
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE

JAC.M. ANTHONISSE
A NOTE ON PROHIBITIVE ALGORITHMS

BW 10/71

A

~
MC

MAY

2e boerhaavestraat 49 amsterdam

2.iiH.!OlriEl::K Mr'l1,,~,,/-.,,~"'.1 Ci:NTkUI"'{

-"Ix. AMSTERDAM

P.JL.i.nted a.t .the Ma..thema.tlc.a.l Cent/Le, 49, 2e Boellhaa.vu.tlta.a:t, Am6.t.eJuiam.

The Ma.thema.tlc.a.l Cent/Le, 6ou.nded .the 11-.th 06 FebJuuVLy 1946, .l6 a. non­
p1t06,U w.tltu:Uon a.i.m.lng a.t .the p!Wmo.t.ion 06 pulLe. ma..thema.t.i.c.6 a.nd w
a.ppUc.a.tlon.6. 1.t .l6 .6pon.6o)[.ed by .the Ne.theltlan.d.6 GoveJL.nment .th.Mu.gh .the
Ne.theJL.f.a.ncU 01tga.nlza.tlon 60)[. .the Adva.nc.ement 06 PU/Le RuetVLc.h (Z.W.O),
by .the Mwu.c..lpa.llty 06 Aml,.te4da.m, by .the Un,lve/L6Uy 06 Amti.te4da.m, by
.the f)[.ee Un.i.ve/L6Uy a.t Aml,.te4da.m, a.nd by .lndu.6-tJuu.

1. Introduction.

The present note is based upon a number of observations by Edmonds [2].

There is an obvious finite algorithm to solve linear programming problems

in zero-one variables. The cost of performing this algorithm, however,

increases exponentially with the number of variables in the problem.

So its application is restricted to problems of very limited size, It

is by no means obvious whether or not there exists an algorithm whose

cost increases only algebraically with the number of variables,

The difference between algebraic and exponential order is often more

crucial than the difference between finite and non-finite.

An algorithm prescribes elementary operations on the initial data of

the problem and on intermediate results. Two cost-factors may be

distinguished, the time to perform the elementary operations and the

memory requirements to store initial data and intermediate results.

It may be assumed that cost increases linearly with time and that time

increases linearly with the number of elementary operations that are

performed. Reference to a storage element may be considered as an

elementary operation. As a storage element is not required unless

referred to at least once, time and cost increase at least linearly

with the storage requirements.

Throughout this note the term "prohibitive" will be used for an algo­

rithm if the least upper bound on the cost of performing the algorithm

increases (at least) exponentially with the number of variables in the

problem. Thus an algorithm is "non-prohibitive" if the cost of solving

any problem inn variables increases algebraically with n.

2

2, Boolean Functions.

A bivalent function in bivalent variables is defined to be a Boolean

function, cf. Hammer and Rudeanu [3]. It may be assumed, without loss

of generality, that each variable has the set {0,1} as its domain and

that the same set constitutes the range of the function. With this

convention, the domain of a Boolean function inn variables consists
n of the 2 vectors

with

x. e {0,1}
J

(j = 1 , ••• ,n) •

Each vector corresponds to a vertex of then-dimensional unit-cube,

A Boolean function assigns a value from {0,1} to each of the 2n

vertices, consequently there are 22n Boolean functions inn variables,

The straightforward way of storing a Boolean function is to list its

value in the2n points of its domain. In this case memory requirements

increase exponentially with n, thus all algorithms representing Boolean

functions in the straightforward way are prohibitive.

Intuitively it is 'clear' that a sequence of 2n bits to represent 2n

bivalent elements is very compact and not easily improved.

Theorem 1,

There exists no non-prohibitive method which can represent each Boolean

function.

Proof.

In the straightforward method each function corresponds to a configuration

of 2n bits, containing the function itself. If less bits are used not

the function itself but a configuration identifying the function is

stored.

3

Different functions correspond to different configurations, as it

must be possible to determine the function itself from its identifi­

cation.

Consequently,

tion occupies

2n
2 bit configurations are required. If each configura-

b bits then 2b different configurations are possible.

If each configuration
B

configurations is I
b=1

occupies at most B bits the number of different

2b.

As

a configuration of b = 2n bits will be required for at least one of

the functions. This completes the proof.

It should be noted that, in any method to represent Boolean functions,

at least half the number of functions correspond to configurations of

length b > 2n - 1 •

In many cases only a subclass from the class of all Boolean functions

is considered. The linear functions

U a X
n n

can be represented by the configuration

requiring n bits for each function.

Now con:sider a situation where no Boolean function can be excluded

but where it is known that some functions occur more frequently than

the other functions. This knowledge could be exploited in the design

of the method to represent Boolean functions.

o.o
1 u 1

=0.1=1.0=0

= 1uO = Ou1 =

1. 1

ouo
by definition

4

-n
Assume {f = 0 or f = 1} occurs with probability 1 - 2 and

{f $ 0 and f $ 1} occurs with probability 2-n. Then a simple scheme
-n .

requires 3 - 2 bits at the average occurrence of a function. This

clearly is non-prohibitive on the average.

If a function has a positive probability of occurring it will occur,

with probability 1 , in the long run. Consequently, any method should

anticipate the occurrence of each function, unless it has been shown

that certain functions have zero probability of occurring.

An algorithm might be based upon the assumption that certain classes

of functions have zero probability of occurring, The algorithm is

terminated if a function from such a class occurs.

A practical consequence of the above remarks is that each algorithm

prescribing the storage or manipulation of Boolean functions should

be accompanied by a characterization of the functions to be expected,

5

3. Zero-One Linear Programming.

Consider the class of problems

n
maximize I C. x.

j=1 J J
(i)

subject to

n
I a .. x. < b. (i = 1 , •• , ,m1) J.J J - J.

,
j=1

(ii)

n
I a .. x. = b. (i = m1+1, •.• ,m)

' j=1 J.J J J.
(iii)

x. e: { 0, 1} (j = 1 , .•• ,n)
' J

(iv)

The coefficients a .. and b. represent a Boolean function f, defined
J. J J.

in the following way:

if (x 1, ••• ,xn) satisfies (ii) and (iii),

0 otherwise.

Thus f is the characteristic function of the feasible solutions of the

problem.

The converse is also true, each Boolean function admits a representation

by linear constraints. The constraint

n n

I
j=1

(2a . - 1) X • < - 1 +
J J - I

i=1
a.

J.

excludes vertex (a 1, ••. ,an), and no other vertices.

The one to many correspondence between Boolean functions and linear

programming problems in zero-one variables leads to the conclusion

that there exists no non-prohibitive method of representing the initial

data of the programming problems. So there exists no non-prohibitive

algorithm which can solve each linear programming problem in zero-one

variables.

6

The non-existence of a non-prohibitive algorithm does not imply that

algorithms which can solve the general problem are useless, Such

general algorithms can be non-prohibitive for subclasses of problems.

They might also be non-prohibitive on the average, but this depends

on the applications they are used for.

Several algorithms for the general problem are available, cf. [1],

Little is known about the subclasses for which these algorithms are

non-prohibitive or non-prohibitive on the average.

The main conclusion to be drawn from the above is that each subclass

of problems should be solved by a specific algorithm, exploiting all

peculiarities of that subclass. This remark has been made before,

cf, Hu [4]. Now assume that the class of all zero-one linear programming

problems has been partitioned into subclasses, where the number of

variables in a problem assumes arbitrarily large values in each subclass.

Then it is prohibitive to determine the subclass to which a given problem

belongs, or at least one of the subclasses admits prohibitive algo­

rithms only.

7

4. References.

1, M.L. Balinski, K. Spielberg,

Methods for integer programming: algebraic, combinatorial and

enumerative, chapter 7 of:

J.S. Aronofsky (ed.), Progress in Operations Research Vol. III,

Wiley 1969.

2. J. Edmonds,

Paths, Trees, and Flowers,

Canadian Jl. of Math . ..ll.(1965) 449-467,

3, P.L. Hammer, S. Rudeanu,

Boolean Methods in Operations Research,

Springer, 1968.

4. T,C. Hu

The development of network flow and related areas in programming,

Invited Lecture, 7th International Mathematical Programming

Symposium., The Hague, 1970,

