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1. Introduction

We are concerned with a semi-Markov decision model which has,
roughly speaking, the following feature. Some natural process, that
is, a process in which no decisions are made, can be defined, such
that the decisionprocess is the superposition of the natural process
and decisions made in certain states of the natural process. The
advantage of the disintegration of the decisionprocess will appear
to be situated in the calculation of the expected costs incurred be-
tween two successive decisions, when the decisionprocess has reached
the "steady-state". The ideas underlying this approach are due to
DE LEVE [11].

In section 2 the decisionmodel is defined and under rather weak
conditions a formula is found for the long-run average expected cost
per unit of time.

This formula is applied on a number of continuous time inventory
models.

In section 3 we give some preliminary results that will be needed
in the analysis of the inventory models.

In section L4 we consider a single item inventory model in which
the customers arrive according to a Poisson process. The demands of
the customers are mutually independent and identically distributed
random variables with a geometric probability distribution and indepen-
dent of the arrival process. Excess demands are lost. The ordering
policy followed is an(s,S) policy of the following type. When no order
is outstanding and the stock level i falls below s, then an order for
S-i units is given; otherwise, no ordering is done. The numbers s and
S are given integers with s > 1 and S-s+1 > s. The léad time of an
order is a constant T > 0. The costs involved are ordering costs,
inventory costs and lost sales costs. A formula is found for the long-
run average cost per unit of time for the (s,S) policy. This formula
is well-known [8] for the case in which the demand per customer equals
1. Further we consider in section 4 a variant of the (s,S) policy,

where the ordering size is fixed.



In section 5 we consider again a single item (s,S) inventory
model in which the customers arrive-according to a Poisson process.
The demands -of the customers are mutually independent, positive, iden-
tically distributed random variables with a discrete probability
distribution and independent of the arrival process. Excess demands
are backlogged. The ordering policy followed is an (s,S) policy, which
is based on the stock on hand plus an order. The numbers.s and S are
given integers with s < S. The lead time of an order is a constant
T > 0. The costs involved are ordering costs, inventory costs and
backorder costs. A formula is found for the long-run average cost per
unit of time for the (s,S) policy. This formula is known [8] for the
case in which the demand per customer equals 1.

Finally,in section 6 we consider a two-item invertory model in
which the customers arrive according to a Poisson process. The demands
of the customers are mutually independent, identically distributed
random variables and independent of the arrival process. The probabi-
lity that a customer demands for one unit of item j is pj, jg=1, 2,
where p1+p2 = 1. Excess demands are backlogged. The ordering policy
followed is a (r1,Q1,r2,Q2) policy of the following type. When the
stock on hand plus an order of item 1 and item 2 fall to i1 and i2
respectively, and either i1 =r, or i2 = r,, order then simultaneously
r1+Q1-i1-units of item 1 and r2+Q2—i2 units of item 2, otherwise, do
not order. The lead time of an order is a constant T > 0. The costs
involved are ordering costs, inventory costs and backorder costs. A
formula is found for the long-run average cost. per unit of time for
the (r1,Q1,r2,Q2) policy. This formula is known for the symmetric case
Py = Py Ty = Ty, @ = Q, and T =0 [15].

2. Model and the long-run cost

Suppose that a stochastic process, called the natural process,
can be described in the following way. At the times Iy = 0, Iqs Tpsees
a system is observed and classified into some state x ¢ X, where X is

a given Borel subset of some complete, separable metric space. It is



assumed that in_ln-1’ n=1, 2, ..., are mutually independent, positive,
identically distributed random variasbles with a finite expectation. Let

F(t) be the distribution function of T

-1 . Let x be the state at
—n+1 -, =n

timerlﬁ. Furthery -it is assumed that

t }

(a) Pix €A|_>_c_i=?c 0? EI‘n+'1—:£n= N

X T LTt 0<isn} = P{§n+1eA|§n=x

i’ —i+1

for every n > 0, Borel subset A of X, x; € X, and t; 20,0 <1 <n.

(v) Pz, =x,} = F(t), P{x -7 <t t§i=x T 9=t s 0siznl = F(t)

'Iofplﬁo' —n— i —i+1

for every n 2 1, x; € X and t; 20,0 <i <n.

Let K(x,t,A) be the probability that X belongs to the Borel

+1
subset A of X given that x = x and T -T = t. Suppose that
- -n+1 —n

{oe]
J K(x,t,A) F(dt) is well defined and is a stochastic transition
0

function ~’. Hence the {En} process constitutes a discrete time Markov
process, where the times between successive transitions are mutually
independent random variables. We note that from renewal theory it
follows that the number of transitions in any finite time Znteérval is
finite with probability one [5,16].

The following assumption will be essential in our considerations.

Assumption 1. There exists a non-empty Borel subset A_of X, such that

0

for some n > O|x, = x}= 1 for all x € X.

P{g_cn € A X,

0

We suppose that a cost structure is imposed on the natural process

in the following manner. When the natural process makes at time In+1 a
transition to state y, then given that x = x and T -7 =t a non-
» =n -n+1 —n

negative cost c(x,t,y) is incurred at time <

To410 B > 1. At time t = 0

*)

A real-valued function K(x,A), where x € X and A is a Borel subset
of X, will be called a stochastic transition function if it has the
following properties: (i) K(x,A) for fixed x determines a probabi-
lity measure in A; (ii) K(x,A) for fixed A determines a Baire func-
tion in x.

We note that for a metric space the class of the real-valued Baire
functions coincides with the class of the real-valued Borel functions
(see, for instance, [T1]).



no costs are incurred in the natural process.

Assume the following functions ko(x) and to(x) are well defined
and are Baire functions. For x ¢ Ay we define to(x) as the expectation
of the length of the time interval between t = O and the time at which

the naturél-proceSS«takes»on for the first time a state of A., and we

s
- define—ko(x)4as~the~expeeted'eostfincurred during this time gnterval,
where x is the state-on t-= 0. With respect to the costs we take the
time interval right closed. For x € Ay we define ky(x)-=-t,(x) = 0. We
shall see hereafter-that the functions ko(x) and to(x) will play a
fundamental part in-our considerations.

Let us next describe the decisionprocess. Let I be a given Borel

subset of X, such that

(2.1) I 2 A,

Let V(x) be a given function on X with X as range too, such that

Y(x) = x ifx ¢l
and
P(x) ¢ 1 if x e I,
At the times I5 = 0, Tys Ips oes the decisionprocess is observed

 and classified into some state x € X. Let z, be the state at time T .
The assumptions (a) and (b) with x, replaced by z_ (see p. 3) are also

imposed on the (gn,ln)vprocess. Hence it is assumed that z depends

—n+1

only on z, and T _..-T_, and that T+ In is independent of

—n+1"—n +1 Zn?

z ces
=0 > =

17Zpe e Il

Furthers we suppose that K(y(x),t,A) is the probability that

241 belongs to the Borel subset-A of X, given that 2, =% and
In+1_ln = t. Furthermore 1f at time In+1

transition to state y, then at time Tt
—n+1

=t, n> 0. In addition a non-

the decisionprocess makes a
the cost c(¥(x),t,y) is

incurred-given that«gn =-X and T+ 1™ In
negative cost d(x) is incurred in the decisionprocess at time 1,020,

when z_ = x, where d(x) = 0 for x ¢ I. The function d(x), called the



decisioncost function, is assumed to be-a-Baire function.

We see that the decisionprocess can be regarded as a superposition
of the natural process and "the decisionmechanism ¥(.)". For initial
state x ¢ I, the decisionprocess behaves exactly as the natural process
up to the moment that a transition occurs to state of I, say state y. By
the "decisionmechandism ¥(.)" the state is then changed into state ¥(y),
this involves a cost d(y), and thereafter the decisionprocess behaves
exactly as a natural process with initial state ¥(y) until the next
moment that a transition occurs to a state of I. Note that by assump-
tion 1 and (2.1) the return to I occurs with probability 1.

We shall next define an imbedded process of the decisionprocess.
Assume from now on that on t = 0 the decisionprocess is in some state
of I. Denote by I ‘the state on the nth visit at the set I in the
decisionprocess ( 'the 8\h~v151t is at time t = 0). The {ln} process has
I as state space. The following assumption is made about the {;n}

process.

Assumption 2

The @l_} process is a Markov process with a stochastic transition

function p(.,.) (from I tol, ) with the property that there exists

+1
a probability measure q(.) on I, such that for every Borel subset A of

I holds
1
n

7o(k)
(2.2) lim ) p 7/ (x,A) = q(A) for all x e I,

where the k-step transition function p(k)(x,A) is defined recursively by
,

p(x,A) for k = 1,
(2.3) pF) (x,4) =4
J P(&,A)p(k_1)(x,d5) for k > 2.
\ I
Lemma 2.1
Let v and un’ n=1,2, ... be probability measures on a :

measureable space (Q,F). Suppose



lim un(A) = u(Aa) for every A € F.

n—-«

Then for any bounded measurable function f holds
limJ fx)u_(dx) ='J f(x)u(ax).
n
n>o ‘Q Q

This lemma is probably very wellknown. A special case of this
lemma -can be found in [10, p. 352]. The proof of the lemma is standard.
The lemma is easily verified when f is a simple function. For an arbi-
trary bounded measurable function the-lemma is then proved by using the
fact that every bounded measurable function is the limit of a uniformly

convergent sequence of simple functions.

From (2.:3) it follows that for every Borel subset A of I holds

n : n-1
1 k 1 1 k
) J)WJ)=;M&M+J p(E,A) — ZP(NL%L
k=1 I k=1
x e lyn>2.
By this relation, assumption 2 and lemma 2.1 we have that
(2.54) q(A) = J p(&E,A)q(dg) for every Borel subset A of I.
1 .

Moreover:, it follows from assumption 2 and lemma 2.1 that for any

real-valued bounded Baire functien f on I holds

n
(2.5)  limg ) E(£(L)|I, = x} = JI £(£)q(ag)

n>o k=0

for every x € I.

Given that the decisionprocess is in state x € I at time t = 0,
let t(x) be the length of the time interval between t = O and the
time at which the decisionprocess makes the next transition to a state
of T, and let k(x) be the cost incurred in the decisionprocess during

this time interval. We take this time interval left closed and right



open with respect to the decisioncost d(.) and we take the interval

left open and right closed with respect to the cost c(.,.,.).

Assumption 3

The functions K(x) = Ek(x) and T(x) = Et(x), x ¢ I, are bounded

Baire functions.

Lemma 2.2
n
el | x(ma(an
lim ;Ob = I s, X € I,
) E(L) |z L T(n)q(dn)
=0
Proof
Since
1 2 1 B
- Z E{gﬂ;n)llo = x} = = z E{K(ln)|go =x},xelyn>1,
=0 k=0
and
n ; B
- ) E{t(;n)lgo = x} = ;-kzo E{T(En)llo =x}, xel;yn>1,

k=0

the lemma follows immediately by applying relation (2.5).

For any x € I, let

k, (x) = a(x) + ko(w(x))

and

£(x) = £ (¥(x)).

Assumption L4

JI ky(n)g(an) < = and JI to(n)q(dn) < @,



Lemma 2.3

| xtmatan) = [t -k, atan)
I I

and
JI T(n)q(dn) = . {t,(n)=t,(n)} qldn).
Proof
For any x € I, we have
k,(x) = K(x)'+~J k,(&)p(x,a8)
1
and

400 = 20 + | tp(elpmac).

From Fubini's theorem and (2.4) it follows that

| xatan) = | rxatax) + JI ko(£)a(ae)

and

J t1(X)q(dx) Jf T(x)q(dx) +J tO(E)q(dE).
1 1 1

This ends the proof.

Assumption 5

*
There exists a state x € I, such that

*
P( = x for some n 3_1|;O =x) =1 for every x € I,

I
-n
and

E(x|

iy = x) < for every x € I,

where

. *
N = min(n|n > 1, I, =x).

Given that the decisionprocess is in state x € I at time t = O,
let Ec(x) be the length of the time interval between t = 0 and Ehe
time at which the decisionprocess makes a transition to state x for
the first time (the epoch t = 0 is excluded), and let gc(x) be the

cost incurred in the decisionprocess during this time interval. We



take this time interval left closed and right open with respect to
the ‘decisioncost d(.) and -left open and right closed with respect to
the costfunction c(.y.y.).

Assumption 6

Egc(x) < © and Egc(x) < @ for every x € I.

We note that the -return to statefx* in the decisionprocess is a
persistent recurrent event.

Let W, be the cumulative cost incurred in the decisionprocess
during the time interval [0,t]. We take this interval left closed and
right open-with respect to the decisioncost d(.) and left open and

right closed with respect to the costfunction c(.,.,.).

Theorem 2.1

lim %-E(E£|£0 =x) = %' for every x € I,
t>

where
« = | mmatan) = [0 (m) - xy(m3 atan)

and )
B = J T(n)q(dn) = JI {t1(n) - to(n)}'q(dn).

Proof

Consider first the case I, = x*. Let v, = 0 < v, <v_.< ,,, be

‘ =0 0 =1, =2
the increasing sequence of indices n for which In = x . The {gn}

process is a renewal process. For any n > 0, let m = max{k|_\_)k < n}.

By the elementary renewal- -theorem we have [5, 16]

Em,
- (2.6) lim — = =— .
oo B Ev1

A *
Observe that 521 = E(X| x ), and hence ﬁ21 is finite and positive.
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Let Y , n > 1, be the length*of the time interval between the (n-1)th
and the nth visit to state x in the decisionprocess (the Oth visit

is at time t = 0). Observe that Yqs 12, ... are mutually independent,
positive, identically distributed random variables with a finite
expectation. Let én’ n > 1, be the cost incurred in the decisionprocess
during the time interval between the (n-1)th and the nth visit to state
x*. We take this time interval left closed and right open with respect

to the decisioncost d(.) and left open and right closed with respect to

the costfunction c(.,.,.). Define Y, = 0 and for any t > 0, let
n, = max{k|lo LEEERR A < t}. By the elementary renewal theorem we
have
En
. =t 1
(2.7) llm_-'-—E'— .
g 8 al

Since the costs are nonnegative, we have
~n

P 1 12t
(2.8) {'E(i£1 éi) 5_;-E(HtI;O =x ) S_E'E( ) 8.), t > o.

*
Using Wald's identity ), we obtain

1 BT 1
(2.9) T El iz1 8;) =g E(n,+1) ES,.
Let
2t t
D(e) = E( [ 8;) and B(t) = | E(8,ly, = w) claw), ¢ 20,

1=1 0

where C(u) is the distributionfunction of y,. Using a standard argument

from renewal theory, we have

Walds identity (see, for instance, [3,5]). Let {u }, n > 1, be a
sequence of mutually independent, identically distributed random

variables with a finite expectation, and let m be a positive integral-

valued random variable with a finite expectation. If the event

{m = m} is independent of Yiq> Buns +oe» fOr every m > 1, then
m

E( ) = Eu, Em.
kZ1 E =



11
t
D(t) = E(t) + J D(t-u) c(du), t > 0.
0

Applying a well known-limit theorem from renewal theory [5], we obtain

(2.10) lim Dét) = 7

> -1
From (2.7), (2.8), (2.9) and (2.10) it follows that

ES
. -1- _ * _ —-1
(2.11) lim & EW |T. =x) = ik

] A

* *
Observe that E§, = k (x ) and Ey, = tc(x ).

In the same way it follows from

m m +1
] o 1 g * 1 .72
SEL 8) <o B(] k@lry=x)<-EC [ 8),n2t
1=1 1=0 i=1
and
m m +1
1 E .in < 1 E I}':l _* 1 E—n
2B ) s BCL 21l =x) <7 BC L x)nzt,
1=1 1=0 1=1
that
n ES:
T = %) = —1
(2.12)  limy E(L k(zplry=x") =5
n =0 1
and
Ey
.1 u Uy M
(2.13) lim - E('g Eﬂ;i)llo =x )= .
n>® 1=0 -1

) : . *)
From (2.11), (2.12) and (2.13) follows the relation

a *
E( ) k(Iy)lrg=x)
= x*) = lim —222 .

n
n—>00 _ * 3

*
) This relation has also been noticed by ROSS [1k4].
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Next consider the case ;0 = x, where x is an arbitrary state of I. Let
*
W(t) = E(W, I, =x"), then
1 (" 1 1 t
T Jo W(vt-u) G(du) <3 E(_VLCI;O = x) =% Egc(x) * T J W(t-u) G(du),
where G(u) is the distributionfunction of Ec(x). Using the fact that

W(t) is nonnegative and nondecreasing for t > 0, it is standard to

prove that
t

lim %J W(t-u) G(du) = lim Wf;t) .

Tt 0 tooe
Hence

.1 .1 *

(2.15) lim — EW, |I. = x) = 1im — E(W,_|I. = x ) x eI,

oo b -t '=0 foo b =t '=0 i

The theorem follows now from (2.14), (2.15) and the lemmas 2.2 and 2.3.

Remark 2.1 The Doeblin condition

From the theory of Markov processes [3] it follows that assumption

2 is satisfied if the following conditions hold

(1) The {;n} process is a Markov process with a stochastic transition
function p(.,.) that satisfies the Doeblin condition, that is,
there is a (finite-valued) measure m on the Borel sets of I with
m(I) > 0, an integer v > 1, and a positive €, such that for. every

x € I holds
P(v)(x,A) < - if m(A) < e.

(2) The Markov process {;n} has only one ergodic set.

We note that the Doeblin condition is always satisfied if I is

finite [37].

Remark 2.2 I is denumerable

Consider the case that I is denumerable. Suppose that the {;n}



13

process is a Markov chain for which the state space I is a positive
recurrent class. Let p§?), i,j € I, be the n-step transition probabili-
ties of the Markov chain {ln}. Assumption 2 is now superfluous, since

for any i,j € I the sequence {p§?)}, n > 1 has a Cesdrolimit independent
of i, say a5 and qu = 1 [2, pp. 32-33]. Furthermore, relation (2.5)

and hence the lemmas 2.2 and-2.3 and theorem 2.1 remain valid when we
replace assumption 3 by the weaker assumption ZK(j)qj < o gnd ZT(j)qj < @

[2, p. 89]. Finally, assumption 5 is automatically satisfied [2, p. 591].

Remark 2.3 I is finite

Consider the case that I is finite. Suppose the process {ln} is a
Markov chain with no disjoint closed sets. From the theory of finite
Markov chains it then follows that the assumptions 2 and 5 are automa-

tically satisfied (see, for instance, [2] and [9]).

Remerk 2.4 The "flexibility" in c(x,t,y) and P(x,t,y) for x € I,

Using the fact that ¥(x) ¢ I for x € I, it is readily seen that
K(u) does not depend on the values of the function c(x,t,y) for x € I.
Consequently, the long-run average cost per unit of time for the
decisionprocess is independent of c(x,t,y) for x € I. Furthermore, it
is easy to see that p(.,.), K(x), T(x) and hence the long-run average
cost per unit of time for the decisionprocess are independent of
K(x,t,y), x € I. This means that we may define c(x,t,y) and K(x,t,y)
for x € I in as convenient a manner as possible, where, of course, the
assumptions .1 and 4 have to be satisfied. This "flexibility" in
ce(x,t,y) and K(x,t,y) may simplify the determination of the functions

ko (x)-ky(x) and t,(x)-t,(x).

Remark 2.5 A relation between K(x) and kc(x*), T(x) and tc(x*).

Clearly,we have

(¢) p(x,dg) - p(x,{x*}) kc(x*), xel.

Using Fubini's theorem and (2.4), we obtain
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JI k,(x)a(ax) = JI K(x)a(ax) + JI k (£)a(a8) - a({x’}) K (x),
and hence
(2.16) JI K(x)a(ax) = allx' D) k (x),
provided that JI kc(x)q(dx) < ® In a similar way, we have |
(2.17) JI T(x)a(ax) = a(lx Dot (x),

provided thatJI tc(x)q(dx)v< ., In order to prove that q({x*}) >0,
x . By (2.2) and (2.6),

A~ _ . s _ % .~ a2
let 2, = 1 1f In = x , and let Z, 0 1if ;n

we have
* 1 o * * 1 a
a({x"}) = lim — ) P{L =x IEO = x }= lim ) Ezy, =
-+ k=1 n-> k=1
n->o E(l\]_l;_o=x )

and hence q({x”*}) > O.

Using (2.11), (2.15), (2.16) and (2.17), it is readily seen that
theorem 2.1 remains valid when we replace assumption 3 by the assump-
tion that [K(x)q(dx) < » and JT(x)q(dx) < o and add to assumption 6
the assumption ch(x)q(dx) < o and Jtc(x)Q(dx) < o,

3. Preliminaries

Suppose that in the time interval (0,~) customers arrive at a
store at times LIqs Ips vovs where the interarrival timesxlk—lk_1,
k=1,2, «c., (IO=O)’ are mutually independent, positive, identically

. . . . . . . . =\ .
distributed random variables with distribution function 1-e t, l.€.,
the customers arrive according to a Poisson process with rate A. Each

customer demands for a single item. Let = 0, and let gq, ge, ... be

3
.—0
- mutually independent, nonnegative, integral-valued random variables

with the common probability distribution ¢(j) = P{_§_n =3}, (3 2 03n2> 1),

and independent of the arrival process. The random variable gﬂ represents
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the size of the demand of the nth customer. It is no restriction to

*)

assume that
$(0) = 0.

Furthermore, it is assumed that
def

o= ) §e(d) <
J=1

For any t > 0, let
n(t) = ma.x{n|_‘_r__n < th.

Observe that n(0) =-0 with probability one. The random variable n(t)
represents the number of customers arriving during’(0,t]. We review the

following well known properties of the Poisson proces {n(t)}, t > 0,
[51.

(i) The probability distribution of n(t) is given by

-\t (At)k
k! ?

P{n(t) =k} = e

In words, the random variable n(t) has a Poisson distribution

with expectation At.

(ii) The randem variable Ta(t)+1 --t-has-the same exponential distri-

bution as the TSy g In words, given an arbitrary but fixed
point of time, the waiting time to the next arrival has the same
distribution as the times between successive arrivals, irrespective

of the "past".

Define

9(3), J

v

1y n=1,
60 (5) = 4

i ¢(n_1)(k)¢(j-k), J>13n2>2.
L k=1

If ¢(0) > 0, then the customers with a positive demand arrive’
according to a Poisson process with rate A(1-¢(0)).
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We have for n > 1 that {¢(n)(j)}, J > 1, constitutes the probability

distribution of &, + ... + E .
Let
. n),. .
n(j) = ) ¢( )(J), : 32
n=1
The renewal quantity m(j) can be computed from
- (3.1) m(j) = ¢(j) + % ¢(j-k)m(k), iz
k=1
For any k > 0, let
N(k) = max{n|gy + ... + & <k}
From renewal theery it is known that [5,16]
. .
En(x) = ) m(j), k>0,
J=1

. b .
where we adopt the convention za =0 1f a > b.

For any t > 0, let

v(t) =g + ...+ En(e)”

We have for t > O that v(t) is the cumulative demand in the time
interval (0,t].
For any t > 0, let

a (t) = Ply(t) = kI, K=0, 1, «0v .
Clearly, we have for any t > O that
-\t

ao(t) = P{n(t) = 0} = e

and
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k
ak(t) = 321 P{n(t) = j, & + ... + ;= k} =
k i
= ) e'“Qg-%—¢(J)(k), K= 1, 2, cev .
J=1 )
It is well known that [4]
Ev(t) = En(t) . EE, = hut, t > 0.

If n = var(gk) exists, then [4]

var(v(t)) = var(g,) En(t) + var(a(t)) (Eg)® = rtn + atu®,

We note that if At >> 1, then [6]

2
exp[M], K

oAt (n+p?)

1]
o
-
-
-
-

(t) =
"% /omAat ( E)-

v n+u

For any k > 1, let

B T InN(k-1)+1

and

= + ...+ .
Yy T &y Ey(k-1)+1
In words, &, is the length of the time interval from t = 0 up to the
epoch on which the cumulative demand exceeds k-1 for the first time,
and v, is the cumulative demand in this time interval.

Using Wald's identity, we obtain

k-1 . AN

(3.3) Et, = Ex, . E{N(k-1) + 1} = -;— (1 + j; m(j)), k > 1;
and

k=1 . .. ,
(3.4) Ev, = Eg, . E{N(k-1) + 1} = (1 + _Z m(j)), k > 14

J
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For any k > 1, let

(3.5) Yk(n)=P{v =n},' n=k,k+ 1, ...

In renewal theory Yy -.k+1-is called the excess random variable.

Using a standard argument from renewal theory, we have

© k-1
- (3.6) Yi(n) = P{g, = n} + .2 Z P{E, + .u0 # g5 =h, E5yp =
: : J=1 h=1
=o(m)+ [ 7 ¢9(n) ¢(n-n) =
j=1 h=1
k-1
= ¢(n) + ) ¢(n-h) m(h), n>k;k>1.
h=1
Let the 1-function be defined by
1 for x> 0
1(x) =
0 for x < 0.
Clearly, we have
(3.7) Ev(t-t,) = P{t, <t} = P{y(t) > k} =
k-1
=1- ] a.(t), kK> 1;t>0
j=o0 J

Since the arrival process is "'memoryless" and independent of the

demands of the customers, we have by the theorem of total expectation

that
k-1
(3.8) E{(ty-t) (g -t)} = jzo aj(t) By 55 k> 15t >0

From this relation and the identity
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E(ty-t) = E{(gy~t) 1(gy-t)} + EL(gy-t) 1(t-ty )}
it follows that

(3.9) E{(t-t,) ;-(t-gk)} = [ ay(t) Bt

Finally; we give -special attention to the case that én has a

geometric distribution. Suppose

8(3) = p(1-p)37T, ;

|V
Y
-

where 0 <-p < 1. It is known that [L]

1
.10 = —
(3.10) W=

and

() (3) = (gj) p(1-p) 7, J>2mnyn> 1.

Furthermore, we have the known results

(3.11) m(j) = p, g2
and
(3.12) Yk(n) = p(1-p)n'k, n>k; k>1.

We note that (3.11) can easily be verified from (3.1) by induction.
The relation (3.12) follows from (3.6) and (3.11).
From (3.3), (3.4), (3.10) and (3.11) it follows that

(3.13) Et, = —1— (1-p+kp) k> 1,
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and
(3.1k) Ev, = k + =2 , kK > 1.

If p < 1, then the probabilities ak(t) are given by

(t) = et

and

A k=1
-t (1-p) 1 ,=\tp
Atp e T e 1 ( 1—p)’ k> 1,

ak(t)

where L; is the Laguerre polynomial [1, p. 188]. The function Li is

explicitly given by

k

m
o= | P k

|V
o
-

and L; satisfies the recurrence relation

1

(k+1)~Lk+1

(x) - (2k42x) L(x) + (k+1) L] () = 0, k > 1.

If p = 1, then the probabilities ak(t) are ciearly given by

-t (A)E
k!

(3.15) - ak(t) = e

We close this section by giving some properties of the Poisson

distribution. Let p(j;a) and P(j;a) be defined by

P
(3.16) p(jsa) = e @ %T 5 J =0, 1, «euy
and
(
Z p(ksa), J=0, 1, cuus
(3.17)  P(jza) = 4 ¥4
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where 0 is a nonnegative number. The following properties of the

p(js;a) and P(j;a) will be used in the sequel.

r 0

(3.18) L Gr=j) p(jsa) =r - a+ ) (j-r) p(jsa), r > 0,
j=0 : J=r

(3.19) Y (-r) p(§sa) = ) P(jza), r >0,
j=r J=r+1

(3.20) 1 P(§30) = aP(r-130) + (1-r) P(r;a), r > 0.
j=r

These properties together with a large number of other ones can be
found in [817.

4, An (s,S) policy for a continuous time inventory model with lost sales

L.,1. Introduction

Suppose that in the time interval (0,*) customers arrive at a
store at times T,, I,, ..., vhere LGP W 1, 25 oen (IO=O), are
mutually independent, positive, identically distributed random varia-
bles with the distributionfunction 1—e—At. Each customer demands for
a single item. The demand of the customer: arriving at time I, is a
positive, integral-valued random variable gn. Assume that gq, EQ, ‘e
are mutually independent random variables w%th the common geometric
probability distribution P{_E_n = j} = p(1-p)J°1 (j > 13n > 1), where
0 < p <1, and independent of the arrival process. Demand exceeding
the available stock is lost. The ordering policy followed is an (s,S)
policy-of~the.followingrtype.fWhen no order is outstanding and the
stock on hand i falls -below s,-then an order of S-i units is placed;
otherwise, no ordering is done. The numbers s and S are given integers
with-s > 1 and S-s+1-> s. Note that for this policy never more than
one order-is outstanding. The lead time of an order is a constant
T > 0. The costs involved are ordering costs, inventory costs and lost
sales costs. The ordering costs of k units are given by h(k), where
h(k) > 0. The costs of carrying a unit in inventory are directly pro-

portional to the length of time for which the unit remains in inventory.
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The nonnegative constant of proportionality is-c,. The cost of each
lost sale is a nonnegative—constant:cg, where we assume c, = 0 if
T = 0.

In section-4.2 we shall derive a formula for the long-run average
expected cogt per unit of time for the (s,S) policy. This formula is
well -known for the case p = 1 [8]. Special attention will be given
to this case. Furthermore, we shall consider the following variant of
the (s,8) ‘policy: When no-order is outstanding and the stock on hand
falls below s-> 1, order then Q > s units; otherwise, do not order.

We note that this policy coincides with the (s,S) policy if p = 1.

‘4,2. The long-run average expected cost per unit of time

First we define a natural process. Let
X = {(i,k,u)|i,k integers and u real; i<S, S-s+1<k<S, O0<u<T} U
u{i|i integer, i<S}.

At the times Iy = 0, Tys Ips oo the natural process is observed and

classified into some state of X. For any integer i, let

i¥ = max(i,0) and i~ = - min(i,0).

When the natural process is in state (i,k,u) at time 1,» then given
that T, - T =+t and § . =] the next state is (iT-j,k,u+t) if
u+t<Tandi - jif u+ t-> T. When the natural process is in
state i at%time T then given that 41 I, = t and £n+1 = J the next
state is 1 - J.

From this definition of the natural process it will be clear
that the state is measured just after a demand has occured. The state
(i,k,u) corresponds to the situation that the stock on hand is i+, an
order of k units is outstanding since t units of time and that the
demand just occured involves i~ lost sales. The state i corresponds
to the situation that the stock on hand is i’ and that the demand just

occurred involves i~ lost sales.
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The costfunction c(x,t,y) is defined as follows for the possible

combinations of x, t, ¥y.

4

.+ - - . I S . -
c t1.+c2(1--J) for x=1, t>0,,y=1+-3, where J > 1, .

1

. . . .
and for x = (i,k,u), t<T-u, y=(i -j;k,u+t), where j > 1,

C(xst:Y) =<

ti++c.(u+t-T)k+c i++k-j)—

¢ y

1 2(

. .+ . .
for x=(i,k,u), t>T-u, y=i +k-j, where j > 1.
\ .
In words, for any unit kept in stock for a time t during the time
interval (In’1n+1] there are incurred inventory costs c1t at time £n+1’

and for any lost sale occuring at time In+1 there are incurred costs

c2 at time In+1'

The natural process is now completely described. Clearly, assump-

tion 1 is satisfied for the choice
Ay = {ili <0},
The "decisionset" I is defined by

Observe that 1 E-AO’ since s > 1. The "decisionmechanism" y(i), i € I,

and the decisioncost function d(i), i € I, are defined by

(1,8-1,0) ifi> 1,
V(i) =
(0,8,0) ifi <o,
and
h(s-1i) ir i > 1,
a(i) =

h(8s) if i < o.
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We note that the so defined decisionprocess describes adequately
the evolution in the (s,S) inventory model.

It is easy to see (c.f. section 3)

i
¢ 321 Bt + ey Bly;-1), 1z
k(i) =
0 1<0,
it it iToj+k
ko((i,k,u)) = c, ) Et. + c, ) a.(T-u) % Egh
=1 j=0 9 h=it2541
vep Lyaymw) [ By +e, [, (3-i0)as(T-w) +
J=1i h=1 J=1
i =1 +
+ ¢, ) a.(T-u) E(z,+ -1 +j-k) +
j=0 9 iT-j+k
*+ ¢, ‘z'+ aj(T-u) E(zk-k)
J=1
and
Eii, 1 _?_ 1,
ty(1) =
0, 10,
i+§1 "f
t.((i,k,u)) = T-u + a.(T-u) Et + a.(T-u)Et. .
0 3=0 J i+—j+k j=i+ J =k

Using (3.2), (3.13) and (3:14), we obtain after some straightforward

calculations
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(L.1) k (1) - k(i) = a(i) + k((i,8-1,0)) - k(i) =
(o]
= n(s-i) + ;l {(8-1)(1-p) + B (5-1)(s-i+1) +
i1 o
+(s-1) p ‘Zi (i-j)as(1)} + e, jZi(j_i)aj(T)

for 1 < i < s=-1.

k(i) - k(i) = b(8) + k,((0,5,0)) =

(o]
h(s) + Xl {s(1-p) + & s(s+1)} +

2
AT, 1-p -
+ c2(,P 5 ) for i <0
and
i=1 e 5
(4.2) (1) - t5(1) =T+ 2 [ (5-§)ay(m) + R (s-) [ as(m)- 3R,
J=0 J=1
for 1 <1 < s-1.
t,(1) -t (i) =T+ %'(1-p+pS) for i < 0.

Next we analyze the Markov chain {ln}. For any i,j € I, let

By (3.5) and (3.12) we have for any i,j € I that

i -1 Lo o]
: B
p;; = Eo ah(T)YS-h-s+1(S'h—J) + h£i+ ah(T)YS-i+—s+1(S-l -j) =
=i+§1 (T)p(1—p)s'1"j + f (T)p(1_p)s‘5'1 =
w0 heit B

= p(1-p)57179,
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Since the probabilities pij do not depend on i the state space I
of the Markov chain {;n} is & positive recurrent class, and hence the
asumptions 2 and 5 are satisfied (c.f remark 2.2 in section 2). More-
over, the stationary probability distribution {qj}, j € T, of the Mar-
kov»chain-{;ﬁ} is given by

_ s=1=] .
a; = p(1-p) ; j < s.

It is easy to see that the assumptions 3, 4 and 6 are satisfied.

Hence for each initial-state the long-run average expected cost per

unit of time for the (s,S) policy is given by

s=1
jz_m»qj{k1(j)—ko(j)}

(L.3) g

L oayle (3)-t4(3)}

I p(1-0)°7"786, ()2, (3)1+(1-2)° 7 18, (0) £ (0))

1
where k1(j) - ko(j) and t1(j) - to(j) are given by (4.1) and (4.2).

Now consider the special case

p=1,

i.e., each customer demands one unit. The (s,S) policy now becomes
the familiar (r,Q) policy, where r = s-1 and Q = S-s+1, that is, when
no-order is outstanding and the stock on hand reaches the reorder
level r, order then Q units; otherwise, do not order.

Using (3.15), (3.16), (3.18) and the fact that q, =1, ve find
after some straighforward calculations that the long-run average

expected cost per unit of time for the (r,Q) policy is given by
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c.qQ c.Q %0
o n(@+ o tears Bl (o= wey) | (5-r)p(351)
a(rsQ) = A o J7F
%“f % .Z (j-r)p(jsrT)
J=r

This -formula 1s well known [8].

Remark 4.1

. * * T
Suppose the integers-r > 1 and Q- 1_r*+1 minimize a(r,Q), where
r > 0, Q > max(r,1) and r, Q integers. Assume a(r*,Q*) < Acz. In

. . . . * % . .
practical situations we will have that a(r ,Q ) < Kcz, since Ac2 1s
the long-run average cost per unit of time for the policy which pre-

scribes to hold no stock. We have the necessary conditions
* * * * * * * *
(h.k) a(r £1,°) > a(r ,Q ) and a(r ,Q 1) > a(r ,Q ).

Using (3.19) and (3.20), we find after some straighforward calculations
that (4.4) can be written as [12]

Q*
i

P(r +1;AT) < < P(r 3AT),

* ) *
c1Q +X02-a(r ,Q )

and
Ah(Q*)-Ah(Q*-1)+c1Q*ia(r*,Q*)-c1{r*-ATHTP(r*;AT)-r*P(r*H AT} <
< Ah(Q’f‘+1)-Ah(Q*)+c1(Q*+1),
Furthermore, we notethat the formuia for a(r,Q) can be written
as
(5.5)  a(r,Q) = g Da(Q)ve@lr-ae Sy +

(o

+ {e,@hey-a(r,Q)} ) (G-r)p(3;AT) I
J=r



28

When
h(Q) = hQ+K, h : Q 2 1,

e *x % *
then from (4.5) and the necessary conditions-a(r ,Q *1) > a(r ,Q )

we -obtain after some straightforward caleculations [12]

© (]
--n—l—T D\K+{>\c2—a.(r*,Q*)}.z *(j—r*)p(j;}\T)] < E\li

Q*(Q"+1) jor

1 * % . *
—— [K+{rc,-al(r ,Q7)} ) (J-r )p(§;5aT) 1,
Q*(*-1) 2 jor*

and hence

*x ~ [ 2)K 2 * % v JERAINE
QF = \/T1+ o {rc,-a(r™,Q7)} jzr* (3= )p(isnT) .

Remark 4.2

Consider the following variant of the (s,S) policy. When no order
is outstanding and the stock on hand falls below s, ordern then Q units;
otherwise; do not order. The numbers s and Q are given integers with
Q > s > 1. In the same way as (4.3) has been derived, we find that the
long-run average expected cost per unit of time for this (s,Q) policy

is given by

s-1 s-1=] s-1
1 2(1-p) k(5)+(1-p)°7" x(0)
J:‘] .
&= s=1 . ?
7 op(1-p)%7 17 £(5)+(1-p)°7" t(0)
J=1
where
c.Q c.p c,Qp j=1
k(3)=h(Q)+ ——= (1-p)+ — Q(a+1)+ L (j-h)ay(T) +

h=0

*op L edem) v e, (ZR)(1-6(3)), 0 < § < s
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and
1-p . @p . p 9% 1
t(3) =T+ 2+ R+ 2 T (jon)ay(1) - 3 (1-p+ip)s())
h=0
for 0 < j <'s,
where §(0) =0 and §(j) = 1 for j > 1.

5. An (s,S) policy for a continuous time inventory model with back-

loggin

5.1. Introduction

Suppose that in the time interval (0,*) customers arrive at a

store ab times 1., T -+, Where It pn =, 2, ... (10=O) are

mutually independent, positive, identically distributed random varia-
. . . . . -A

bles with the distributionfunction 1-e x. Each customer demands for

a single item. The demand of the customer arriving at time I is a
positive, integral-valued random variable gn. Assume §4, gQ, ... are
mutually independent random variables with the common probability
distribution ¢(J) = P{én = 3j}, (J 2 13;n > 1), and independent of the

arrival process. Suppose

Jo(§) < =.
1

©
1]
N8

J

Excess demand is backlogged. Hence the stock on hand may take on
negative values. The ordering policy followed is an (s,S) policy of
the following type. When the stock on hand plus on order i falls below
s, then S-i units are ordered; otherwise, no ordering is done. The
numbers s and S are given integers with S > s > 1. The lead time of an
order is a constant T > O.

The costs involved are ordering costs, inventory costs and back-
order costs. The cost of ordering k units is Ké§(k) + ck, where K > 0,

c >0, 6(0) = 0 and 6(k) = 1 for k > 1. It is no restriction to assume
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that ¢ = 0 *). The costs of carrying a unit in inventory are directly
proportional to the length of time for which the unit remains in in-
ventory. The constant of proportionality is <, > 0. For each unit
backordered there-is a fixed cost <5 > 0 plus a nonnegative, variable
cost c3t which depends on the length of time t for which the backorder
exists. Fach unit backorderéd is delivered subsequently on the moment
that stock becomes available. Observe that since s > 1, the backorder
costs of a unit backordered never exceed c2+c3T. We assume c, = c3 =0
if T = 0.

In the next section we shall determine a formula for the long-run
average expected-cost per-unit of time for the (s,S) policy. This for-
mula is well known [8] for the case that ¢(1) = 1, i.e., each customer

demands one unit.

5.2. The long-run average expected cost per unit of time

- First we define a natural process. Let

where

XO = {i|i integer, i < S},

and

X .= {(i,i1,u1,...,i

- ’um)ll’l1""’1m integers; u;,...,u reals;

m

1,90ee,i >1, 1+i. +...+1 < >U, U ..U >
1 12T, 1 S, Tru,>u um_p}

1 72

form=1, 2, ... .

) Since all demand is satisfied ultimately in the (s,S) inventory
process, we have that the long-run average expected linear purchase

costs per unit of time are equal to cAu.
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At the times 10 =0, 14, Ios oo the natural process is observed and

classified into some state x € X. When the natural process is in state
1 at time LI then given that ln+1

is i-j. When the natural process is in state (i,i1,u1,...,im,um) at

=t and _gn_” = J the next state 1s

-1, = t and gnﬂ = J the next state

time I then -given thatf£n+1—£n

(i—j,i1,u]+t,...,im,um+t)-if t < T-u,,
(1+11+...+1h—3,1h+1,uh+1+t,...,1m,umft) if T-u <t < T-u .,
h=1, ..., m-1, and i+ig+ ... + i -j if £ > T-u .

We -note that the state of the natural process is measured just
after a demand has occurred. The state i corresponds to the situation
that the stock on hand is i and no orders are outstanding. The state

(i,i1,u1,...,i ,um) corresponds to the situation that the stock on

m
hand is i and m orders are outstanding simultaneously, where the hth

order has size i, and is outstanding since uy units of time, -

h=1, ..., m. Fzrthermore, we note that in the natural process no
orders are placed, but orders already outstanding in the initial state
of the natural process are delivered in the course of the natural
process.

We -shall define the cost function c(x,t,y) verbally. For any unit
kept in stock for some time t during the time interval (In’ln+1] in

the natural process, there are incurred inventory costs c1t at time

Tt When in the natural process at time To+q backorder arises,
then for the unit backordered there are incurred at time e back-
order costs c2+c3t if the unit backordered will be satisfied by a

future delivery in the natural process, which arrives t units of time
hence and backorder costs c2+c3T if the unit backordered is not
satisfied in the natural process by a future delivery. By this
description the function c(x,t,y) is defined unambiguously. However
we omit the formula for c(x,t,y), since this formula is rather compre-
hensive and is not explicitly needed in the sequel.

For x € X, let

1
[

i if x
e(x) = A

i+d, + .0+ if x = (i,i14u1,..f,im,um).
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Assumption 1 is clearly satisfied for the choice
A, = {x|e(x) < 0}.
The decisionset I is defined by
I = {x|e(x) < s=1}.

Observe that I 2 Ay since s > 1. The decisionmechanism ¥(x), x € I,

and the decisioncost function d(x), x € I, are defined by

(i,8-1i,0) ifx=1,

¥(x)

u )

(i,i1,u1,...,im,pm,S—e(x),O) if x = (i,i1,u1,...,im

and

d(x) = K.
The so defined decisionprocess adequately describes the (s,S) inventory
process.

It is easy to see that in the decisionprocess the times between
successive visits to the set I are mutually independent, positive,
identically distributed random variables with the same distribution as
the random varitable ES—s+1'

We shall now prove that the process {;n} satisfies the assumptions
2 and 5. Let

P = P{Eﬁ—s+1 z T}
and let
Py = P{Xs-s+1 =8-i, &5 .42 T}, i< s,

Clearly,
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) p; =p > 0.
i<g *
We shall now show that the stochastic transitionfunction p(.,.) of the

Markov process {;n} satisfies the Doeblin condition. Clearly, we have

for all x € I; i < s.

(5.1) p(x,{i}) = p.

1

Define for any Borel subset A of I

Clearly, m is a finite-valued measure on the Borel sets of T with
m(I) =p > 0. Let = o

=P
e=3.
Let A be a Borel subset of I, such that

m(A) < €.

Then it follows from

that

p(x,A) <1 - ) p. < 1-c.

Hence the stochastic transition function p(.,.) satisfies the Doeblin
condition (see remark 2.1). Further, it follows from (5.1) and the
fact that Py > 0 for at least one i < s that the Markov process has
only one ergodic set. Hence assumption 2 is satisfied. Moreover, it
follows from (5.1) that the assumption 5 is satisfied. We can take

for x* any state i < s with p; > 0; if x = i, where p; 0, then for
any initial state x € I the random variable N has a geometric probabi-

lity distribution with expectation 1/pi.
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We have already noted that in the decisionprocess the times be-
tween successive;visits to the set I are mutually independent random
‘variables with the same-distribution as Esés
‘x-€ I the random -variable t(x) is distributed as

+1° and hence for any
ES—S+1' Hence the
denumerator B -of the criterion is given by (c.f. theorem 2.1)

- (5.2) B = Et .

Next -we shall determine-k1(x)—ko(x), x € I. We shall see that the
function k1(x)—ko(x)tdependswanly on e(x). Some reflection shows that
in k1(x)'and ko(x) the same term appears-for the expected inventory
costs for the e(x) units which represent state x. Further, we have
that in k1(x) and ko(x) the same term appears for the expected back-
order costs for the e(x) units which represent x. When e(x) > 1, then

the expected backorder costs
(5‘3) (02+C3T) E(Xe(x)-e(x))

appear in ko(x)-but not in k1(x). In k1(x) there appears the term
)
(5.4) c E{(t,-T) 1(t,-T)}
" kemax(e(x),0)#1  © =
for the expected inventory costs for the S-e(x) units of the order
placed in state -x and-further, there appears in k1(x) the term
. S
(5.5) ) E{(cyteq(T-t,))  v(T-t, )}

k=max(e(x),0)+1

for the expected backorder costs for the S-e(x) units of the order

placed in state x. Furthermore, the expected backorder costs
(5.6) ~(c2+c3T) E(XS'S)

appear in k.(x)-but not in k. (x).
1 0
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It is now readily seen that

K+(5.4)+(5.5)+(5.6)-(5.3) if e(x) > 1,
k, (x) -k, (x) =
K+(5.4)+(5.5)+(5.6) if e(x) < 0.

Using (3.7), (3.8) and (3.9), we obtain after some straightforward

calculations
% k-i‘l
(5.7) k,(x)-k,(x) = K + [(ci*ey) ) a.(T)EL, . +
1 0 k=141 1730 s2 —k=J
k-1
+ c3(T-EEk) + c2(1 - _z aj(T))]
J=0
+ (°2+°3T)(EZS’EXi'S+i) if e(x) =1 2> 1,
and
S k-1
(5.8) k,(x)-ky(x) = K + k__2_1 [(cqy*es) jzo a;(T)E, s + cq(T-Ety) +
k-1
+ c2(1- L aj(?))] + (°2+C3T)(EIS‘S)

J=0
if e(x) =1 < 0.
It is readily seen that the assumptions 3, 4 and 6 are satisfied.
For any j < s, let

Rj = {x|x eI, e(x) = j}.

Clearly, we have for any n > 1 that

P{I e A.|I = x}
=n

51201 P{e(lﬂ) = j|1 = x} =

-1

YS_S+1(S—J) for all x € I; j < s.
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Since
A . 2 2 .
q(Aj) = lim — ) P{Ik € AJ.|_]_ZO = x}, xel; jc<es,
n>e k=1
it follows that
A . .
(5.9) alhs) = vg_g,q(8-3), j < s.

It follows now from theorem 2.1, (5.2) and (5.9) that the long-

run average expected cost per unit of time for the (s,S) policy equals

(5.10)  g=g—— L[] k(i) - k(D)) vg__, (s-1),

—8-s+1 1i<s

0(i) is given by (5.7) and (5.8).

Consider now the special case

where k1(i)-k

i.e., each customer demands one unit. The (s,S) policy now becomes
the familiar (r,Q) policy, where r = s-1 and Q = S-s+1, i.e., when
the stock on hand plus on order reaches the recorder level r, order
then Q units; otherwise, do not order. We now have (c.f. (3.13),

(3.14), (3.15) and (3.16))

k
YS_SH(S—S) =13 ak(T) = p(k3;AT), k > 03 Egk =Teand v =k, k>
After some straightforward calculations it follows from (5.7), (5.8)
and (5.10) that the long-run average expected cost per unit of time .

for the (r,Q) policy is given by

(c1+c3) r+Q k

AK (Q+1)

a(r,Q) = & + ——— (k=3 )p(3;AT) + c,(AT-r- ) +
? ° k=§'+1 jzo 3 2
Acz r+Q
* b P(k3AT).
k=r+1
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Using (3.18) we can write a(r,Q) in the equivalent form

a(r,Q) = &% + ¢, (r-AT+

c. tc *®
Lh + (1) % I B35 +
i=1 j=r+i+i

(5.11)

Acz %
+ — P(r+i;AT).
U i=

This formula can also be found in [81.

Remark 5.1

* *
Suppose the integers r > 1 and Q > 2 minimize a(r,Q), where

r>0,0Q2>1andr, Q integers. We then have
* * * * * * * *
(5.12) a(r 1, ) > a(r ,Q ) and a(r ,Q #1) > a(r ,Q ).

Using (5.11), we find after some straightforward calculations that the

necessary conditions (5.12) can be written as [12]

%* A %* .
1 * 2 *

- P(r +i+13;AT) + S EEE—— p(r +i;AT) i_c o <
Q i=1 (c1+c3)Q i=1 173

*

*
Ae
1 * 2 * .
Ay % P(r +ijAT) + —————— % p(r +i-1;AT)

Q i=1 : (c1+c3)Q i=1
and
(e *cy) * A
(o] (o] (¢]
" f + *1 *3 % iP(r +i+15AT) + *2 P(r*+Qf+1;AT) +
Q (@ +1) Q@ (Q +1) i=1 Q +1

‘ *
Ac c
*
—t ? P(r'+i30) < 5 <
Q (Q +1) i=1

(c.+c,) Q=1 e
hS * If + *1 *3 Z iP(r*+i+‘] ;}\T) + _f P(I'*+Q*;)\T) .
Q (@ -1) AQ (Q -1) i=1 Q
Ac Q* 1
- —;—-;g——- ) P(r*+i;AT).

Q (q -1) i=1



From the latter inequalities it follows that

* ~ [0AK 2\ * ok
Q "\/———'+ — R(r ,Q ),
¢ %

where

*
: c,te
R(r*;Q*) = ( 1x 3) % iP(r*+i+1;AT) +

i=1

*
* * * *
+ KCE{Q P(r +Q +13AT) - ? P(r +ijAT)}.
i=1
* *
Observe that R(r ,Q ) is nonnegative, since P(k;AT) is nonincreasing

in k.

6. An (r1,Q1,r2,Q2) joint ordering policy for a two-item continuous

time inventory model with backlogging

Suppose that in the time interval (0,®) customers arrive at a
store at times Iis Ios vevs where In-ln—1’ n=1, 2, ... (IO=O) are
mutually independent, positive, identically distributed random varia-
bles with the distribution function 1—efAt. Each customer demands
either for item 1 or for item 2. The demands of the customers are
mutually independent, identically distributed random variables and
independent of the~arrival process. The probability that a customer
demands one unit of item J iS<pj, J =1, 2, where PP, = 1. Denote
by Ijn the time -at which the nth demand for item i occurs, j = 1, 2.
It is known from the theory of Poisson processes that for fixed
j =1, 2 the random variables Ijn_ljgn—
mutually independent,-posiE;Yi random variables with the common

J

s 0= 1y 25 oun (Ij0=o) are

distribution function 1-e~

{EJnfl1,n—1}’ n2 1, end {lQn—lQ,n—1

Excess demand is backlogged. The ordering policy followed is a

. Moreover, the sequences

}, n > 1, are mutually independent.

(r1,Q1,r2,Q2) policy of the following type. When the stock on hand
plus on order of item 1 and item 2 fall to i1 and‘?i2 respectively, and
either i1 =r, or i2 = r,, order then simultaneously r1+Q1—i1 units

of item 1 and r2+Q2—i2 units of item 2; otherwise, do not order. The
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numbers rj and Qj are given integers with rj > 0, Qj

The lead time of an order is a constant T > O.

>1,§=1, 2.

The costs involved are ordering costs, inventory costs and back-
order costs. The cost of ordering simultaneously k., units of item 1

1
and k, units of item 2 are given by c k +e k +K6(k1,k2), where

2 1 7272
cys G55 K 2 0 and 6(k1,k2) is a given function with 0 < 8(k,,k,) < 1.
It is no restriction to assume that c, = cy, = 0. (the linear purchase

cost cj cont:r'ibu.tesvcjk}p'j to the long-run average cost). The costs of
carrying a unit of item-j in inventory are directly proportional to
the ‘length of time for which the unit remains in inventory. The non-
negative constant of proportionality is cj1, j =1, 2, For each back-
order of item j there is-a fixed, nonnegative cost cj2 plus a variable,
nonnegative cost cj3t-which depends on the length of time t for which
cj3 =0if T=0, J =1, 2. Note

that -any backorder in the inventory process is satisfied by an order

the backorder exists, where cj2 =

which is-already outstanding on the moment the backorder arises,

because s T > 0 and each customer demands one unit.

2
In the next section we-shall derive a formula for the long-run

average -expected eost per-unit of time for the (r1,Q1,r2,Q2) policy.

6.2. The long-run-average expected cost per unit of time

First we define a natural process. Let

X= U Xm’
m=0
where
XO = {(11,12)|11,12 integers, i, < r, + Q;, i, STyt Q2}
and

Xy = L sap) (g iy daugsee s (i) ou V51,45, integers,

g . - C o .
1in l2hi1 for j=1,2 and h=1,...,m; 1j+1j1+...+1jm§;j+Qj
for j=1,2; u,~reals for h=1,...,m; T>u, ...>usz}

form=1, 2, ... .
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At the times I9 =05 ;5 Iys «.. the natural process is observed and

classified into some state of X. When the natural process is in state

T =1t and at time 1 the de-

+1 —n —n+1
mand for item j is kj’ j =1, 2, the next state is (i1-k1,i2-k2),

(11,12) at time T , then given that L

where k,, k2 are 0 or 1 and k,tk, = 1. When the natural process is in
state ((11’12)’(111’121)’u1"'"(l1m’l2m)’um) at time T , then given

that 1n+1—ln = %t and at time ln+1 the demand for item J 1is kj’ J =1, 2,
),u +t) if

the next state is ((i -k1,12—k2),(111,1 12 iom) sy

1 21
t < T-u,, ((11+111+"'+11h—k1’12+121+"'+12h-k2)’ (11,h+1’12,h+1)’

uh+1+t,...,(11m,12m),um+t)) if Ty, <t <T-w,,h=1, ..., 01, and

),u1+t,...,(i

T e . > Toy .
(11 i i ky»i, i, i,y k2) if t 2 T-u

The interpretation of the state is analogous to the interpretation
of the state defined in section 5. _

We shall define again the cost function c(x,t,y) verbally. For any
unit of item J kept in stock for some t during the time interval
*ln+1] there are incurred 1nventory costs cj1t at time £n+1’ J
a backorder of item J arises,

(z, =1, 2.
When in the natural process at time T
—q+1

then for the backorder there are incurred at time In+1 backorder costs

cj2+cj3t if the backorder will be satisfied in the natural process by
a future delivery which arrives t units of time hence, and backorder
costs zero if the backorder is not satisfied in the natural process by
a future delivery, j = 1, 2. We note that from the definition of T it
will appear that if in thé natural process at time T @ backorder
arises which cannot be satisfied by a future delivery, then the state
at time I belongs to I. Hence we may define in the natural process
the backorder costs zero for a backorder which cannot be satisfied by
a future delivery (c.f. remark 2.4).

For any state x € X, let

where for j =1, 2,
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1. 1f X=(11,12)

),u_)

i.+41. +...+1jm if x=((11,12),(111,121),u1,...,(11m,12m o

Assumption 1 is clearly satisfied for the choice
A, = {xlej(x) <0 for j = 1, 2}.
The "decisionset" I is defined by

I= {x]e1(x) <r,or e2(x) <rl

Observe that I 2 Aj. The decisionmechanism ¥(x), x € I, and the

decisioncost function d(x), x € I, are defined by

(r1+Q1fi1,r2+Q2—i2) if X = (i1,i2),
v(x) =
((i1sig):(i11si21)3u13"'3(i1m’i2m)Sum’(r1+Q-]—e.l(x)’r2+Q2"62(x))so)
if x = ((Lp15) s (1) ady )augse ey (B i vy )
and

a(x) = KG(r1+Q1-e1(x),r2+Q2—e2(x)).

In the same way as in section 5 it can be verified that the
assumptions 2 and 5 are satisfied. Clearly, we have for every x € I
and n > 0 that

(6.1) P{e(ln_'_.l) = (r1+k,r2)|;n =x}=p,, k=1, .0, Q
and
(6.2) Ple(I ) = (e [L = x} =y, k=1, oouy Qs

where



Q 1 +Q2-k— 1 Q1 -k Q2
(6.3) Py = P, P, , k=1, ..., Q1,
Q2_ 1
and
Q*+Qy-k-1 9 Q7
(6.4) Py = P, P, , k=1, ..., Q2.
Q1—1 '

Observe that

1 2
% P t % Po = 1.
e 1 L 2k

It is easy to see that in the decisionprocess the times between
successive visits to the set I are mutually independent, identically
distributed random variables. For any x € I, the random variable t(x)

has the same distribution as I, Where m is a random variable which is

independent of In—lﬁ-1’ n=1, 2, ..., and has the probability distri-

bution

P{gl_ =k} = k = min(Q-I 9Q2):'-' 9Q1+Q2"‘19

+
p],k—Q2 p2,k—Q1’

where we define Py = = 0 for k < 0. Since

Poyk
Q+Q,-1

)

= =1
E;E = 531.52 =3

k(p +p
k=min(Q, ,Q,) 1,k-Q, 72,k-Q,

we have (c.f. theorem 2.1)
Q, W

(6.5) B= 1 (Q+Q,k) p,, + |

(Q+Q,-k) p,, -
ey woq 1R ok

It is readily seen that kT(x)—kO(x), x € I, depends only on e(x) and

is given by (c.f. section 5)
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L(r1,r2+k) if e(x) = (r1,r2+k),
(6.6) k1(x)-ko(x) =
L(r1+k,r2) if e(x) = (r1+k,r2),
where
r1+Q1
(607) L(r19r2+k) = KG(Q'l 3Q2—k) + C11 R z E{(l1i_T)1(l1i_T)} +
1=r1+1
iy
v T E(e e (T ) a(mex )Y

i=r1+1

r +Q
°1° Ellzy;-1)

+c T .-T)} +
21 j=r_sx+1 el
2
rote,
* Elleppteys(T-1y;)) 2 (T-2y5)3
1=r2+k+1

fork=1, ..., Q2.

The formula for L(r1+k,r2), k=1, ..., Q, is obtained from (6.7) vy
interchanging the indices 1 and 2 in the right-hand member of (6.7).
Using (3.7)5 (3.8), (3.9), (3.15), (3.18), (3.19) and (3.20), we

have
m A
-h)
E{(t. -T) 1(z. -T)} = ) {m-h) p(h3ATp;) =
=2 14 ] PaTp),m>2 13 =1, 2,
Pj J h=m+1
and
E .AtC. T- . > =Ll = : 5 3
{(cJ2 CJ3( lﬂm)) (T lum)} chP(m,ATpJ) +
c.3 o
+ Xl_ ) P(h;ATp.), - m >133=1,2
Pj nh=m+1 J
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It is readily seen that the assumptions 3, 4 and 6 are satisfied.
From (6.1), (6.2), (6.5), (6.6) and theorem 2.1 it follows now that the
long-run average -expected cost per unit of time for the (r1,Q1,r2,Q2)

policy is given by

1.

1 1 2
(6.8) g = E-{kg L(r1+k,r2)p1k + ? L(r1,r2+k)p2k

1 k=1
Observe that the right-hand member of (6.8) reduces to the right-hand
member of (5.11), when we take P, =1, ¢y =c
oy = Cpp = Cp3 =0 and 5(k1,k2) = 1.
Consider now the symmetric case

o] =c

12 12 T Cp» Cy3 T C3o

1
r.=r,Q =Q, p; =3 c,

j 3 j 31 = cy, cjz = ¢y cj3 = cg
for g =1, 2,
and suppose
6(k1,k2) = 1.
Let
P T p1k+p2k’ k=1, ..., Q,
then
2Q-k-1 2Q-k-1
(6.9) pk=< ><—;-) : k=1, ..., Q
Q-1

Let N be a fixed nonnegative integer, and let

. 2N-r ~2N+r
u, =<: :>2 . r=0, 1, «.., N.

N

The following identities are well knownl[13, p. 31]
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N N ‘
(6.10) L wo=1,0 % | ora = men®P 2 o,

r=0

and

Il =2

(6.11) r(r-1)ur = N-20,

1
r=1 2

We note -that the probabilities u , appear in Banach's matchbox
problem L[4,
Using the identities (6.10) and (6.11), we obtain after some

straightforward calculations

(6.12) % kp, = 8) -2Q

and

(6.13) % k(k+1)p, = 2Q.
k=1

y (6.5) we have

L = S (=P 279,

(6.1k4) = %- % (2Q-k)p, = N

Using (6.12), (6.13) and (6.14) we obtain after some straightforward
calculation that the formula (6.8) can be simplified to

2c.Q
3 2q,,-20-1 1 A g, @41
g = Q C1-( ) ] [k+ : (r- 5 T+ =5 ) +
2(c,+c.) Q o
+ ———17—3—- z z P(j;%T)v+ ¢, % P(r+i;%T) +
i=1 j=r+i+1l i=1

a(e-1) , (2 2Q,,-2Q
o [+ (—§--T)(g-2q( 32T +

2(c,+c,) r+Q oo

1*e3 % . A

x S I P(s5T) +
k=1 i=r+k+1 j=i+1

+

% rEQ ( &Tﬂ
+ c P - P(1i; 2
2 k=1 k i=r+k+1 2
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When we take r = 0 and T = 0, this formula reduces to the known
formula [15]

AK 2Q, ~=2Q
= {— + - .
g =15+ @/ 11-(70)2"
Finally, we consider another special case of (6.8). Suppose

r,=r,=T=0, and 8k ,k;) = 1.

5)
After some -straightforward calculations we find that formula (6.8)

simplifies to

2 C:y Qj
M Loz (as(Qr)- 1Y k(een)p

..}
5=1 °Pj k=1 Jk

g:

2 Q;
521 kz1 (Q+ay-k)ps,
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