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1. Introduction. 

The present note is based upon a number of observations by Edmonds [2]. 

There is an obvious finite algorithm to solve linear programming problems 

in zero-one variables. The cost of performing this algorithm, however, 

increases exponentially with the number of variables in the problem. 

So its application is restricted to problems of very limited size, It 

is by no means obvious whether or not there exists an algorithm whose 

cost increases only algebraically with the number of variables, 

The difference between algebraic and exponential order is often more 

crucial than the difference between finite and non-finite. 

An algorithm prescribes elementary operations on the initial data of 

the problem and on intermediate results. Two cost-factors may be 

distinguished, the time to perform the elementary operations and the 

memory requirements to store initial data and intermediate results. 

It may be assumed that cost increases linearly with time and that time 

increases linearly with the number of elementary operations that are 

performed. Reference to a storage element may be considered as an 

elementary operation. As a storage element is not required unless 

referred to at least once, time and cost increase at least linearly 

with the storage requirements. 

Throughout this note the term "prohibitive" will be used for an algo­

rithm if the least upper bound on the cost of performing the algorithm 

increases (at least) exponentially with the number of variables in the 

problem. Thus an algorithm is "non-prohibitive" if the cost of solving 

any problem inn variables increases algebraically with n. 
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2, Boolean Functions. 

A bivalent function in bivalent variables is defined to be a Boolean 

function, cf. Hammer and Rudeanu [3]. It may be assumed, without loss 

of generality, that each variable has the set {0,1} as its domain and 

that the same set constitutes the range of the function. With this 

convention, the domain of a Boolean function inn variables consists 
n of the 2 vectors 

with 

x. e {0,1} 
J 

( j = 1 , ••• ,n) • 

Each vector corresponds to a vertex of then-dimensional unit-cube, 

A Boolean function assigns a value from {0,1} to each of the 2n 

vertices, consequently there are 22n Boolean functions inn variables, 

The straightforward way of storing a Boolean function is to list its 

value in the2n points of its domain. In this case memory requirements 

increase exponentially with n, thus all algorithms representing Boolean 

functions in the straightforward way are prohibitive. 

Intuitively it is 'clear' that a sequence of 2n bits to represent 2n 

bivalent elements is very compact and not easily improved. 

Theorem 1, 

There exists no non-prohibitive method which can represent each Boolean 

function. 

Proof. 

In the straightforward method each function corresponds to a configuration 

of 2n bits, containing the function itself. If less bits are used not 

the function itself but a configuration identifying the function is 

stored. 
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Different functions correspond to different configurations, as it 

must be possible to determine the function itself from its identifi­

cation. 

Consequently, 

tion occupies 

2n 
2 bit configurations are required. If each configura-

b bits then 2b different configurations are possible. 

If each configuration 
B 

configurations is I 
b=1 

occupies at most B bits the number of different 

2b. 

As 

a configuration of b = 2n bits will be required for at least one of 

the functions. This completes the proof. 

It should be noted that, in any method to represent Boolean functions, 

at least half the number of functions correspond to configurations of 

length b > 2n - 1 • 

In many cases only a subclass from the class of all Boolean functions 

is considered. The linear functions 

U a X 
n n 

can be represented by the configuration 

requiring n bits for each function. 

Now con:sider a situation where no Boolean function can be excluded 

but where it is known that some functions occur more frequently than 

the other functions. This knowledge could be exploited in the design 

of the method to represent Boolean functions. 

o.o 
1 u 1 

=0.1=1.0=0 

= 1uO = Ou1 = 

1. 1 

ouo 
by definition 
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-n 
Assume {f = 0 or f = 1} occurs with probability 1 - 2 and 

{f $ 0 and f $ 1} occurs with probability 2-n. Then a simple scheme 
-n . 

requires 3 - 2 bits at the average occurrence of a function. This 

clearly is non-prohibitive on the average. 

If a function has a positive probability of occurring it will occur, 

with probability 1 , in the long run. Consequently, any method should 

anticipate the occurrence of each function, unless it has been shown 

that certain functions have zero probability of occurring. 

An algorithm might be based upon the assumption that certain classes 

of functions have zero probability of occurring, The algorithm is 

terminated if a function from such a class occurs. 

A practical consequence of the above remarks is that each algorithm 

prescribing the storage or manipulation of Boolean functions should 

be accompanied by a characterization of the functions to be expected, 
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3. Zero-One Linear Programming. 

Consider the class of problems 

n 
maximize I C. x. 

j=1 J J 
( i) 

subject to 

n 
I a .. x. < b. (i = 1 , •• , ,m1 ) J.J J - J. 

, 
j=1 

(ii) 

n 
I a .. x. = b. (i = m1+1, •.• ,m) 

' j=1 J.J J J. 
(iii) 

x. e: { 0, 1} (j = 1 , .•• ,n) 
' J 

(iv) 

The coefficients a .. and b. represent a Boolean function f, defined 
J. J J. 

in the following way: 

if (x 1, ••• ,xn) satisfies (ii) and (iii), 

0 otherwise. 

Thus f is the characteristic function of the feasible solutions of the 

problem. 

The converse is also true, each Boolean function admits a representation 

by linear constraints. The constraint 

n n 

I 
j=1 

( 2a . - 1 ) X • < - 1 + 
J J - I 

i=1 
a. 

J. 

excludes vertex (a 1, ••. ,an), and no other vertices. 

The one to many correspondence between Boolean functions and linear 

programming problems in zero-one variables leads to the conclusion 

that there exists no non-prohibitive method of representing the initial 

data of the programming problems. So there exists no non-prohibitive 

algorithm which can solve each linear programming problem in zero-one 

variables. 
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The non-existence of a non-prohibitive algorithm does not imply that 

algorithms which can solve the general problem are useless, Such 

general algorithms can be non-prohibitive for subclasses of problems. 

They might also be non-prohibitive on the average, but this depends 

on the applications they are used for. 

Several algorithms for the general problem are available, cf. [1], 

Little is known about the subclasses for which these algorithms are 

non-prohibitive or non-prohibitive on the average. 

The main conclusion to be drawn from the above is that each subclass 

of problems should be solved by a specific algorithm, exploiting all 

peculiarities of that subclass. This remark has been made before, 

cf, Hu [4]. Now assume that the class of all zero-one linear programming 

problems has been partitioned into subclasses, where the number of 

variables in a problem assumes arbitrarily large values in each subclass. 

Then it is prohibitive to determine the subclass to which a given problem 

belongs, or at least one of the subclasses admits prohibitive algo­

rithms only. 
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