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0. Summary.

In this paper we give for the denumerable state dynamic programming
model a set of rather weak conditions under which the minimal total expect-
ed cost in the N-stage dynamic programming model minus N times the minimal
long-run average expected cost per unit time has a finite limit for each
initial state. As an application we prove a conjecture of D.L. Iglehart

for the classical dynamic inventory model.






1. Introduction.

In this paper we are concerned with the asymptotic behaviour of the
minimal total expected cost in denumerable state dynamic programming and
with an application in inventory theory. It is shown that, under certain
conditions, the minimal total expected cost in the N-stage dynamic program-
ming model minus N times the minimal long-run average expected cost per
unit time has a finite limit for each initial state. This was proved for
the finite state dynamic programming model by E. Lanery [11] and
P.J. Schweitzer [ 14, 16]. Our proof is an adaptation of these proofs. In
[1] and [2] related work has been done for the finite state dynamic program-
ming model. *)

The above result in denumerable state dynamic programming is used to
prove a conjecture of D.L. Iglehart [8]. For the classical dynamic inven-
tory model it will be demonstrated that, under the condition of a positive
demand, the minimal total expected cost in the N-period inventory model
minus N times the minimal average expected cost per period in the infinite
period inventory model has a finite limit which can be explicitly given up
to a constant. This result was first proved by Iglehart [8] for the case
of no set-up cost and was offered as a conjecture for the case of a posi-
tive set-up cost.

In section 2 the denumerable state dynamic programming model will be

treated and in section 3 the,application in inventory theory will be given-

2. The asymptotic behaviour of the minimal total expected cost in denumer—

able state dynamic programming.

We are concerned with a dynamic system which at times t = 1,2,...
is observed to be in one of a possible number of states. Let I denote the

set of all possible states.We assume I to be denumerable. If at time t the

)

In [2] the induction argument used in the proof of lemma 4.7 is incor-

rect; it seems that this proof cannot be repaired.



system is observed in state 1 thén'a decision a must be chosen from a givén
finite set A(i). If the system is in state i at time t and decision a is
chosen, then, regardless of the history of the system, two things happen:
(i) we incur an (expected) cost c(i,a) and

(i1) at time t+1 the sys®mwill be in state j with probability pij(a).

The costs c(i,a) and the transition probabilities pij(a) are assumed
to be known. We suppose that the costs c(i,a) are non-negative. No further
boundedness condition is imposed on the costs.

A policy R for controlling the system is any prescription for taking
decisions at each point of time. We shall permit a policy for taking a
decision at time t to be a function of the entire "history" of the system
up to time t. Denote by C the class of all possible policies. A stationary
policy, to be denoted by f, is a function which adds to each state 1 € I a
single decision f(i) € A(i), such that f prescribes decision f(i) whenever
the system is in state i. Given an initial state i and a policy R, denote
by Xt

tionary policy f is used, then the sequence of states {Xn, n > 1} is a Mar-

and At’ t = 1,2,... the sequences of states and decisions. If a sta-

kov chain with transition probabilities 1 ( ) = ij(f(i)). Denote by

le(n)(f) the n-step transition probabllltles of this Markov chain, and let

(2.1) ﬂij(n)(f = ﬁ- ? (k) (f) for n = 1,2,... and i, ¢ T .

It is well-known from Markov chain theory that [3]

(2.2) m..(f) = lim . .(n)(f) exists for all i,j e I ,
i i]
. n->o
where 2 1" f) <1 for all i € I

For any i € I and any policy R € C let,

(2.3) (i,R) = lim inf + Z B fe(X,,0,)]%, =1} ,
n > o %= t !



where E denotes the expectation under policy R. Observe that ¢(i,R) exists
(+0 is admitted), since the costs c(i,a) are non-negative. When the limit
exists ¢(i,R) represents the long-run average expected cost per unit time
when the initial state is i and policy R is used. A policy R* € C is said
to be average cost optimal if ¢(i,R*) = infRec ¢(i,R) for all i e I.

We shall now introduce a number of assumptions.

Assumption 1. There is a set of finite numbers {v(i), g | © € 1} such that
zjeI p;:(a)v(j) is absolutely convergent for all a ¢ A(Z) and all % ¢ I,

J
(2.4) v(i) = min {c(i,a) - g + Z p::(a)v(j)} for all i e 1 .
acA(i) jel
and
(2.5) 1imfl-ER{v(Xn)]x1 =i} =0 for all i € T and all R € C
n->eo

Define the class FO of stationary policies as

Pt

(2.6) Fopt = {f | £ is a stationary policy such that f£(i) minimizes
the right-hand side of (2.4) for each i € I} .

By the remark following the proof of theorem 1 in [12] ,

(2.7) g = 1nfREC ¢(i,R) for all i € T
and
(2.8) 6(i,f) = g for all i € T and all T € Fopt

Hence the minimal long-run average expected cost per unit time is indepen-

dent of the initial state. Moreover, each stationary policy f € Fopt is
average cost optimal.



Remark 2.1

It can be shown that under rather general conditions inf (i,R) is inde-

ReC ¢
pendent of the initial state i. For the case of a finite state space 1 it
is proved in [ 1] that if there is stationary policy such that I is a posi-
tive class under that policy, then the minimal long-run average expected
cost per unit time is independent of the initial state. This result has
been proved in [5] for a denumerable state space I under the condition that
for each pair of states i and J there is a stationary policy such that i
and j are positive recurrent under that policy and belong to a same posi-
tive class. However, if infREC $(i,R) is bounded, then this condition can
be considerably weakened. In this case it is sufficient to require that

for each pair of states i and j holds Supp aR(i,j) = 1, where aR(i,j) is
the probability that state J will be ever reached when the initial state

is 1 and policy R is used.

Together with the well-known fact that Howard's policy improvement
method [6] leads to a solution of the optimality equation when I is finite,
the above results imply that assumption 1 is certainly satisfied in the
case where I is finite and for each pair of states i and J there is a poli-
cy R € C such that state jJ will be reached with probability one when the

initial state is 1 and policy R is used.

Assumption 2. For each stationafy policy f the associated Markov chain
{Xn} 18 non-dissipative, that is, from each initial state the set of posi-—

tive recurrent states will be reached with probability ome.

The Markov chain {Xn} associated with a stationary policy f is non-

dissipative if and only if ZjeI nij(f) = 1 for all i € I [3].

Assumption 3. For each policy [ € Fopt holds that each state which is posi-

tive recurrent under policy f is aperiodic.

Assumption 4. For each average cost optimal stationary policy the associat-

ed Markov chain {Xh} has no two disjoint closed sets.



To introduce the last assumption, we fix an arbitrary finite function

vo(i) such that

(2.9) (a)vo(j) is finite and is bounded from below

2 Pi;
Jel s .
for acA(i) and iel,

and we define the sequence of functions vh(i), iel, by

(2.10) v (i) = min {c(i,a) + ) p..(a)v. ,(j)} for i e I; n = 1,2,...
n acA(i) jer 9 n-1

Observe that, by (2.9) and c(i,a) > 0, the function Vh(i) exists. If we
suppose that in the N-stage dynamic programming model a salvage cost vO(j)
is incurred when the final state is j, then VN(i) can be interpreted as
the minimal total expected cost in the N-stage dynamic programming model

when the initial state is i (cf. [L41).

Assumption 5. The function vl(i) - v(Z), 7 € 1, is bounded.

It will appear (p.12) that together the assumptions 1 and 5 imply
Zj pij(a)vh_1(j) is absolutely convergent for all i,a and n, and so, the

function vn(i), iel, is finite for all n.

Under the assumptions 1,2,3 and 5,

(2.11) lim {vh(i) - ng - v(i)} is finite for each i € I and is bounded.
n—>o

If in addition assumption L4 holds, then, for some finite constant c,

(2.12) lim {v (i) - ng} = v(i) + ¢ for all i e I .
nreo O

These limit relations can be established by adapting proofs given by
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E. Lanery [11] and P.J. Schweitzer [16] for the case of a finite state

space. This will be done in the appendix.

3. A limit theorem in inventory theory.

We consider an inventory model in which the demands 51, 52,... for a
single item in periods t = 1,2,... are independent and non-negative random
variables having a common discrete probabiiity distribution ¢(j) = P{Et =3},
(3 =0,1,.0.3 t = 1,2,...). It is assumed that p = EE, is finite. At the
beginning of each period the stock on hand is reviewed. At each review an
order may be placed for any positive integral amount of stock. An order,
when placed, is immediately delivered. The demand in each period takes
place after review and delivery (if any). Furthermore, we assume that any
unfilled demand in a period is completely backlogged to be eventually satis-
fied by future deliveries. Hence the stock on hand may take on negative
values indicating the existence of a backlog. The stock on hand may take
on any integral value. The following costs are involved. The cost of order-
ing j units is K&(j) + ¢j, where K > 0, ¢ > 0, 8(0) = 0 and 8(j) = 1 for
J > 1. Let L(k) be the holding and shortage cost in a period when k is the
amount of stock on hand at the beginning of that period just after any
additions to stock. It is assumed that L(k) is convex, i.e.

L(k+1) - L(k) > L(k) - L(k-1) for each integer k. Moreover, we assume
L(k) > 0 and L(k) »= as |k| =,

We shall demonstrate for this model that, under the condition of a
positive demand, the minimal total expected cost in the N-period model
minus N times the minimal average expected cost in the infinite period mo-
del has a finite limit for each initial state. This limit fuction can be
explicitly given up to a constant. This result was first proved by
D.L. I glehart [8] for the case of K = 0 and was offered as a conjecture
for the case of K > 0. In his paper Iglehart assumes a continuous positive
demand.

To prove the above result, we first give a number of known optimality

results for this inventory model.
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A) The finite period model. Let Z be the set of all integers. Define

I
(@]

(3.1) Vo(i) = for each i € Z

and for n = 1,2,... , let

inf {c.(k-1i) + K6(k-i) + L(k) + -Z vo_1(k=3)e(3)}, i e

(3.2) v (i) f
k>1 J=0

The choice vo(i) = 0 can be interpreted as follows. In the finite period

model it is assumed that stock left over at the end of the final period has

no value and backlogged demand remaining at the end of the final period is

satisfied at a cost zero. Another choice of vo(i) will be considered in

the remark at the end of this section. The quantity VN(i) is the minimal

total expected cost in the N-period model when the initial stock is i.

Moreover, a famous proof due to Scarf [13] shows that, for each n = 1,2,... ,
-ci +K+G (8) for i <s_ ,
n n n

e 4 . .
ci Gn(l) for i >80
where Sn is an integer which minimizes the finite (K-convex) function

[ee]

(3.4) G (k) = ck + L(k) + jzo vo_q (k=3) ¢(3) s keZ

and sn(fﬁn) is the unique integer satisfying Gn(sn) <K + Gn(Sn) < Gn(sn—1) .
Hence we can replace inf by min in (3.2). The right-hand side of (3.2) is
minimal for k = Sn when 1 < 5. and for k = i when 1 > s . For the N-period
model the following policy of the (s,S) type achieves the minimal total
expected cost VN(i): If at the beginning of period t the stock on hand

i< Sis order S,-i units; otherwise, do not order in period t, (t=1,...,N).

t
Finally, we mention that the integers s, and Sn are bounded for n>1
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[7,8,10,18]. This important result will also be needed in our analysis.

B) The infinite period model. Let us first introduce some notation. Denote
by ¢(n)(j) the n-fold convolution of the probability distribution ¢(j)
with itself, and let

(3.5) m(j) = ) ¢(n)(j) and M(j) = % m(k) for j = 0,1,...
n=1 k=0

The renewal function M(Jj) is finite and the numbers m(j) can be computed

from

J
(3.6) m(j) = ¢(3) + ) ¢(j-k)m(k) for j = 0,1,... .
k=0

Let s and S be any two integers with s < S. A stationary policy which is
frequently used in inventory problems is the familiar (s,S) policy, that
is, if, at review, the stock on hand i < s, then S-i units are ordered;
otherwise, no order is placed. Under an (s,S) policy the long-run average
(expected) cost per period is given by [8,17, 18]
S-s
L(s) +) L(s=k)m(k) + K

k=0
1 + M(S-s)

a(s,S) = + cu ,

independent of the initial stock. Let g be defined as

(3.7) g = min{a(s,S) | s <8, 5,5 ¢ Z}

The constant g exists and is finite. Fix now two finite integers s* and s”

. * *
with s < S such that

(3.8) g = a(s",5%) and L(s*-1) > g-cu > L(s¥)
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It is known that such integers exist [8,9,17]. From definition the (s*,S*)
policy is optimal with respect to the average cost criterion among the
class of the (s,S) policies. However, the (s*,S*) policy is also average
cost optimal among the class of all possible policies [8,9,17]. Moreover,
we note that if ¢(1) > O, then the first part of (3.8) implies the second
part of (3.8) [9,17].

Define now the finite function v(i), i € Z, as

-c.(i-s*+1) for i <s .
(3.9) v(i) = i
L(i) + ] L(i-k)m(k)-(g-cu) {14M(i-s")} for i > s".
k=0
Then [8,17]

min{c. (k-1)+K§(k-i)+L(k)+ ) v(k=j)¢(j)} for i e Z ,
k>i j=0

(3.10) v(i)

where the right-hand side of (3.10) is minimized by k = S* for i < s* and

byk=ifori_>_s*.
We are now ready to prove that, for some finite constant vy ,

(3.11) lim {vn(i) -ng}l =v(i) +r for all i € Z ,

N>

provided that the following assumption is satisfied:

Assumption. There is a finite integer T such that ¢(i) > 0 for all © > ¥
To prove this, we shall define a Markovian decision model which has

the same probabilistic structure and the same cost structure as the inven-

tory model under consideration. Fix two finite integers L and U such that
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*
(3.12) L<s, L<s_andU> s* and U > s, for all n = 1,2,...

These integers L and U can be chosen, since s, and Sn are bounded. Consider
now a Markovian decision model from which the state space I, the set A(i)
of possible decisions in state i, the costs c(i,a) and the transition pro-

babilities Pij(a) are given by
(3.13) I={i | i integer, i<U}, A(i)={a | a integer, a>i and L<a<U}, i e I,
(3.14) c(i,a) = c.(a-i)+Ks(a~-i)+L(a) and Pij(a) = ¢(a=j), aecA(i); i,jel ,

where we define ¢(k) = 0 for k < 0. Since the right-hand side of (3.2) is
minimized by k = Sn for i < s, and by k =i for i > s, and since the right-
hand side of (3.10) is minimized by k = 8" for i < s* and by k = i for

i z_s*, it is easily verified from (3.2), (3.10),(3.12), (3.13) and (3.14)
that

(3.15) v (i) = min f{c(i,a)+ ) p.-(a)vh_j(j)} for iel and n=1,2,...
n achA(i) jel 1J

where vb(i) =0 for all i € I, and

(3.16) v(i) = min {c(i,a) - g + Z p.-(a)v(j)} for all i eI .
achA(i) jel 1d

We shall now verify the assumptions 1-5 in section 2. Let us first check
assumption 1. We have already shown that the finite numbers g and v(i) de-
fined by (3.7) and (3.9) satisfy (2.4) (see(3.16)). Since v(i) is linear
for i < s* and y = 13¢(j) is finite, it follows that z§=0 v(a-j)¢(j) is ab-

solutely convergent for all acA(i). To prove (2.5), we note that X, repre-

t

sents the stock on hand just before ordering in period t and A, represents

t
the stock on hand just after ordering in period t. Since excess demand 1is

backlogged, we have
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(3.17) X =A, - for all t

1,240
£+ 1 t t *T2

By the choice of I and A(i) ,

(3.18) X, <Uand L<A <U for all t

i . < 1,2, .

Since v(i) is linear for i < s* and BE, = u < =, it now follows easily from

(3.17) and (3.18) that E{v(X ) | X, =i} is bounded in n and R, and so,

(2.5) holds. This proves assumption 1. By (3.3) and (3.9) the function
v1(i) - v(i) is bounded in i € I (observe we need i < U), and so, assump-
tion 5 holds. So far we have not used the assumption that ¢(i)>0 for all

i > r for some r. However, this assumption and the choice of I and A(i) for
i e I imply that for each stationary policy the associated Markov chain
{Xn} has a class of aperiodic positive recurrent states, has only a finite
number of transient states and has no two disjoint closed sets. Hence the
assumptions 2,3 and 4 are also satisfied, and so, the assumptions 1-5 hold.
Since T = {i | i < U}, it now follows from (2.12) that, for some finite

constant vy,

(3.19) lim {vn(i) - ng}l =v(i) + vy for all i < U ,

n->«

This constant vy is independenf of U, since U can be chosen arbitrarily

large. Letting U »= in (3.19), we obtain the result (3.11).

Remark 3.1. In the foregoing discussion we have assumed that vo(i) = 0 for

all i. Another interesting choice is v (i) = -ci for all i € Z. This choice

can be interpreted as follows. In the ginite period inventory model it is
assumed that each unit of stock left over at the end of the final period
can be salvaged with a return of c and each unit of backlogged demand
remaining at the end of the final period is satisfied at a cost c. For this

model, denote by vﬁ(i) the minimal total expected cost in the N-period
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model when the initial stock is i. Using the fact that this model with a
salvage value c and a salvage cost c can be reduced to an equivalent model
with a salvage value zero and a salvage cost zero (cf. [18, pp. 528-5291),

it is easily shown that, for some finite constant B,

lim {v'(i) - ng} = v(i) + B for all i e Z ,
noeo O

where, of course, g and v(i) are given by (3.7) and (3.9).

Appendix.

In this appendix we shall prove the limit theorem given in section 2.
Our proof is an adaptation of proofs given by E. Lanery [11] and

P.J. Schweitzer [16] for the case of a finite state space I.

Lemma 1. Suppose the assumptions 1 and 5 are satisfied. Then there is a
finite constant N such that lvn(i)—ng—v(i)l <N for all n = 1,2,... and

iel.

Proof. By assumption 5, there is a finite constant, say N, such that
v1(i)-g-v(i) is bounded by N. Assume that we have shown that

Ivk(i)—kg—v(i)l <N for 1 <k <n and all i € I. From this and assumption 1,
zj pij(a)|vn(J)(< © for all i and a. Let f ¢ Fopt’ then

(1) v(i) = c(i,f(i)) - g+ ) pi.(f)v(,j) for all i e T .
jel *d

From (2.10),

(2)

vn+1(i) < c(i,f(i)) + .Z pij(f)vn(j) for all i ¢ T .

Jjel

By (1) and (2),
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(3) (1)=(n+1)g-v(i) < z p; (f){v (j)-ng=-v(j)} for all i eI .

n+1 el

By the induction hypothesis we have vh(j)-ng—v(j) < N, and so

(4) (1)-(n+1)g-v(i) < N for all i e T .

n+1

To prove that vn+1(i)—(n+1)g-v(i) > -N, let a. be such that (see(2.10))

(5) v

n+1(i) = c(i,al' + Z p )Vh(j) for all i e I -

Jel

Then, by (2.4),

(6) v(i) i_c(i,ai)—g+ ng pij(ai)v(j) for all i e T .

From (5), (6) and the induction hypothesis

(7) Vo+1 (1) (n+1)g-v(1i zI p; a ){V (j)-ng-v(j)}>-N for all i e I
T je

which proves the lemma.

Theorem 1. Suppose the assumptions 1 and 5 are satisfied. Let f € Fopt and

assume that K is a positive recurrent class with aperiodic states for the

Markov chain {Xn} associated with the stationary policy f. Then

(8) lim {vn(i)—ng-v(i)} exists and is finite for all i € K and,
n->e .
moreover, 1s 1ndependent of i € K.

Proof. For n = 0,1,... and i € I, let

(9) v *(i) = v_(i) - ng - v(i) .
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The sequence'{vn*(i), n > 1} is bounded for each i € I, by lemma 1. We have
to prove that for each i € K the sequence'{vn*(i)} has only one limit point
and that for each i € K this limit point has the same value. To do this,
we fix an arbitrary state r € K. Let o and B be two limit points of
{vn*(r), n > 1}. By the well-known diagonalization method and the bounded-
ness of the sequences {vn*(j), n > 1}, we can get two sequences'{nk,k > 1}

and {mh,h > 1} with n > and m - such that for all iel,

(10) lim vn*( ) exists and is equal to X (say), where x, = o
koo k

and

(11) lim v© (i) exists and is equal to yi(say), where y =8 .
h—>oo

By lemma 1, the numbers x; and Yis i € I are bounded. In lemma 1 we have
proved that (see(3)),

(12) ;+1 Z P; 5 (£)v *(3)  for all n=1,2,... and all i e I

By applying (12) repeatedly and using the boundedness of {vn*(j),j e 1},

we get

(13) v* < ) 1 v *(3) for all n,m=1,2,... and all i e I.
JeI

(n)(

Since K is a positive recurrent class under policy f, we have Pij f) =

|
o

for all i € K and n > 1 when j ¢ K. Hence

(14) v, (i) < ) p--m)(f)v (j) for all n,m=1,2,... and all i € K.

Since the states of the positive recurrent class K are aperiodic, it fol-

lows from Markov chain theory [3] that, for each i,j € K, pign)(f) has a
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limit which is independent of i € K. For any i,j € K, let

(15) ﬂj(f) = lim pign)(f), then nj(f)>0 for all jeK and ) ﬂj(f)=1.

n--oo jekK
We shall now prove that

(16) y. < Z 7.(f)x. for all i € K .
l—jGKJ dJ

To do this, we choose for each integer k > 1 a positive integer h(k) such
that mh(k)_nk > k. Let 8, = mh(k) - o for k > 1, then s, = as k -, By

(14),

k

(17) v (i) < ) pigsk (f)v; (j) for allk > 1 and all i € K .

e +sy jeK X

Since {n _+s, ,k > 1} is a subsequence of {mh, h > 1}, we have by (11) that

k “k?
*
(18) lim v (i) = y. foralliel.
ko Ptk *

Since K is a positive recurrent class, we have by theorem 4 on p. 37 in

. C . (
[3] that for each i € K the series zjeK P; ;
respect to n. Thus for each ¢ > O and each i € K there is a finite subset

J = J(i,e) such that

n)(f) converges uniformly with

(19) ) p.(n)(f) < e for all n = 1,2,...
jeK\J 'Y

It now follows easily from the boundedness of Vh*(j) (see lemma 1), (10),

(15) and (19) that

(s,)
(20) lim b K

. Pij (f)v* (j) = X . (f)x. for all i € K .
k»» jeK

jEK J J
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From (17) and (20) follows (16). In the same way we can prove that

(21) x; < ) ﬁj(f)y. for all i € K .
jek J

Substituting (21) in (16) and (16) in (21) and using Zjnj(f) = 1, we get

(f)x. for all i € K .

(22) V. < z ﬂj ;

(f)y. and x. < )
1Tk J 1

s

J JeK
Multiplying both sides of each inequality in (22) by wi(f), taking the sum
oni e K and using (15), we see that for each i € K the equality signs must
hold in (22). From this, (16) and (21) we get

(23) x. < )

(f)y. =y. < ) m.(f)x. = x. for all i € K ,
Jjek *

T. 5
3 jek 9 4
which shows that, for some finite constant c,
(2k) X. =y. =¢ for all i € K .

In particular x_ =y, and so, a = B. Hence the sequence {vh*(r),n > 1} has
only one limit point, and so, this sequence is convergent. However, since r
was arbitrarily chosen in K, if follows that for each i € K the sequence
{vn*(i)} is convergent. Since x; is a limit point of {vn*(i)}, it follows
that for each i € K the sequence {vn*(i)} has the finite limit x; and, by

(24), this 1limit is the same for all i € K. This ends the proof.

Remark 1. Suppose the assumptions 1 and 5 are satisfied. Let f € FO and

Pt
let K be a positive recurrent class of period d under policy f. For any
i € K, let the subclass Kd(i) be defined as Kd(i) ={j | pignd)(f) > 0 for
some n > 1}. Then (cf. [3]), for any i € K,
) (nd) _ . . _ 1
(25) lim P; (f£) = dnj(f) for JeKd(l), and Z ﬂj(f) =3

n->e

Jek, (1)
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where 7.(f) = limhem nign)(f) independent of i € K for all j c K and
(

J
i3 n)(f) is defined by (2.1). It now follows easily from an examination of

the proof of theorem 1 that in the periodic case

m

(26) lim {v

nd+s(i)-(nd+s)g—v(i)}is finite for all ieK and all s=1,...,d.
n->

Moreover, this limit is independent of i within a given subclass.

Lemma 2. Suppose the assumption 1 is satisfied. Let f be a stationary poli-

cy such that for each state i which is positive recurrent under f,

(27) v(i) = c(i,f(i)) - g+ ) p; : (£)v(3) .
Jel J

Then there is a policy e Fo such that each state which is positive re-

pt
current under policy f is also positive recurrent under policy £,

Proof. The proof is quite simple. Let £¥(i) = £(i) for each state i which
is positive recurrent under f, and, for the other states, let f*(i) be a
decision which minimizes the right-hand side of (2.4) in assumption 1. By

this construction, e Fo and f and £ are identical on each positive

pt
recurrent class of f, and so, each state which 1s positive recurrent under

f is also positive recurrent under £*.
The next lemma has been proved in [15] for the case of a finite I.

Lemma 3. Suppose the assumptions 1, 2 and 4 are satisfied. Let B(i), i € I,

be a bounded function such that

(28) v(i)+B(i) = min {c(i,a)-g+ ) p..(a){v(j)+8(j)} for all i e I
acA(i) jel

Then, for some finite constant B, B(i) = B for all i e T .
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Proof. Let us first note that, by (2.5), limh+m(1/n) ER{V(Xn)+B(Xn)IX1=i}=O
for 811 i € T and all R € C. Let h be a stationary policy such that for
each i € I the decision h(i) minimizes the right-hand side of (28). By the
remark following theorem 1 in [12], we have that ¢(i,h) = g for all i € I.
Hence the stationary policy h is optimal with respect to the average cost
criterion. Choose a stationary policy f € Fopt' By the definitions of f and

h, we have

(29) v(i) = c(i,f(i)) - g+ ) pi-(f)v(j) for all i e 1
Jel J
(30) v(i) < e(i,h(i)) - g+ ) p..(0)v(j) for allie T,
jel +d
(31) v(i)+B(i) = c(i,h(i))-g+ 'ZI pij(h){v(j)+8(j)} for all i e T ,
je
(32) v(i)+8(1) < e(i,f(i))-g+ 'ZI Pij(f){V(j)+B(j)} for all i € T,
je

Observe that each series in (29)-(31) is absolutely convergent. By (29)
and (32),

(33) B(1) < 1 p..(£)8(J) for all i e I.
jel td

Iterating (33) and using the boundedness of B(j), we get

B(1) = EJEI pign)(f)ﬁ(j)a and so,

(3k4) B(i) < ) gn)(f)e(j) for alln > 1 and all i e I

jel i

By assumption 2, Zjel nij(f) = 1 for all i € I. This implies that
zjel nign (f) converges uniformly with respect to n for each i € I

[3,p-37]. Using this and the boundedness of B(j), we get by letting n~
in (34) that
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(35) B(i) < ) ﬂi-(f)B(j) for all i e T .
jel J

Denote by R(f) respectively R(h) the set of states which are positive re-
current under f respectively h. Since both f and h are average cost optimal,
we have by assumption L that e (f) s (f) and ™ (h) = nj(h) independent-
ly of i. Hence

(36) g(i) < ) m.(£)8(J) for all i e T .
Jel J

By multiplying both sides of (36) with ﬂi(f), taking the sum on i and using
that ﬂi(f) > 0 for i € R(f) and an(f) = 1, we get

(37) B(i) = ) w.(£)8(J) for all i e R(f) .
Jel J

By (30) and (31), B(i) > XJ 1P (h)B( ) for all i € I. From this we deduce

in the same way as above

B(i) > ) m.(h)B(J) for all i e I ,
jel J
(38)
B(i) = ) w.(n)B(J) for all i e R(h)
Jel J

It is easily seen that assumption U4 implies that R(f)nR(h) is not empty,
and so, by (37) and the last part of (38), y s (£)8(3 ZJH (h)B(j)=R(say).
Next it follows from (36) and the first part of (38) that B(i) = B for all
i e I. This ends the proof *

*)

This proof and the proof of theorem 2 below are the only proofs which
need assumption 4. It follows from the above proof that in assumption L
the condition of no two disjoint closed sets need be imposed only on the
average cost optimal stationary policies which are also "functional-

optimal”.
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The proof of the next main theorem is a direct generalisation of a

proof due to P.J. Schweitzer [16].

Theorem 2.

(a) Suppose the assumptions 1, 2, 3 and 5 are satisfied. Then

(39) lim {vn(i)—ng—v(i)} exists for each i € I and is bounded in iel.
n->oo

(b) Suppose the assumptions 1-5 are satisfied. Then the limit function

given by (39) is a constant one.

Proof.

(a) Let us recall that Vh*(i) is defined by
(40) vh*(i) = vn(i) - ng - v(i) forn=0,1,... and i € I.

By (2.10) and the fact that 2pij(a)vh(j) and Epij(a)v(j) are absolutely

convergent,
(41) v;(i) = min. {b(i,a)+_z pij(a)v;_1(j)} forn>1andiel,
acA(i) jel
where
(L2) b(i,a) = c(i,a)-g+ Z pij(a)v(j)-v(i) for acA(i) and i € T .
Jel

It follows from assumption 1 that

(43) min b(i,a) =0 for all i e I .
acA(i)

Define now

(4k) m(i)=lim inf v _"(i), M(i)=lim sup vn*(i) for all i e T .

n->oo -0
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By lemma 1, the sets of numbers {m(i), i € I} and {M(i), i € I} are bounded.

We have to prove that m(i) = M(i) for all i € I. To do this, we shall first

show

(45) m(i) > min {b(i,a) + ) p..(a)m(j)} for all i e T ,
acA(i) jel I

and

(46) M(i) < min {b(i,a) + ) 1 (a)M(j)} for all i e I .
aecA(i) jel

To prove (45), fix iO € 1. Since for each i ¢ I the sequence {vh*(i),qi1}

is bounded, we can, by the diagonalization method, get a sequence {nk}

with n, - gsuch that

(u7) iﬁf v:k(io) = m(i,) and
(48) lim v. (i) exists for all i ¢ I and is equal to ¢(i) (say)

nk—1

k>
Of course, ¢(i) > m(i) for all i € I, since m(i) is the smallest limit

point of {Vh*(i)}‘ It follows from lemmas 1 and the bounded convergence

theorem that

(49) lim ) p; -(a)v*_ E Py s(a)e(3 L p; (a)u(y)
koo jel Tod ny- JeI OJ

for all a € A(io). Choose £ > 0. Since A(io) is finite, it follows from

(47) and (49) that there is an integer k, such that for all a € A(io) and
all k > k,
(50) V: (io) < m(1 )+e and ) P (a)v, _ ) p; (a)m(j)-¢,

k jel *0d nk JeI 0J
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From (41) and (50), for k > k

(51) mi )+ > v (i) = m {b(i.,a) + C(a)vE ()Y >
m lo € __vnk 1 alenzlzi ) 1O a JZ:I ploJ a ‘Vnk_1 J 2

> mn  {b(i,,a) + p; -(a)m(j)}-e ,
ach(i,) 0 ng 199

from which we get (45) since ¢ > O and i_ were arbitrarily chosen. In a

0
very similar way we can prove (L46).

Let the stationary policy f be defined such that f(i) minimizes the
right-side of (45) for each i € I. Then, by (L45) and (L46),

(52) b(,£(i)+ ] py;(O)n(3) < m() i) D(L,e(1)+ ] by (£0M(3), 1 € T

jel jel

Using m, .(f) = ZieI nki(f)pij(f) for all i,j € I and using the boundedness

kJ
of {m(i)}, it follows from (52) that

(53) E nki(f)b(i,f(i))+-i wkj(f)m(j)f_ Z ﬂki(f)m(i) for all k ¢ 1.

iel Jel iel
Observe that the first series in (53) is defined because b(i,a)>0. From (53),

(54) T
jgl *

j(f)b(j,f(j)) <0 for all i e I

Let R(f) be the set of states which are positive recurrent under policy f,
then, by assumption 2, R(f) is not empty. Let i € R(f), then wii(f)>0.
Moreover, b(j,a) > 0 for all aeA(j) and jeI (see(L43)). Hence it follows

from (54) and (L42) that

(55) 0=b(i,f(i)) = c(i,f(i))-g+ _21 pij(f)v(j)—v(i) for all i € R(f)
je
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Next it follows from lemma 2 that there is a policy £ e Fopt such that

each i € R(f) is positive recurrent under policy £*. Since assumption 3
holds, it now follows from theorem 1 that vn*(i) has a finite limit as

n »» for each i € R(f), and so
(56) m(i) = M(1i) for all i e R(f)

We are now ready to prove that m(i) = M(i) for all i € I. Using the bound-
edness of the sets {m(i)} and {M(i)}, we have by (52) that

(57) 0 < Mi)-m(i) < ) P;; (E)M(G)-m(G)} for all i e T
jel :

from which it follows that

(58) 0 < M(i)-m(i) < nign)(f){M(j)—m(j)} for all i e I
jel

By assumption 2, 5 1" (f) =1 for all i € I, and so, z 1" (n)(f) con-
verges uniformly w1th respect ton for each i € T [3, p. 37] U81ng this

and the boundedness of {M(j)-m(j)}, we get by a standard argument

(59) 0 <Mi)-m(i) < ] ﬂij(f){M(j)—m(j)} for all i e I ,
Jel

However, for each i € T, nij(f) =0 if j ¢ R(f), and so, by (56) and (59),

(60) m. = M. for all i ¢ T .

This proves the assertion (a) of the theorem.

(b) Let B(i) = lim vn*(i), i e I. Since m(i)=M(i)=R(i) for all i e I, we

n->oo

have by (45) and (46) that
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(61) B(i) = min {b(i,a) +. Z p. -(a)B(J)} for all i e T ,
acA(i) jel I

and so, by (L42),

(62) v(i)+8(i)= min {c(i,a)-g+ ) pi.(a){v(j)+8(j)} for all i € 1.
achA(i) jel 9

Since assumption 4 is now satisfied and B8(i) is bounded, it follows from
lemma 3 that, for some constant c, B(i) = ¢ for all i € I. This ends the

proof of the theorem.
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