices n, where a > O, is 1, 
n 

then the sequence {u }, n > O, is convergent. 
n -

3. The total expected cost in the n-period model with no discounting. 

In this section the future costs are not discounted, i.e. a= 1. 

A formula will be found for the total expected cost for the finite period 

(s,S) inventory model. 

*) \ Actually it is assumed in [1] that b > 0 and lb < 00 , However this 
n n 

condition may be replaced by Ilbnl < 00 
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Denote by~ and Zt the stock level just before ordering and the 

stock level just after ordering in period t. We note that the stochastic 

processes{~} and {Zt} are Markov chains. Clearly Zt = S if~< s, 

and Zt = ~ if ~ > s. Furthermore, we have 

t > ( 3. 1 ) 

In then-period (s,S) model the total expected cost f (i) is given by 
n 

f (i) = 
n 

(3.2) 

Note that by s .::_ Zt .::_ max(_!.1 ,S), t .::_ 1, and ( 3. 1) the expectations exist 

and are finite. Using (3.1), we can write (3,2) as (see also [8]) 

For any 1, let 

Define for 

and if ,!.1 

and 

f*(i) = 
n 

convenience f; ( i) = 0 

= i ~ s, then z1 = ,i. 

for any 1 ~ 

Hence 

f (i) = K + (S-i)c + f (s), n n 

f*(i) = K + f*(s), 
n n 

n > (3.4) 

If ,!.1 = 1 < s, then z1 = s, 

i < s. , n > (3,5) 

1 < s; n > (3,6) 

When .!.1 = i > s, then the probability that period t = k+i is the first 

period for which b < s equals p.(k), where p.(k) is defined by (2.7), 
--v 1 1 

Using a standard argument from renewal theory, it follows that 

n-1 i-s ( ) n-1 
f*(i) = L(i)+ l l L(i-j)<P k (j)+ L {K+f* k(s)}p.(k), n.::_1;.i>s (3,7) 
n k=1 j=O k=1 n- 1 
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Let 

S-s 
g = {L(S) + l L(S-k)m(k) + K} / {1 + M(S-s)} + cµ 

k=O 

It is known [4,5,6,8] that g represents for each initial stock the 

average expected cost per period in the infinite period model. 

Let 

* g = g - cµ' 

and for any i, let 

g*(~) *(·) * ... = f i - ng, 
n n 

n > 0 

(3.8) 

(3.9) 

(3.10) 

From (3.10), (3.8), (3,7) and (2.8) it follows after some straightforward 

calculations that 

i.::_s;n.::_1, (3.11) 

where 

n-1 i-s ( ) n-1 ( ) ( ) 
b*(i) = L(i)+ l l L(i-j)~ k (j)-g*{1+ l ~ k (i-s)}+K{1-~ n- 1 (i-s)} (3.12) 

n k=1 j=O k=1 

(i .::_ s; n .::_ 1) 

Define for convenience b;(i) = O, i .::_ s. We have by (3.11) that 

n > 0 (3.13) 

This renewal equation has the unique solution (c.f. section 2) 

n 
* * \ * g (s) = b (S) + l b k(s) r(k), 
n n k=O n-

n > 0 (3.14) 

The relations (3.6), (3.10), (3.11), and (3.14) in conjunction yield a 

formula for f*(i). From (3,3) and (3.4) it follows that the solution 
n 

for fn(i) is obtained by determining E(~+ 11.?f.1=i). From (3.1) we have 

for any i that 



10 

n > (3. 15) 

For any l. , . J, let 

. (n) 
= P{ln+1 = j 1~1=i} p .. , 

l.J 
n > 0. 

For any i, we have 

(n) 
= o, p .. 

l.J 
ji[s,max(i~S)]; n > 0 (3. 16) 

Furthermore, we have 

1. :< s; n > 0 (3.17) 

Using a standard argument from renewal theory, we have for n > 0 that 

PinJ_) =·cp(n)(i~j) + I p~nJ_-k)~i(k),s ,:_j ,:_max(i,S); i ,:_s, (3.18) 
k=O 

where cp(n)(k) = 0 fork.::_ -1; n .:_ 0. We have in particular 

(n) (n) ~ (n-k) 
p . = cp ( S-j) + l PsJ· P (k), 

SJ k=O 
s.::_j.::_S;n>O (3, 19) 

For any j€[s,S] the equation (3.19) constitutes a renewal equation, and 

hence (c.f. section 2) 

. s .::_ j .::_ S; n ,:. 0 (3.20) 

The relations (3, 16), (3, 17), (3, 18), and (3.20) in conjunction yield 

the probability distribution of ln+1• Observe that by (3,1) the probability 

distribution of ~+1 fo~lows from that of ln· 
We note that in [3] the probability distribution of x has been -n 

found by another approach, which is less simple than our approach. 

It is interesting to note that ifs> O, then p~~) represents also 
l.J 

in the lost sales model with zero lead time the probability that just 

after ordering in period t+1 the stock level is j, where i (i .:_ 0) is 

the initial stock. 
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Combining ( 3. 3) , ( 3. 4) , ( 3. 9) , ( 3. 10) , ( 3. 11 ) , and ( 3. 14) , we ob

tain the following theorem. 

Theorem 3.1. For any n ,::_ 1 holds 

* n * S ( ) 
f (i) = ng + tn(s) + I b .k(S)r(k) + K.- (d-c)( I jp8~~ 1 -µ) - ci, 1 < s 
n k=O n- j=s J 

and 

n * n-k 
f (i) = ng + bn*(i) + k=I0{bn-k(S) + I b* k .(S)r(j)} p.(k) + 
n j=O n- -J 1 

max(i,S) 
(d-c)( , . (n-1) ) 

l JPij -µ - ci, l > S, 

j=s 

-CoroUary. Consider the special cases= S = x. We note that such an 

(s,S) policy is frequently used when the set-up cost K is zero. We have 

then g = L(x) + K(1-¢(0)) + cµ, p(k) = {¢(0)}k-l{1-¢(0)}, k ,::_ 1, and 

b*(x) = -Kp(k), k > 1. Since {p~k)Lis a geometric probability distribution, 
k -

we have r{.j) = 1 - ¢(0), j > 1 (c,f. (2.15)). Furthermore, we have for 
(n) -. - . - (n) (n)(. ") any n > 0 that p. . = 1 for J = x, 1 < x, and p. . = ¢ 1-J for 

- lJ - lJ x < j .::_ i, i > x. It is now straightforward to verify that 

and 

f (i) = n{L(x) + K(1-¢(0)) + cµ} + K¢(0) - (d-c)(x-µ) - ci, -i < X 
n 

f ( i) 
n 

. -
n-1 l-X ( ) 

= n{L(x) + K(1-¢(0)) + cµ} + L(i) + l l L(i-j)¢ k (j) + 
k=1 j=O 

n-1 
- {L(x) + K(1-¢(0))}{1 + l ~(k)(i-i)} + K¢(0){1 -~(n-l)(i-i)} + 

l 

(d-c)( I 
j=x+1 

k=1 

·,i,(n-1)(. ") J'!' l-J 
l 

+ i {1 - I ¢(n-1l(i-j)} 
j=x+1 

µ) - ci, 

-i > x. 
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A direct consequence of theorem 3.1 is the known result that 

f (i)/n-+ gas n-+ 00 for any i, i.e. the average expected cost per 
n 

period in the infinite period model is g irrespective of the initial 

stock, 

4. CesaroZimit off (i) - ng. n 

In this section we find the Cesarolimit of the sequence {f (i) - ng}, 
n 

n > 1, for any i. A sufficient condition will be given under which the 

sequence {f (i) - ng} is convergent for any i. As a by-product we find 
n 

the known stationary probability distribution of the Markov chain {.:Lt}. 

Further a question of IGLEHART will be answered partially. 

where 

From (3.12) and lemma 2.1, we obtain 

i-s 
2 L(i-j)m{j) + K - g*{1+M(i-s)}, 

j=O 

i~s, (4.1) 

1 > S (4.2) 

* From (3,8), (3.9) and (4.2) we have that v (S) = 0. Furthermore, we have 
* by lemma 2. 1 that the sequence {b ( S)} converges exponentially fast to 

* n 
v (S) = O, and hence 

00 

I 
n=O 

Using lemma 2.1, we obtain after some straightforward calculations 

00 

I 
n=O 

* N * b (s) = lim I b (s) = 
n N-+oo n=O n 

S-s 
2 {L(S-j)-/Hn(j) - K{1+M(S-s)}, 

j=O 

where m{j) is defined by (2.6). 

(4.3) 

(4.4) 

From ( 4 • 3) , ( 4. 4) , ( 3. 13) , theorem 2. 1 (a) and ( 2. 9) it follows that 
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S-s 
= -[ I {L(S-j) - g*} i(j)J / [1.+ M{S-s)J - K 

j=O 

Lemma 4.1. 

1 - ~ * * K + lim - l {fk(S) - kg}, 
n-+00 n k=O 

and 

(4.5) 

J. < s 

J. > s. 

(b) If the greatest common divisor of the indices n, where p(n) > O, 

is 1, then the sequence {f*(i) - ng*}, n ;:_ O, is convergent for 
n 

any i. 

Proof. (a) From (3.6) it follows trivially that assertion (a) holds for 

i < s. From (4.5), (4.1), (3.11), lemma 2,3(a), lemma 2.2 and (2.9) it 

follows that assertion (a) holds for i ;:_ s. 

(b) If g.c.d. {nlp(n)>O} = 1, then by (4,3), (3.13), theorem 2.1(b) 
, * * and (2,9) we have that the sequence {f (S) - ng} is convergent. Next 

n 
it follows from (4.1), (3.11), (3,6), lemma 2.3(b) and (2,9) that the 

sequence {f*(i) - ng*} is convergent for any i. 
n 

Lemma 4. 2. 

(a) 
(0) (n) For any i,j holds that (p .. + .•. + p .. )/n-+ q. as n-+ 00 , where 
J.J J.J J 

q. = 
J 

[~(o)(S-j) + m(S-j)J/[1 + M(S-s)J, 

o, otherwise. 

(b) If the greatest common divisor of the indices n, where p(n) > O, 

is 1, then {p~~)} is convergent for any i,j. 
J.J 



Proof. (a) From (3.16) it follows trivially that if j4[s,S], then 

assertion (a) holds for any i. By (3.19), theorem 2.1(a) and (2.9) we 

have 

1 n (k) 
lim - l Psj 
n-+«> n k=O 

= I ~(n)(S-j)/ I np(n) = 
n=O n=O 

q.' 
J 

s ~ j < s. 

Using the fact that ~ ( n) ( j ) converges to zero as n -+ 00 for any j , it 

follows from (3.18), lemma 2,3(a), lemma 2.2 and (2,9) that assertion 

(a) holds for any i > s. Finally it follows from (3.17) that assertion 

(a) holds for any i,j. 

(b) From (3.16) it follows trivially that if j4[s,S], then assertion (b) 

holds for any i. If g.c.d.{nlp(n)>O} = 1, then it follows from (3.19), 

theorem 2.1(b) and (2.9) that {p~j)} is convergent for any jE[s,S]. Next 

it follows from (3.18), (3.17), lemma z .. 3tb) and (2,9) that assertion (b) 

holds for any i,j. 

CoroUary. 

(i) 
· n S 

For any i holds lim ¾ l ~(~+1 l.!.1=i) = l 
n-+«> k=O j =s 

Jq. - µ. 
J 

(ii) If the greatest common divisor of the indices n, where p(n) > O, 

is 1, then the sequence ,{E (~+1 l.!.1=i} is convergent for any i. 

It is interesting to note that from Markov chain theory it follows 

that {q.} is the unique stationary probability distribution of the Markov 
J 

chain {lt}. Using lemma 4.2, (3.1) and (2.3) we obtain the unique 

stationary !)robabili ty distribution {aj} of the Markov chain {.!.t}. We 

have [3,4,6,8] that a. = {~(S-j)+(~(S-j)m(O)+ ... +~(s)m(S-s))}/{1+M(S-s)} 
J 

for j < s, a.= m(S-j)/{1+M(S-s)} for s < j < S, and a.= 0 for j > S. 
J - - J 

A direct consequence of ( 4. 5) , lemma 4. 1 and the corollary of 

lemma 4.2 is the following theorem. 
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Theorem 4.1. 

(a) 

and 

(b) 

·t n 
lim -- l {fk(i)-kg} 
n+00 n k=O 

S-s 
= -[ l {L(S-j)-g*}m(j)J/[1+M(S-s)J + 

j=O 

s 
( d-c) ( l 

J=s 
jq.-µ) - Cl, 

J 

1 n l-S * 
lim -- l {fk(i)-kg} = L(i) + l L(i-j)m(j) - g {1+M(i-s)} + 
n➔00 n k=O j=O 

s s 
-l I {L(S-j)-g*}m(j)]/[1+M(S-s)J - ( d-c) ( I jqj-]J) - ci, 

J=s j=s 

If the greatest common divisor of the indices n, where p(n) > 

lS 1 ' then the sequence {f ( i) - ng} lS convergent for any i. n 

l < S 

l > s. 

o, 

Corollary. Consider the special cases= S = x. Since ¢(0) < 1, we have 

that p( 1) = 1 - ¢(0) > O. Hence g.c.d. {nlp(n)>O} = 1. This shows that 

{f (i) - ng} is convergent for any i. It is straightforward to verify 
n 

that 

lim [f (i)-n{L(x)+K(1-¢(0))+cµ}J = K¢(0) - (d-c)(x-µ) - ci, l < X 
n➔oo 

n , 

and 
-

l-X 
lim [f (i)-n{L(x)+K(1-¢(0))+cµ}J = L(i) + I L(i-j)m(j) + 
n➔oo 

n j=O 

- {L(x)+K(1-¢(0))}{1+M(i-x)} + K¢(0) - (d-c-)(x-µ) - ci, l > X, 

This limit relation has been derived in a quite different way in [7] 

for the case K = 0 and d = c. 

Remark. In this remark we present an example, where {f (i) - ng} 
n 

oscillates for any i. Moreover, this example answers partially a question 

of IGLEHART [5, p. 31]. Suppose P{~=1} = 1, c = d = 0 and K = 1. Let 
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L( 1) = L(2) = 0, L(j) > 1 for j 'F 1,2, L(j) is increasing for j .:_ 2, and 

L(j) is decreasing for j ~ 1. Consider the (s ,S) policy with s = 1 and 

S = 2. Clearly f (0) = (n+1)/2 if n odd, and f (0) = n/2 if n even. Hence n · n 
the sequence {f (0) - ng} is not convergent. 

n 
It is not difficult to show that the (1,2) policy minimizes both 

the total expected cost in the finite period models and the average 

expected cost per period in the infinite period model. So this example 

shows that IGLEHART's conjecture from [5] may not be valid when the 

demand variable 5.t; is bounded. 

5. The (s,S) inventory modeZ with disaounting. 

Suppose that future costs are discounted by a fixed factor a, 

O <a< 1. Denote by f (i;a) the total expected discounted cost for the 
n 

n-period ( s ,S) model, where i is the initial stock. Using ( 3. 1), we 

have (see also [8]) 

f (i;a) 
n 

where 

n-1 
+ acµ l 

t=O 

t 
a - ci, 

G (k) = L(k) + c(1-a)k, 
a 

For any 1, let f~(i;a) = 0 and let 

Clearly, 

f*(i;a) = K + f*(s;a), 
n n 

n > 1. 

i < s; n > ( 5. 1) 
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Using a standard argument from renewal theory, we have 

n-1 i-s ( ) n-1 
f*(i;a) = G (i) + I I akG (i-j)¢ k (j) + I ak{K+f* k(S;a)}p.(k) = 
n a k=1 j=O a k=1 n- l 

i~s;n>1, (5.2) 

where 

n-1 l-S 

G (i) + 
a I I 

k=1 j=O 
i~s;n>1. 

If we define b;(i;a) = O, i ~ s, then (5.2) is also valid for n = O. We 

have in particular 

where 

* * f (S·a) = b (S;a) + 
n ' n 

p(k;a) k =ap(k), 

Let p ( 1 ) ( j ; a) = p ( j ; a) , j ~ 0, and let 

Define 
00 

u(j;a) = l 
t=1 

n ~ O, 

k > 0. 

J ~ O; t > 2. (5,4) 

J > 0. 

We note that u(j;a) = p(j;a) + {p(O;a)u(j;a)+ ... +p(j;a)u(O;a)}, j ~O. 

Iterating (5·.3) and using the fact that p(t)(j;a) ➔ 0 as t ➔ 00 for 

any J , we obtain 

n 
f*(s;a) = b*(s;a) + ' b* k(S;a)u(k;a) 

n n k~O n-
n > 0 

The relations (5.1), (5,2), and (5,5) in conjunction yield a formula 

for f:(i;a). Since the solution for E(~+l 1~1=i) has been already deter

mined in section 3, we have found a formula for f (i;a). 
n 
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Theorem 5.1. For any n ~ 1 holds 

* n * S ( ) 
f (i;a) = b (S.;a) + I b k(S;a)u(k;a) + K - an(d-c)( I jp n- 1 µ) + 
n n k--o n- . SJ. -J=s 

+ acµ 

and 

n-1 t 
I a 

t=O 
- CJ., i < s 

n n-k 
f (i;a) = b*(i;a) + I {bn*-k(S;a) + I b* k .(S;a)u(j;a)} akp.(k) + 
n n n~ -J J. k=O j=O 

max(i,S) ( 1) n-1 ·t 
an( d-c) ( ' · n- ) + acµ ' a - ci, i > s. l JPiJ' -µ l 

j=s t=O 

We note that the formula for f (i;a) can be simplified in the n 
special cases= S. We omit details. 

Next we shall determine the limit of the sequence {f (i;a)} for 
n 

any i. Let 

and J > o. 

Clearly, M(j;a) = m(O;a) + •.. + m(j;a), j > 0, The numbers m(j;a) can 

be computed from m(j;a) = a~(j) + a{~(O)m(j;a)+ .•. +~(j)m(O;a)}, j ,:_ 0. 

For any i ~ s, we have 

= a - (J-a)M(i-s;a) (5~6) 

. (t) (t) t 
For any t ,:_ 1, we have p (O;a) + p (1;a) + ... = fo-(1-a)M(S-s;a)}, 

as can be easily proved from (5,4) by induction. Thus 

00 

I u(k;a) = {a - (1-a)M(S-s;a)}/(1-a){1+M(S-s;a)} 
k=O 

Using (5.6), we have 

. *(· ) *(· ) limb i;a = V i;a' n n-+oo 
i ~s., (5.8) 
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where 

l-S 

* v (i;a) = G (i) + 
Cl. 

I G (i-j)m(j;a.) + K{a.-(1-a.)M(i-s;a.)}, 
Cl. 

j=O 

From (5.8), (5,7), (5,5) and lemma 2.3(b), we have 

lim f*(s;a.) = v*(s;a.)/(1-a.){1+M(S-s;a.)} 
n 

n➔oo 

Using (5.9), (5.8), (5.6), (5.2) and lemma 2.3(b), we obtain 

l > S, 

lim f*(i;a.) = v*(i;a.)+{a.-(1-a.)M(i-s;a.)} lim f*(s;a.), i > s (5.10) 
n n 

n➔oo n➔oo 

The relations ( 5. 1), ( 5, 9), and ( 5. 10) in conjunction yield the solution 

for lim f:_(i;a.). Since lim fn(i.;a.) = lim f:(i;a.)+a.cµ/(1-:-a.)-ci, we obtain 

after some calculations the following known result [8] 

and 

lim f ( i ;a) 
n 

n➔oo 

* = g /(1-a.) + a.cµ/(1-a.) - ci, 
Cl. 

l < S 

l-S 

lim f (i;a.) 
n 

= G (i) + 
Cl. I G (i-j)m(j;a.) - {g*/(1-a.)}{a.-(1-a.)M(i-s;a.)} + 

Cl. Cl. 
j=O 

+ a.cµ/(1-a.) - ci, 

where 

S-s 
g: = {G (s) + I G (S-k)m(k;a.)+K}/{1+M(S-s;a.)}. 

'"" a k=O a 

6. The (s,S) inventory modeZ with a fixed Zead time. 

Suppose that an order placed in period t (= 1,2, ... ) is delivered 

at the beginning of period t+A, where A is a fixed positive integer. 

There is a fixed discount factor a with O <a< 1. In this section we 

consider the cases a = 1 and a < simultaneously. We assume that the 

ordering costs are incurred at the time of delivery of the order. We 

shall demonstrate that the results of the sections 3, 4 and 5 carry 

over with a slight modification. 
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The (s,S) policy is now based on the stock on hand plus on order. 

Denote now by~ and Z-t; the stock on hand plus on order just before 

ordering and the stock on hand plus on order just after ordering in 

period t. Since excess demands are backlogged, the stochastic processes 

{~} and {Zt} behave exactly as they done in the (s,S) model with zero 

lead time. Since everything on order in period twill have arrived by 

period t+l, we have that Z-t; - (~ + ••• +~·+A- 1) is the stock on hand at 

the beginning of period t+A just after any additions to stock. Suppose 

00 

LA(k) = l L(k-j)~(A)(j) 
j=O 

exists and is finite for any k, Clearly, LA(k) represents the expected 

holding and shortage costs in period t+A, given that Z.t = k. 

In then-period model there are made only ordering decisions in 

the periods 1, •.. ,n and we denote by f (i;a) the total expected (dis
n 

counted) cost over the periods A.+1, ••. ,A+n all discounted to the be-

ginning of period A+1, when ~ 1=i. Using (3.1), we have (see also [8]) 

f (i;a) = 
n 

n-1 
+ acµ l 

t=O 

t n a + a dAµ - ci, 

It will now be clear that the theorems 3.1, 4.1 and 5.1 remain valid 

provided that we replace L(k) by LA(k), replace -ci by dAµ-ci in theorem 

4.1 and replace -ci by andAµ-ci in theorem 5,1. 
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