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0. Swnmary. 

In this paper we give for the denumerable state dynamic programming 

model a set of rather weak conditions under which the minimal total expect­

ed cost in the N-stage dynamic programming model minus N times the minimal 

long-run average expected cost per unit time has a finite limit for each 

initial state. As an application we prove a conjecture of D.L. Iglehart 

for the classical dynamic inventory model. 
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1 .. Introduction. 

In this paper we are concerned with the asymptotic behaviour of the 

minimal total expected cost in denumerable state dynamic programming and 

with an application in inventory theory. It is shown that, under certain 

conditions 1, the minimal total expected cost in the N-stage dynamic program­

ming model minus N times the minimal long-run average expected cost per 

unit time has a finite limit for each initial state. This was proved for 

the finite state dynamic programming model by E. Lanery [ 11J and 

P.J. Schweitzer [14, 16]. Our proof is an adaptation of these proofs. In 

[1] and [2] related work has been done for the finite state dynamic program-
. *) ming model. 

The above result in denumerable state dynamic programming is used to 

prove a conjecture of D.L. Iglehart [8]. For the classical dynamic inven­

tory model it will be demonstrated that, under the condition of a positive 

demand, the minimal total expected cost in the N-period inventory model 

minus N times the minimal average expected cost per period in the infinite 

period inventory model has a finite limit which can be explicitly given up 

to a constant. This result was first proved by Iglehart [8] for the case 

of no set-up cost and was offered as a conjecture for the case of a posi­

tive set-up cost. 

In section 2 the denumerable state dynamic programming model will be 

treated and in section 3 the application in inventory theory will be given• 

2. The asymptotic behavio'UY' of the rrrinimal total expected cost in denumer­

ab le state dynarrric programming. 

We are concerned with a dynamic system which at times t = 1,2, ... 

is observed to be in one of a possible number of states. Let I denote the 

set of all possible states.We assume I to be denumerable. If at time t the 

*) In [2] the induction argument used in the proof of lemma 4.7 is incor­

rect; it seems that this proof cannot be repaired. 
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system is observed in state i then a decision a must be chosen from a given 

finite set A(i). If the system is in state i at time t and decision a is 

chosen, then, regardless of the history of the system, two things happen: 

(i) we incur an (expected) cost c(i,a) and 

(ii) at time t+1 the sysiemwill be in state j with probability p .. (a). 
iJ 

The costs c(i,a) and the transition probabilities p .. (a) are assumed 
iJ 

to be known. We suppose that the costs c(i,a) are non-negative. No further 

boundedness condition is imposed on the costs. 

A policy R for controlling the system is any prescription for taking 

decisions at each point of time. We shall permit a policy for taking a 

decision at time t to be a function of the entire "history" of the system 

up to time t. Denote by C the class of all possible policies. A stationary 

policy, to be denoted by f, is a function which adds to each state i EI a 

single decision f(i) E A(i), such that f prescribes decision f(i) whenever 

the system is in state i. Given an initial state i and a policy R, denote 

by Xt and At' t = 1,2, ••• the sequences of states and decisions. If a sta­

tionary policy f is used, then the sequence of states {X, n > 1} is a Mar-
n -

kov chain with transition probabilities p .. (f) = p .. (f(i)). Denote by 
( ) iJ iJ 

p .. n (f) then-step transition probabilities of this Markov chain, and let 
iJ 

( 2. 1) for n = 1,2, ••• and i,J EI • 

It is well-known f'rom. Markov chain theory that [3] 

(2.2) 1r • • ( f ) = lim 1r • • ( n \ f) 
iJ n-+oo iJ 

exists for all i,J EI , 

where l· I 1r •• (f) < 1 JE iJ -
for all i E I • 

For any i E I and any policy REC let, 

(2.3) <j>{i ,R) 
n 

= lim inf l l ER{c(Xt,6t)lx1 = i} , 
n + 00 n t=1 
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where~ denotes the expectation under policy R. Observe that ~(i,R) exists 

(+oo is admitted), since the costs c(i,a) are non-negative. When the limit 

exists ~(i,R) represents the long-run average expected cost per unit time 

when the initial state is i and policy R is used. A policy R* EC is said 

to be average aost optimal if ~(i,R*) = infREC ~(i,R) for all i E 1. 

We shall now introduce a number of assumptions. 

Assumption 1. The:r>e is a set of finite nwrinrs {v(i)., g I i E 1} suah that 

l. 1 p .. (a)v(j) is absolutely aonvergent for all a E A(i) and all i E 1, 
JE 1.,J 

(2.4) 

and 

(2. 5) 

(2.6) 

v(i) = mn 
aEA( i) 

{c(i,a) - g + l. 
jd 

p .. ( a)v( j)} 
iJ for aU i E 1 • 

lim ~ ER{v(Xn)lx1 = i} = o for all i E 1 and all REC • 
n-+<x> 

Define the class F of stationary policies as opt 

F = {f f is a stationary policy such that f(i) minimizes opt 
the right-hand side of (2.4) for each i EI} . 

By the remark following the proof of theorem 1 in [12] , 

and 

(2.8) ~(i,f) = g 

for all i E 1 

for all i E 1 and all f E F opt. 

Hence the minimal long-run average expected cost per unit time is indepen-

dent of the initial state. Moreover, each stationary policy f E F is opt 
average cost optimal. 
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Remark 2.1 

It can be shown that under rather general conditions infREC ¢(i,R) is inde­

pendent of the initial state i. For the case of a finite state space I it 

is proved in [ 1] that· if there is stationary policy _such that 1 is a posi-

tive class under that policy, then the minimal long-run average expected 

cost per unit time is independent of the initial state. This result has 

been proved in [5] for a denumerable state space I under the condition that 

for each pair of states i and j there is a stationary policy such that i 

and j are positive recurrent under that policy and belong to a same posi­

tive class. However, if infREC ¢(i,R) is bounded, then this condition can 

be considerabJ.y weakened. In this case it is sufficient to require that 

for each pair of states i and j holds supREC aR(i,j) = 1, where aR(i,j) is 

the probability that state j will be ever reached when the initial state 

lS land policy R is used. 

Together with the well-known fact that Howard's policy improvement 

method [6] leads to a solution of the optimality equation when I is finite, 

the above results imply that assumption 1 is certainly satisfied in the 

case where I is finite and for each pair of states i and j there is a poli­

cy REC such that state j will be reached with probability one when the 

initial state is i and policy R is used. 

Assumption 2. For each stationary policy f the associated Markov chain 

{Xn} is non-di,ssipative, that is, from each initial state the set of posi­

tive recurrent states wiZZ be reached with probability one. 

The Markov chain {X} associated with a stationary policy f is non-. n 
dissipative if and only if l· I TT •• (f) = 1 for all i E I [3]. 

JE lJ 

Assumption 3. For each policy f E F opt holds that each state which is posi­

tive recur,rent under policy f is aperiodic. 

Assumption 4. For each average cost optimal stationary policy the associat­

ed Markov chain {Xn} has no two disjoint closed sets. 
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To introduce the last assumption, we fix an arbitrary finite function 

v0(i) such that 

l p .. (a)v0 (j) is finite and is bounded from below 
jd lJ 

for aEA(i) and iEI, 

and we define the sequence of functions v ( i), i E I, by 
n 

(2.10) V (i) = 
n 

min {c(i,a) + l p .. (a)v 1(j)} for i E .I; n = 
aEA(i) jEI lJ n-

1 , 2, ••• 

Observe that, by (2.9) and c(i,a) > O, the function v (i) exists. If we 
- n 

suppose that in the N-stage dynamic programming model a salvage cost v0(j) 

is incurred when the final state is j, then vN(i) can be interpreted as 

the minimal total expected cost in the N-stage dynamic progranmring model 

when the initial state is i (cf. [4]). 

Assumption 5. The function v/iJ - v(i), i E I, is bounded. 

It will appear (p.12) that together the assumptions 1 and 5 imply 

l· P· .(a)v 1(j) is absolutely convergent for all i,a and n, and so, the J lJ n-
function v (i), i EI, is finite for all n. n 

Under the assumptions 1,2,3 and 5, 

(2.11) lim {v (i) - ng - v(i)} is finite for each i EI and is bounded. 
n 

If in addition assumption 4 holds, then, for some finite constant c, 

(2.12) lim {v (i) - ng} = v(i) + c 
n 

for all i EI . 

These limit relations can be established by adapting proofs given by 
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E. Lanery [11] and P.J. Schweitzer [16] for the case of a finite state 

space. This will be done in the appendix. 

3. A Urrri t theorem in invento'I'!f theo'I'!f. 

We consider an inventory model in which the demands s 1, s2 , ••• for a 

single item in periods t = 1,2, ••• are independent and non-negative random 

variables having a common discrete probability distribution ~(j) = P{st = j}, 

(j = 0,1, ••• ; t = 1,2, ••• ). It is assumed thatµ= Est is finite. At the 

beginning of each period the stock on hand is reviewed. At each review an 

order may be placed for any positive integral amount of stock. An order, 

when placed, is immediately delivered. The demand in each period takes 

place after review and delivery (if any). Furthermore, we assume that any 

unfilled demand in a period is completely backlogged to be eventually satis­

fied by future deliveries. Hence the stock on hand may take on negative 

values indicating the existence of a backlog. The stock on hand may take 

on any integral value. The following costs are involved. The cost of order­

ing j units is Ko(j) + cJ, where K .::._ O, c .::._ O, o(O) = O and o(j) = 1 for 

j .::._ 1. Let L(k) be the holding and shortage cost in a period when k is the 

amount of stock on hand at the beginning of that period just after any 

additions to stock. It is assumed that L(k) is aonvex, i.e. 

L(k+1) - L(k) .::._ L(k) - L(k-1) for each integer k. Moreover, we assume 

L(k) .::._ 0 and L(k) ~ as lkl ~. 

We shall demonstrate for this model that, under the condition of a 

positive demand, the minimal total expected cost in the N-period model 

minus N times the minimal average expected cost in the infinite period mo­

del has a finite limit for each initial state. This limit fuction can be 

explicitly given up to a constant. This result was first proved by 

D.L. Iglehart [8] for the case of K = 0 and was offered as a conjecture 

for the case of K > 0. In his paper Iglehart assumes a continuous positive 

demand. 

To prove the above result, we first give a number of known optimality 

results for this inventory model. 
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A) The fini·te period model. Let fl, be the set of' all integers. Def'ine 

( 3, 1) f'or each 1 E 2, 

and f'or n = 1,2, ... , let 

00 

( 3.2) v (i) = inf' {c.(k-i) + K8(k-i) + L(k) + 
n k>i 

EZ 

The choice v0 (i) = 0 can be interpreted as f'ollows. In the finite period 

model it is assumed that stock left over at the ~nd of' the f'inal period has 

no value and backlogged demand remaining at the end of the final period is 

satisfied at a cost zero. Another choice of v0 (i) will be considered in 

the rem.ark at the end of this section. The quantity vN(i) is the minimal 

total expected cost in the N-period model when the initial stock is 1. 

Moreover, a famous proof due to Scarf [13] shows that, for each n = 1,2, ... , 

(3,3) V (i) 
n 

= {-ci 
-c1 

+ K + G 
n 

+ G (i) 
n 

(S) 
n 

for 1 < s , 
n 

for 1 > s , 
- n 

where S is an integer which minimizes the finite (K-convex) function 
n 

(3.4) G (k) =ck+ L(k) + 
n 

00 

I vn-1 (k-j) ~(j) , 
j=O 

k E Jl, 

ands (<S ) is the unique integer satisfying G (s ) < K + G (S ) < G (s -1) n-n n n - n n n n 
Hence we caJ1 replace inf by min in (3.2). The right-hand side of (3.2) is 

minimal fork= S when i < s and fork= i when i > s . For the N-period n n - n 
model the following policy of the (s,S) type achieves the minimal total 

expected cost vN(i): If at the beginning of period t the stock on hand 

i < st, order St-i units; otherwise, do not order in period t, (t=1, •.. ,N). 

Finally, we mention that the integers s and S are bounded for n> 1 
n n 
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[7,8,10,18]. This important result will also be needed in our analysis. 

BJ The infinite period mod.EZ. Let us first introduce some notation. Denote 

by ¢(n)(j) then-fold convolution of the probability distribution ¢(j) 

with itself, and let 

00 

( 3, 5) m(j) = I 
n=1 

¢(n)(j) andM(j) = I m(k) for j = 0,1, .... 

k=0 

The renewal function M(j) is finite and the numbers m(j) can be computed 

from 

J 
( 3, 6) m(j) = ¢(j) + l ¢(j-k)m(k) for j = 0,1, .... 

k=0 

Lets and S be any two integers withs 2 S. A stationary policy which is 

frequently used in inventory problems is the familiar (s,S) policy, that 

is, if, at review, the stock on hand i < s, then S-i units are ordered; 

otherwise, no order is placed. Under an (s,S) policy the long-run average 

(expected) cost per period is given by [8,17,18] 

S-s 
L(S) + L L(S-k)m(k) + K 

k=0 
a( s, S) = ---,-+-M_,(-S--s--.-) ---- + cµ, 

independent of the initial stock. Let g be defined as 

(3,7) g -- min{a(s,S) J s 2 S, s,S E Z} 

* * The constant g exists and is finite. Fix now two finite integers s and S 
. * * withs < S such that 

(3.8) * * g == a(s ,S ) and 
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* * It is known that such integers exist [8,9,17]. From definition the (s ,S) 

policy is optimal with respect to the average cost criterion among the 

class of the (s,S) policies. However, the (s*,s*) policy is also average 

cost optimal among the class of all possible policies [8,9,17]. Moreover, 

we note that if cp(1) > O, then the first part of (3.8) implies the second 

part of (3.8) [9,17]. 

Define now the finite function v(i), i e: E, as 

(3.9) v(i) 

Then [8, 17] 

00 

* for 1 < s 

for 1 >. * s . 

( 3. 10) v(i) = min{c.(k-i)+Ko(k-i)+L(k)+ 2 v(k-j)cp(j)} for 1 e: Z, 
k>i j=O 

where the right-hand side of (3.10) is minimized by k 

* by k = i for i > s . 

* * = S for i < s 

We are now ready to prove that, for some finite constant y, 

(3.11) lim {v (i) - ng} = v(i) + r 
n 

provided that the following assumption is satisfied: 

for all 1 e: Z, 

and 

Assumption. There is a finite integer 1' such that <P(i) > O for aU i_ ~ r 

To prove this, we shall define a Markovian decision model which has 

the same probabilistic structure and the same cost structure as the inven­

tory model under consideration. Fix two finite integers Land U such that 
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(3.12) * * L < s, L < s and U > S and U > S 
n n 

for all n = 1,2, ... 

These integers Land U can be chosen, since s and S are bounded. Consider 
n n 

now a Markovian decision model from which the state space I, the set A(i) 

of possible decisions in state i, the costs c(i,a) and the transition pro­

babilities p ... (a) are given by 
iJI 

(3.13) I={i I i"integer, i.::_U}, A(i)={a I ~ integer, a>i and L<a.::_U}, i EI, 

(3.14) c(i,a) = c.(a-i)+Ko(a-i)+L(a) and p .. (a)= q,(a-j), 
iJ 

aEA(i); i,jd , 

where we define q,(k) = 0 fork< 0. Since the right-hand side of (3.2) is 

minimized by k = S for i < s and by k = i for i > s and since the right-
n n - n 

hand side of (3.10) is minimized by k = s* for i < s* and by k = i for 

i .:_s*, it is easily verified from (3.2), (3.10),(3,12), (3.13) and (3.14) 

that 

(3.15) V (i) = 
n 

nun 
aEA( i) 

{c(i,a)+ l p .. (a)v 1(j)} for id and n=1,2, ... , 
iJ n-jd 

where v0(i) = 0 for all i EI, and 

( 3. 16) v(i) = nun 
aEA(i) 

{c(i,a) - g + l 
jd 

p .. ( a)v( j)} 
iJ 

for all i EI . 

We shall now verify the assumptions 1-5 in section 2. Let us first check 

assumption 1. We have already shown that the finite numbers g and v(i) de­

fined by (3,7) and (3,9) satisfy (2.4) (see(3.16)). Since v(i) is linear 

for i < s* andµ= ljq,(j) is finite, it follows that Lj=O v(a-j)q,(j) is ab­

solutely convergent for all aEA(i). To prove (2.5), we note that Xt repre­

sents the stock on hand just before ordering in period t and Lit represents 

the stock on hand just after ordering in period t. Since excess demand is 

backlogged, we have 
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( 3. 17) for all t = 1,2, ••• 

By the choice of I and A(i) , 

( 3. 18) xt 2.. u and L 2.. tit < u for all t = 1,2, •••. 

* Since v(i) is linear for i < s and E~t = µ < 00 , it now follows easily from 

(3.17) and (3.18) that ER{v(Xn) I x 1 = i} is bounded inn and R, and so, 

(2.5) holds. This proves assumption 1. By (3.3) and (3.9) the function 

v 1(i) - v(i) is bounded in i E I (observe we need i .::_ u), and so, assump­

tion 5 holds. So far we have not used the assumption that ~(i)>O for all 

i.:. r for some r. However, this assumption and the choice of I and A(i) for 

i EI imply that for each stationary policy the associated Markov chain 

{X} has a class of aperiodic positive recurrent states, has only a finite 
n 

number of transient states and has no two disjoint closed sets. Hence the 

assumptions 2,3 and 4 are also satisfied, and so, the assumptions 1-5 hold. 

Since I= {i I i 2,. U}, it now follows from (2.12) that, for some finite 

constant y, 

( 3. 19) lim {v (i) - ng} = v(i) + y 
n 

for all i < U 

This constant y is independent of U, since U can be chosen arbitrarily 

large. Letting U-+oo in (3.19),' we obtain the result (3.11). 

Rema.Pk 3.1. In the foregoing discussion we have assumed that v0(i) = 0 for 

all i. Anot~er interesting choice is v0(i) = -ci for all i E z. This choice 

can be interpreted as follows. In the finite period inventory model it is 

assumed that each unit of stock left over at the end of the final period 

can be salvaged with a return of c and each unit of backlogged demand 

remaining at the end of the final period is satisfied at a cost c. For this 

model, denote by vN(i) the minimal total expected cost in the N-period 
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model when the initial stock is i. Using the fact that this model with a 

salvage value c and a salvage cost c can be reduced to an equivalent model 

with a salvage value zero and a salvage cost zero (cf. [18, pp. 528-529]), 

it is easily shown that, for some finite constant 8, 

lim {v'(i) - ng} = v(i) + 8 
n 

for all 1 E Z, 

where, of course, g and v(i) are given by (3.7) and (3,9). 

Appendix. 

In this appendix we shall prove the limit theorem given in section 2. 

Our proof is an adaptation of proofs given by E. Lanery [ 11 J and 

P.J. Schweitzer [16] for the case of a finite state space I. 

Lemma 1. Suppose the assumptions 1 and 5 are satisfied. Then there is a 

finite constant N such that Iv (i)-ng-v(i) I < N for all n = 1,2, ... and 
n 

i E I. 

Proof. By assumption 5, there is a finite constant, say N, such that 

v 1(i)-g-v(i) is bounded by N. Assume that we have shown that 

jvk(i)-kg-v(i)I .::_ N for 1 .::_k < .n and all i EI. From this and assumption 1, 

'· p .. (a)lv (J")I< 00 for all 1 and a. Let f E F then LJ lJ n opt' 

( 1 ) v(i) = c(i,f(i)) - g + I 
jd 

From ( 2 • 10 ) , 

( 2) 

By ( 1 ) and ( 2 ) , 

p .. (f)v(j) 
lJ 

p .. (f)v (j) 
lJ n 

for all 1 E I • 

for all 1 EI . 
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( 3) vn+1(i)-(n+1)g-v{i) < l p .. (f){v {j)-ng-v{j)} for all i E I . 
jd l.J n 

By the induction hypothesis we have v (j)-ng-v{j) .::_N, and so 
n 

(4) for all i EI . 

To prove that vn+1(i)-(n+1)g-v{i) .:_ -N, let ai be such that (see(2.10)) 

(5) = c(i,a.) + 
]. I 

jd 
p .. (a. )v {j) 

l.J l. n 
for all i E I • 

Then, by ( 2 • 4 ) , 

(6) v( i ) < c ( i , a. ) -g+ l p . . ( a. ) v( j ) 
- i . I l.J i JE 

for all i EI . 

From (5), (6) and the induction hypothesis 

(7) v 1(i)-(n+1)g-v(i) > l p .. (a. ){v (j)-ng-v(j)}>-N for all i EI n+ - . I J.J i n -. JE 

which proves the lemma. 

Theorem 1. Suppose the assumptions 1 and 5 are satisfied. Let f E F and opt 
assume that K is a positive recurrent class with aperiodic states for the 

Markov chain {X} associated with the stationary policy f. Then n 

(8) lim {v (i)-ng-v(i)} exists .and is finite for all i EK and, 
n 

moreover, is independent of i EK. 

Proof. For n = 0,1, ••• and i EI, let 

(9) v *(i) = v (i) - ng - v(i) . 
n n 
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The sequence {v *(i), n > 1} is bounded for each i EI, by lemma 1. We have 
n -

to prove that for each i EK the sequence {v *(i)} has only one limit point 
n 

and that for each i EK this limit point has the same value. To do this, 

we fix an arbitrary stater EK. Let a and 8 be two limit points of 

{v *(r), n > 1}. By the well-known diagonalization method and the bounded-
n -

ness of the sequences {vn*(j), n .:_ 1}, we can get two sequences {~,k .:_ 1} 

and {~ ,h .:_ 1} with ~ -+oo and ~ ~ such that for all i E I, 

( 10) lim v *(i) exists and is equal to x.(say), where x = a 
k-+oo nk i r 

and 

( 11 ) lim v* (i) exists and is equal to y.(say), where y = 8 . 
h-+oo Il\i i r 

By lemma 1 , the numbers x. and y. , i E I are bounded. In lemma 1 we have 
i i 

proved that (see(3)), 

( 12) I 
jd 

p .. (f)v *(j) 
iJ n 

for all n=1,2, .•. and all i EI • 

By applying (12) repeatedly and using the boundedness of {v *(j),j EI}, 
n 

we get 

( 13) v*+ (i) < nm l. 
jd 

for all n,m=1,2, •.• and all i EI. 

Since K is a positive recurrent class under policy f, we have p. ~n)(f) = 0 
iJ 

for all i EK and n .:_ 1 when j i K. Hence 

( 14) v* (i) < ' p. ~m)(f)v *(j) for all n,m=1,2, •.• and all i EK. n+m - .L. iJ n 
JEK 

Since the states of the positive recurrent class Kare aperiodic, it fol­

lows from Markov chain theory [3] that, for each i,J EK, p. ~n)(f) has a 
iJ 
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limit which is independent of i EK. For any i,j EK, let 

( 15) 1r-(f) 
J 

=limp. ~n)(f), then 1r.(f)>O for all jEK and l 1r.(f)=1. 
n-+«> lJ J jEK J 

We shall now prove that 

( 16) y . .::.. I 1r.(f)x. 
l jEK J J 

for all l E K . 

To do this, we choose for each integer k ~ 1 a positive integer h(k) such 

that 11\i(k)-nk > k. Let sk = 11\i(k) - ~fork~ 1, then sk-+«> ask-+«>. By 

( 14), 

( 17) for all k > 1 and all i EK. 

Since {nk +sk ,k ~ 1} is a subsequence of {11\i, h > 1}, we have by ( 11) that 

( 18) for all i E I . 

Since K is a positive recurrent class, we have by theorem 4 on p. 37 in 

[3] that for each i E K the series l · K p. ~n) (f) converges uniformly with 
JE lJ 

respect to n. Thus for each E > 0 and each i E K there is a finite subset 

J = J(i ,E) such that 

( 19) < E for all n = 1,2, ... 

It now follows easily from the boundedness of v * ( j) ( see lemma 1), ( 10) , 
n 

( 15) and ( 19) that 

(20) 1r. ( f )x. 
J J 

for all i EK. 
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From (17) and (20) follows (16). In the same way we can prove that 

(21) x. < 
]. 

I 7TJ. ( f )yJ. 
jE:K 

for all i € K. 

Substituting (21) in (16) and (16) in (21) and using Ij1rj(f) = 1, we get 

(22) y. < 
]. I 

jEK 
1r.(f)y. and x. < l 1r.(f)x. 

J J ]. J J jE:K 
for all i € K. 

Multiplying both sides of each inequality in (22) by 1r.(f), taking the sum 
]. 

on i E: Kand using (15), we see that for each i € K the equality signs must 

hold in (22). From this, (16) and (21) we get 

(23) x. < 
]. 

I 1r.(f)y. = y. < I 1r.(f)x. 
jEK J J 1 jE:K J J 

= x. 
]. 

for all i € K, 

which shows that, for some fini~e constant c, 

(24) x. = Y· = C 
]. ]. 

for all i € K • 

* In particular x = y, and so, a= s. Hence the sequence {v (r),n > 1} has 
r r n -

only one limit point, and so, this sequence is convergent. However, since r 

was arbitrarily chosen in K, it follows that for each i € K the sequence 

{v *(i)} is convergent. Since x. is a limit point of {v *(i)}, it follows 
n i n 

that for each i € K the sequence {v *(i)} has the finite limit x. and, by n i 

(24), this limit is the same for all i € K. This ends the proof. 

Remark 1. Suppose the assumptions 1 and 5 are satisfied. Let f € F t and op 
let K be a positive recurrent class of period d under policy f. For any 

i € K, let the subclass Kd(i) be defined as Kd(i) = {j I pi~ nd )(f) > 0 for 

some n ~ 1}. Then (cf. [3]), for any i € K, 

(25) 1 . (nd) (f) imp .. 
ll"?OO l.J 
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where w.(f) = lim ~ w. ~n)(f) independent of i € K for all j EK and 
( ) J n iJ 

w .. n (f) is defined by (2.1). It now follows easily from an examination of 
iJ 

the proof of theorem 1 that in the periodic case 

(26) lim {vnd+s(i)-(nd+s)g-v(i)}is finite for all iEK and all s=1, ••. ,d. 
n~ 

Moreover, this limit is independent of i within a given subclass. 

Lemma 2. Suppose the assumption 1 is satisfied. Let f be a stationary poli­

cy such that for each state i which is positive recurrent under f, 

(27) v(i) = c(i,f(i)) - g + I 
jd 

p .. (f)v(j). 
iJ 

* Then there is a policy f E F t such that each state which is positive re-
op . * 

current under policy f is also positive recurrent under policy f. 

Proof. The proof is quite simple. Let f*(i) = f(i) for each state i which 

is positive recurrent under f, and, for the other states, let f*(i) be a 

decision which minimizes the right-hand side of (2.4) in assumption 1. By 

* * this construction, f E F t and f and f are identical on each positive op 
recurrent class off, and so,, each state which is positive recurrent under 

f is also positive recurrent under f*. 

The next lemma has been proved in [15] for the case of a finite I. 

Lemma 3. Suppose the assumptions 1, 2 and 4 are satisfied. Let S(i), i EI, 

be a bounded function such that 

(28) v(i )+S(i) = min {c(i,a)-g+ l 
aEA(i) jEI 

Then, for some finite constant S, S(i) = S 

p. . ( a){ v( j ) +S ( j ) } for all i € I 
iJ 

for all i EI . 



-18-

Proof. Let us first note that, by (2.5), lim (1/n) ER{v(X )+S(X )jx1=i}=O n-+co n n 
for all i EI and all REC. Leth be a stationary policy such that for 

each i EI the decision h(i) minimizes the right-hand side of (28). By the 

remark following theorem 1 in [ 12 J, we have that cp ( i ,h) = g for all i E I. 

Hence the stationary policy his optimal with respect to the average cost 

criterion. Choose a stationary policy f E F t" By the definitions off and 
op 

h, we have 

(29) v(i) = C ( i, f( i)) - g + I p . . (f )v( j) 
jd iJ 

for all i EI 

( 30) v( :i.) .::_ c(i,h(i)) - g + I p . . (h)v(j) 
jd iJ 

for all i E I , 

(31) v(i)+S(i) = c(i,h(i))-g+ I p . . ( h ){ v( j ) +S ( j ) } for all i E I 
jd iJ 

( 32) v(i )+S(i) .::_ c(i,f(i))-g+ I p . . ( f ){ v( j ) +S ( j ) } for all i E I . 
jd iJ 

Observe that each series in (29)-(31) is absolutely convergent. By (29) 

and ( 32), 

( 33) S(i) < l 
jd 

p . . (f)S(j) 
iJ 

for all i E I. 

Iterating (33) and using the boundedness of S(j), we get 

S(i) < L· Ip. ~n)(f)S(j), and so, 
'JE · iJ 

' 

( 34) S(i) < L- I TI-~n)(f)S(j) 
- JE iJ 

for all n > 1 and all i EI . 

By assumption 2, L· I TI- .(f) = 1 for all i EI. This implies that 
( ) JE iJ 

l· I TI, _n (f) converges uniformly with respect ton for each i E I 
JE iJ 

[3,p.37]. Using this and the boundedness of S(j), we get by letting n-+co 

in (34) that 



(35) S(i) < l 
jd 

1r .. (f)S(j) 
l.J 

-19-

for all ]. E r . 

Denote by R(f) respectively R(h) the set of states which are positive re­

current under f respectively h. Since both f and hare average cost optjmal, 

we have by assumption 4 that 1r .. (f) = 1r.(f) and 1r .. (h) = 1r.(h) independent-
l.J J l.J J 

ly of i. Hence 

(36) S(i) < l 
je:1 

1r.(f)S(j) 
J 

for all J. € 1 • 

By multiplying both sides of (36) with 1r.(f), taking the sum on i and using 
]. 

that 1r.(f) > 0 for i e: R(f) and '1r.(f) = 1, we get l. L, J 

(37) S(i) = l 
jd 

1r.(f)S(j) 
J 

for all]. E R(f) . 

By (30) and (31), S(i) >'·Ip .. (h)S(j) for all i e: 1. From this we deduce 
- LJe: l.J 

in the same way as above 

(38) 

S(i) = I 
jd 

1r.(h)S(j) 
J 

It is easily seen that assumption 

and so, by (37) and the last part 

Next it foll.ows from ( 36) and the 
*) i e: 1. This ends the proof 

for all l. e: 1 , 

for all]. E R(h) • 

4 implies that R(f)nR(h) is not empty, 

of (38), l,·1T.(f)S(j) = I.1r.(h)S(j)=S{say). 
'J J J J 

first part of (38) that S(i) = S for all 

*) This proof and the proof of theorem 2 below are the only proofs which 

need assumption 4. It follows from the above proof that in assumption 4 
the condition of no two disjoint closed sets need be imposed only on the 

average cost optimal stationary policies which are also "functional­

optimal". 



-20-

The proof of the next main theorem is a direct generalisation of a 

proof due to P.J. Schweitzer [16]. 

Theorem 2. 

(a) Suppqse the assumptions 1, 2, 3 and 5 are satisfied. Then 

( 39) lim {v (i)-ng-v(i)} exists for each i EI and is bounded in iEI. n 

(b) Suppose the assumptions 1-5 are satisfied. Then the limit function 

given by (39) is a constant one. 

Proof. 

(a) Let us recall that v *(i) is defined by 
n 

(40) v *(i) = v (i) - ng - v(i) 
n n for n = 0,1, •.• and i EI. 

By (2. 10) and the fact that lP· .(a)v (j) and lP· .(a)v(j) are absolutely iJ n iJ 
convergent, 

(41) 

where 

( 42) b(i,a) 

= min {b(i,a)+ I p .. (a)v* 1(j)} for n > 1 and i EI, 
( ) iJ n-aEA i jEI 

= c(i ,a)-g+ I 
jd 

P· .(a)v(j)-v(i) 
1J 

for aEA(i) and i E I . 

It follows from assumption 1 that 

(43) 

Define now 

(44) 

min b(i,a) = 0 
aEA(i) 

m(i)=lim inf v *(i), 
n n~ 

for all i E I • 

M(i)=lim sup V *(i) 
n n~ 

for all i E I . 
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By lemma 1, the sets of numbers {m( i), i E I} and {M(i), i E I} are bounded. 

We have to prove that m(i) = M(i) for all i E I. To do this, we shall first 

show 

(45) irn( i ) > Ifil.Il {b(i,a) + I p .. ( a )m( j)} for all l E I 
' aEA(i) jd lJ 

and 

(46) M(i) < min {b ( i ,a) + I p .. (a)M(j)} for all l E I . -
aEA(i) jd lJ 

To prove (45), fix i 0 EI. Since for each i EI the sequence {v *(i),n>1} 
n -

is bounded, we can, by the diagonalization method, get a sequence {nk} 

with~ --+ro such that 

(47) 

(48) J_im v* 1(i) exists for all i E I and is equal to qi(i) (say) . 
k--+<x:> ~-

Of course, qi(i) .::_m(i) for all i EI, since m(i) is the smallest limit 

point of {v *(i)}. It follows from lemma 1 and the bounded convergence 
n 

theorem that 

(49) 

for all a E A(i 0 ). Choose E > o. Since A(i 0 ) is finite, it follows from 

(47) and (49) that there is an integer k0 such that for all a E A(i 0 ) and 

all k .::. ko, 

(50) vn* (i 0 ) ::_ m(i 0 )+E and I Pi· J.(a)v: 1(j)> I pi. J.(a)m(j)-E. 
k jd O K- -jd 0 
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From ( 41 ) and ( 50), for k ?_ k0 , 

( 51) Illln {b(i0 ,a) + l p .. (a)v* 1(j)} > 
( ) lQJ n. -aEA i 0 jEI K 

from which we get (45) since E > 0 and 10 were arbitrarily chosen. In a 

very similar way we can prove (46). 

Let the stationary policy f be defined such that f(i) I!llnlI!llzes the 

right-side of (45) for each i EI. Then, by (45) and (46), 

(52) b(i,f(i))+ 1 p .. (f)m(j) < m(i)<M(i)<b(i,f(i)+ 1 p .. (f)M(j}, 1 EI . 
l lJ - - - .l lJ 

jEI JEI 

Using nk.(f) = l· I nk.(f)p .. (f) for all 1,J E I and using the boundedness J lE l lJ 
of {m(i)}, it follows from (52) that 

(53) 

Observe that the first series in (53) is defined because b(i,a)?_O. From (53), 

I 
jd 

n . . (f)b(j,f(j)) < 0 
lJ 

for all 1 EI . 

Let R(f) be the set of states which are positive recurrent under policy f, 

then, by assum;ption 2, R(f) is not empty. Let i E R(f), then n . . (f)>O. ll 
Moreover, b(j,a) ?_ 0 for all aEA(j) and jEI (see(43)). Hence it follows 

from (54) and (42) that 

(55) O=b ( i, f ( i ) ) = c(i,f(i))-g+ I 
jd 

p .. (f)v(j)-v(i) 
lJ 

for all l E R(f) 
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Next it follows from lemma 2 that there is a policy f* E F t such that op 
each 1 E R(f) is positive recurrent under policy f*. Since assumption 3 

holds, it now follows from theorem 1 that v *(i) has a finite limit as 
n 

n ~ for each i E R(f), and so 

( 56) m(i) = M(i) for all l E R ( f) . 

We are now ready to prove that m(i) = M(i) for all i E I. Using the bound­

edness of the sets {m( i)} and {M( i)}, we have by ( 52) that 

(57) 0 < M(i)-m(i) ~ l pij(f){M(j)-m(j)} 
jd 

from which it follows that 

(58) O ~ M( i )-m( i ) < l 
jd 

7T. ~ n) ( f) {M( j )-m( j)} 
lJ 

for all 1 EI . 

for all 1 EI . 

By assumption 2, LJ·Er 1r •• (f) = 1 for all i E I, and so, l· I 1r. ~n)(f) con-
lJ JE lJ 

verges uniformly with respect ton for each i E I [3, p. 37]. Using this 

and the boundedness of {M( j )-m( j)}, we get by a standard argument 

(59) 0 .:. M(i )-m(i) < I 
jd 

7T •• ( f ){M( j )-m( j ) } 
lJ 

for all 1 E I • 

However, for each 1 E I, 1r •• (f) = 0 if j i R(f), and so, by (56) and (59), 
lJ 

( 60) m. = M. 
l l 

This proves the assertion (a) of the theorem. 

for all 1 EI . 

(b) Let S(i) = lim v *(i), 1 E I. Since m(i)=M(i)=S(i) for all 1 EI, we n~ n 
have by (45) and (46) that 
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( 61 ) S(i) = min · {b ( i, a) + . l p .. (a) S ( j)} 
aEA(i) jEI lJ 

for all 1 E I , 

and so, by ( 4:::~), 

(62) v(i )+S(i )= min 
aEA(i) 

{c(i ,a)-g+ l 
jd 

p .. (a){v(j)+S(j)} for all 1 EI. 
lJ 

Since assumption 4 is now satisfied and S(i) is bounded, it follows from 

lemma 3 that, for some constant c, S(i) = c for all i EI. This ends the 

proof of the t;heorem. 
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