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O. Summary 

A straightforward labelling procedure to obtain a maximum internally 

stable set of a bipartite graph from a maximum matching in that graph 

is described, proved correct and analysed. The number of vertices in 

the stable set equals the number of edges in the matching plus the 

number of vertices that is left exposed by the matching. 



1. Introduction 

Only finite, undirected graphs without loops on multiple edges will be 

considered. It is well-known that maximum matchings in such graphs are 

characterized by the absence of alternating paths connecting vertices 

that are left exposed by the matching. If the graph is a bipartite (or 

simple) one a maximum matching can be found efficiently by the Hungarian 

method [ 1 J. 

Hakimi and Frank [2] characterized maximum internally stable sets (MIS 

sets) by the absence of alternating trees. They also formulated an 

algorithm for finding an MIS set in a bipartite graph. 

In this paper another characterization of MIS sets is used. Then it is 

shown how, in bipartite graphs, an MIS set can be obtained from a 

maximum matching. The number of vertices in the MIS set equals the 

number of edges in the matching plus the number of vertices that is 

left exposed by the matching. 
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2. Characterization of MIS sets 

V denotes the set of vertices of the graph. For a X c V, rx denotes the 

set of vertices which are adjacent to a vertex in X. 

Theorem (cf. [3]) 

Sis an MIS set if and only if, for each IS set Uc V \ S, the relation 

lul.:.. Is n rul holds. 

Proof 

Assume Sis an MIS set and lul > Is n rul for an IS set Uc V \ S. Then 

the set T = (S\rU) u U is IS and ITI > Isl, contradicting that Sis MIS. 

Assume both S and T are IS, with IT I > IS I . Let U = T \ S, then U is 

IS, u c v \ s. From ITI = lul + Is n Tl > Isl ands n ru cs\ Tit 

follows that lul > Isl - Is\ Tl = Is n Tl.::_ Is n rul. 

Corollary 

If Sis an IS set and each vertex in V \ S 1s adjacent to a different 

vertex in S, then Sis an MIS set. 
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3. Labelling algorithm 

Now consider a bipartite graph, thus V =Xu Y where X n Y =¢and both 

X and Y are IS. 

A maximum matching M = {(x. ,y. )} (i=1, ... ,m) is assumed to be known, 
i i 

where ( x. ,Y. ) denotes an edge of the bipartite graph, 
i i 

x. # x. and y. # y. for i # j. If (x. ,y.) EM then x. 
i J i J i i i 

x. EX, y. E Y, 
i i 

is the match of 

y. and y. is the match of x .. Vertices without match are exposed 
i ' i i 

vertices. 

If the matching assigns a match to each vertex then J X J = J YI ·and, by 

the corollary of theorem 1 , both X and Y are an MIS set. 

In the labelling algorithm L below the IS set of exposed vertices is 

selected as part of the MIS set. Then the vertices which are adjacent 

to expose vertices must be excluded from the MIS set, but the matches 

of these vertices can be included, and so on. 

Algorithm L 

O) initially, all vertices are unlabelled; 

1 ) assign label to all exposed vertices, k:= 1; 

2) assign label 2k to all unlabelled vertices which are adjacent to a 

vertex with label 2k-1, if no label can be assigned then goto 4; 
3) assign label 2k+1 to the match of each vertex with label 2k, k:= k+1, 

return to 2; 

4) assign label 2k to each unlabelled vertex in X, assign label 2k+1 to 

each unlabelled vertex in Y, 

For the analysis of algorithm Lit is convenient to introduce the 

following notation. At each stage of the algorithm X. denotes the set 
l 

of vertices in X with label i, Y. denotes the set of vertices in Y with 
l 

label i. 

It will be shown that algorithm L assigns a label to each vertex exactly 

once, hence the algorithm terminates, and that the vertices with an odd 

label constitute an MIS set. This is obviously the case if there are no 

exposed vertices or if each exposed vertex is an isolated one. Thus it 
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may be assumed now, without loss of generality, that there is at least 

one non-isolated exposed vertex. 

Just after the first (k=1) execution of step 2 the four sets 

have been defined. 

As x 1 u Y1 = the set of exposed vertices, there is no edge between x 1 
and Y1, and no edge of M between x 1 and Y2 , nor between Y1 and x2 . As 

Y2 = rx 1 and x2 = rY 1 each vertex of Y2 (resp. x2 ) is adjacent to a 

vertex of x1 (resp. Y1 ). From the absence of alternating paths it follows 

that there is no edge of M between x2 and Y2 . 

The first (k=1) execution of step 3 defines x3 and Y3 : 

X --
1 

Y--
1 

Each vertex in x3 (Y3 ) has its match in Y2 (x2 ), there is no edge between 

x3 and Y3. The absence of an edge of M between x2 and Y2 also excludes 

the possibility that a vertex is relabelled in this execution of step 3. 

Lemma 1 

If x e x2k and ye y2k then (x,y) i M. 

Proof 

Step 3 defines x2k_ 1 as the set of matches of Y2k_2 , thus each vertex 

in x2k_ 1 has its match in Y2k_2 and there is no edge of M between x2k_ 1 

and Y2k. Each vertex in Y2k is adjacent to at least one vertex in x2k_ 1 , 

hence each vertex in Y2k is connected by an alternating path to at least 

one vertex in Y2k_2 • Consequently, each vertex in Y2k is connected by an 

alternating path to a vertex in x1. 
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Similarly, there is an alternating path from each vertex in x2k to Y. 

Now the existence of an edge of M between x2k and Y2k would imply the 

existence of an alternating path between x1 and Y1 , contradicting that 

the matching is maximum. 

Lemma 2 

The algorithm does not relabel a vertex. 

Proof 

Relabelling could occur in step 3 only, the other steps assign labels 

to unla'belled vertices only. Assume contrariwise that relabelling occurs, 

for the first time, in the k-th execution of step 3. Thus the match u of 

vertex v with label 2k has a label 1 just after the k-th execution of 

step 2. It is assumed that v EX. If 1 = 2k there is an edge of M between 

x2k and Y2k, contradicting lemma 1. If 1 < 2k and 1 is odd, there is an 

edge of M between Y1 and x1_ 1 hence u has a match in both x2k and x1_ 1 • 

If 1 < :2k and 1 is even, then v was labelled already in execution 1/2 

of step 3. Thus in all cases a contradiction is found. 

Consequently, the algorithm terminates. 

Theorem 2 

The vertices to which algorithm L assigns an odd label constitute an 

MIS set. 

Proof 

From the definition of algorithm Lit is evident that just before the 

execution of step 4 no unlabelled vertex is adjacent to a vertex with 

an odd label. Thus if x E x2k+ 1 , y E Y21+1 and the edge (x,y) exists 

then both x and y were labelled in step 3. By the same reasoning as in 

the proof of lemma 1 the existence of that edge implies the existence of 

an alternating path between two exposed vertices. 
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Thus the vertices with an odd label constitute an IS set. 

If (u,v) EM either u or v has an odd label. This is so because, in 

step 3 x2k+ 1 and Y2k+ 1 are defined by the matching, thus there is no 

edge of M between the vertices labelled in step 4 and the other ver

tices. 

So each vertex with an even label has a match with an odd label and 

corollary 1 yields the desired result. 

Corollary 2 

In a bipartite graph the number of vertices in an MIS set equals the 

number of edges in a maximum matching plus the number of exposed vertices 

in such a matching. 
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4. Concluding remarks 

The amount of computation required by steps 2 and 3 of algorithm Lis 

proportional to, at most, the number of edges in the bipartite graph. 

As a maximum matching can be found by an efficient method, an MIS set 

can also be found efficiently. 

Algorithm Lis based upon the relations between maximum matchings and 

MIS sets as formulated in [1]. It seems difficult to exploit these 

relations in non-bipartite graphs. It may be of interest to note that the 

expression 'consider a bipartite graph' can be generalized to 'consider 

a graph with a given minimum coloring of the vertices'. 
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