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ABSTRACT 

A non-preemptive priority queueing system is considered in which customers 

of types 1 and 2 arrive at a service station with a single server. The station 

is closed do,m when it becomes empty and the station is reopened when a 

certain number of customers are present. It is assumed that both the closing

down and the reopening of the station take up time. Two models, A and B, 

are considered. In model A the closing-down process is interrupted when a 

new customer arrives, whereas in model B this is not the case. For both models 

expressions are derived for the average number of customers of type i(=1,2) 

in the system and the average wait of a customer of type i. A cost structure 

is imposed on the model and optimization is done. Finally, the models A and 

Bare extended by assuming that after a service completion the server is tem

porarily not available. 
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Consider a service station with a single server at which customers of 

types 1 and 2 arrive in accordance with independent Poisson processes with 

rates A1 and A2 , respectively. If the server is to select a customer for 

service, customers of type 1 have priority over customers of type 2. The 

order in which customers of a given priority class are served is immaterial 

in our considerations. The priority rule is non-preemptive, i.e., a service 

of a customer is never interrupted. A customer of type i will be called 

an i-customer, (i=1,2). Let the service times of different customers be 

independent 

moment µ~ 2 ) 
i 

random variables with finite first momentµ. and finite second 
i 

for i-customers. Let A= A1 + A2 and let p. = A.µ., (i=1,2). i i i 

It is assumed that p 1 + p2 < 1. The service station will be reopened and 

closed down from time to time. When the service station is reopened a 

random time T (the set-up time) will elapse before the server can start a . 

servicing. It is assumed that ET and ET2 are finite. A decision is taken 
a a 

to close down the service station if, and only if, a service is completed 

while no customers are awaiting for service. The time needed to finish the 

closing-down of the station is a random variable Tb with distribution 

function G(t) and finite expectation ETb. We have to make an assumption 

regarding the contingency of a customer who arrives while the station is 

being closed down. We shall consider two alternative models. 

In model A it is assumed that on arrival of a new customer the clo

sing-down process is interrupted and the service of this customer commen

ces immediately. Further the time already spent on closing-down in the 

present attempt is wasted, and so the next attempt will be repeated from 

the beginning. When the closing-down of the station has been successfully 

concluded, the station will be reopened at the next epoch at which R cus

tomers are at the station, where Risa given positive integer. 
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In model Bit is assumed that the closing-down process is never 

interrupted and so a customer who arrives while the station is being 

closed down has to wait at least until the station will be reopened. 

When the closing-down of the station has been finished, the station will 

be reopened at the next epoch at which R or more customers are at the 

station. In model B we also assume that ET! is finite. In both models it 

is assumed that the service times, the set-up times and the close-down 

times are independent of each other and the arrival processes. 

Model A is an extension of a model studied by YADIN and NAOR [10]. 

These authors assumed one type of customer and derived expressions for 

the average number of customers in the system and the average wait of a 

customer. 

In this paper we shall derive for the models A and B expressions for 

the average number of i-customers in the system (queue) and the average 

amount of time spent by an i-customer in the system (queue). As a by-pro

duct we obtain simple and alternative derivations of both COBHAM's formula 

in non-preemptive priority queueing with two priority classes and the re

sults of YADIN and NAOR. Further, we superimpose a cost structure on the 

system and optimization will be done. Finally, after we have analysed the 

models A and B, we incorporate in these models block-times, that is, after 

completion of a service the server is blocked during a random time before 

he can commence a new service or close down the station. In references 2 

and 8 also models with block-times are studied. 

The approach we will follow to analyse the models A and Bis quite 

general and may be applied to a variety of models. This approach, which has 

been also followed by JEWELL [4] in his.proof of the fundamental formula 

in queueing theory L = AW, is based on a simple renewal theoretic argument. 
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APPROACH 

Let us define the amount of time spent by a customer in the queue as 

the time he awaits for service, and let the time spent by a customer 

in the system be defined as the time he spends in the queue plus hisser

vice time. Correspondingly, the number of customers in the queue and in 

the system may be defined. 

For convenience we assume that at epoch O a service has been just 

completed and no customers are in the system. We define a cycle as the time 

interval between two successive epochs at which for the first time after 

a reopening of the station no customers are in the system. Observe that 

for both model A and model B such epochs are regeneration epochs for the 

queueing process. We shall show that the expected length of a cycle and 

the expected total amount of time spent by i-customers in the system du

ring one cycle are finite. We now have that the long-run (expected) average 

number of i-customers in the system equals, with probability one, 

L(i) = {the expected total OJT1ount of time spent by i-customers in the 

system during one cycle} I {expected length of a cycle}. (1) 

This may be seen as follows. Fix i and imagine costs are incurred for i-cus

tomers only, where the cost incurred for an i-customer equals the amount 

of time spent by that customer in the system. Now, by a well known result 

in renewal theory (see, for instance, reference 7, p,52), the long-run 

(expected) average cost per unit time equals, with probability one, the 

quotient of the expected total cost incurred during one cycle and the ex

pected length of a cycle. This gives (1), since the average number of i-cus

tomers can be thought of as the average cost per unit time. 

The technique which will be used to determine the expected length of 
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a cycle and the expected total a.mount of time spent by i-customers in 

the system during one cycle is an adaptation of a technique introduced 

by TAK1lCS (see reference 9 p.32 and p.61) to determine the distribution of 

the busy period in the classical single server queue. The determination of 

the above expectations is based upon the observation that the length of a 

cycle and the total a.mount of time spent by i-customers in the system 

during one cycle do not depend on the order in which customers of a given 

priority class are served. 

When we have determined L(i) , it is easy to obtain expressions for L(i) 
q 

(the average number of i-customers in the queue), W(i) (the average a.mount 
q 

of time spent by i-customers in the queue) and W = W(i) + µ. (the average 
q i 

amount of time spent by i-customers in the system). Using the results we 

shall find below, it is easily verified that the assumptions stated in 

JEWELL's paper [4] are 

L(i) = A.W(i) apply. 
q i q 

satisfied so that the formulae L(i) = A.W(i) and 
i 

BASIC MODEL 

In order to analyse the models A and B we first consider the simple 

model in which the set-up time Ta and the close-down time Tb are equal to 

zero with probability one and R = 1. That is, we consider the classical 

non-preemptive priority model with two priority classes. For this model we 

introduce the following random variables from which the expectations will 

be needed in the sequel. 

Tbi = the time elapsed from the arrival of an i-customer who finds the server 

idle until the next epoch at which the server becomes idle, (i=1,2). 

T1 = the time elapsed from the arrival of the 1-customer who initiates the 

busy period Tb 1 until the next epoch at which no 1-customers are in the 

system. 
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Wik = the total amount of time spent by i-customers in the system during 

the busy period Tbk' ( i ,k=1 ,2). 

w, = the total amount of time spent by 1-customers in the system during 

the time T 1• 

To determine the expectations of these random variables, we define 

S. =the service time of the i-customer who initiates the busy period 
i 

Tbi' (i=1,2). 

= the number of 1-customers who arrived during the time S., (i=1,2). 
i 

= the time elapsed from the completion of the service of the 2-custo-

mer who initiates Tb2 until the next epoch at which no 1-customers 

are in the system. 

M2i = the number of 2-customers in the system just after the first epoch 

in the busy period Tbi at which a service is completed while no 

1-customers are in the system. 

Observe that the distributions of the above random variables do not depend 

on the order in which customers of a given class are served. Further, we 

shall frequently use the following property of the Poisson process. Given 

that n events of a Poisson process have occurred during (O,s), then the 

n epochs at which events occur are distributed independently and uniformly 

on ( 0 ,s). 

2 We will need ET 1 and ET 1• Since 1-customers have priority and any 1-

customer arriving in s1 creates a busy period of type T1, we have 

I 2, 2 E(T 1 s1=s,N11 =n) = s + nET 1 and E(T 1 s1=s,N11 =n) = E(s+Tn) , where Tn is 

distributed as the sum of n independent random variables which are distri

buted as T1• From this and the fact that the conditional distribution of 
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N11 given that s1 =sis Poisson with mean A1s, we find the well known 

result [6,9] 

( 2) 

Similarly,by E(W1 js1=s,N 11 =n) = s + ns / 2 + nEW1 + (1/2) n(n-1) ET 1 , we 

I 2 2 2 have E(W1 S1=s) = s + A1s /2 + A1sEW1 + A1s ET 1/2, from which we get 

(3) 

+nET1 ETb2 and the conditional distribution of N12 given that s2 =sis 

Poisson with mean A1s, we find after some algebra the well known result [6] 

for 1 = 1 ,2. ( 4) 

To determine EW11 and EW12 , we observe that 

EW11 = EW1 + A2ET1EW12 and E(w12 is2=s,N12=n,M22=k) = ns / 2 + nEW1 + 

+ (1/2) n(n-1) ET 1 + kEW12 • (5) 

Since E(M22 1s;2=s,N12=n) = A2 (s+nET1 ) and the conditional distribution of 

N12 given that s2 =sis Poisson with mean A1s, we find after some algebra 

and 

Since E(W21 IT 1=t,M21 =k) =kt/ 2 + kEW22 + (1/2) k(k-1) ETb2 and the condi

tional distribution of M21 given that T1 =tis Poisson with mean A2t, we find 

( 8) 



-7-

and the fact that the conditional distribution of M22 , given that s2 =sand 

u2 = t, is Poisson with mean A2(s+t), we get 

Given that N12 = n, the random variable u2 has the same distribution as the 

sum of n independent random variables which are distributed as T1, so 

Using that the conditional distribution of N12 given that s2 =sis Poisson 

with mean A1s, we find after some simple manipulations that 

(2) (2) 
= {1/(1-p 1-p2 )} {µ 1 A1p2/2(1-p 1)(1-p 1-p2 ) + µ2 A2/2(1-p 1-p 2 ) + 

+ ( 1-p 1 ) µ2}. 

From ( 2) , ( 4) , ( 8) and ( 9) , 

( 10) 

Remark. Let us define for the above model a cycle as the time interval be

tween two successive epochs at which the server becomes idle. Using that 

A./A represents the probability that an arbitrary customer is an i-customer, 
i 

it follows that the expected length of a cycle equals 1/A+ (A 1/A)ETb 1 + 

+ (A2/A)ETb2 and that the expected total amount of time spent by i-customers 

1 
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in the system during one cycle equals (A 1/A)EWi 1 + (A2/A)Ewi2 • Since the 

long-run (expected) average number of i-customers in the system equals, with 

probability one, the quotient of the expected total amount of time spent by 

i-customers in the system during one cycle and the expected length of a 

cycle, we find that this average is given by 

* and p 2 = O. This formula is well known [3, 5, 6]. 

MODEL A: CLOSING-DOWN PROCESS WITH INTERRUPTIONS. 

We have defined a cycle as the time interval between two successive 

epochs at which for the first time after a reopening of the station no custo

mers are in the system. Denote by the random variable T the length of a 
C 

cycle and denote by W (i) the total amount of time spent by i-customers 
C 

in the system during one cycle. To determine ET and EW (i), let 
C C 

Then 1 - TI represents the probability that an attempt to close down the 

station is interrupted by the arrival of a new customer. The number of un

successful attempts within one cycle to complete the closing-down of the 

station is a geometrically distributed random variable N with mean 

8 = (1-n)/n. 

The gross close-down time per cycle is defined as the sum of the N partial, 

interrupted close-down times and the final successful close-down time. The 
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expected gross close-down time equals S/A [1,10]. Further the expected 

amount of time elapsed from the arrival of a customer who interrupts the 

closing-down process until the next epoch at which no customers are in the 

system equals (A 1/A)ETb 1 + (A2/A)ETb2 • Hence the expected amount of time 

elapsed from the first attempt in a cycle to close down the station until 

the next epoch at which the station is reopened equals 

Since tne probability that k customers of type 1 (and so R - k customers 

of type 2) are at the station when it is reopened equals (:)(A 1/A)k(A2/A)R-k, 

we find that the expected amount of time elapsed from a reopening of the 

station until the next epoch at which no customers are in the system is 

given by 

From (11) and (12), 

(13) 

To determine EW (i), let us first observe that the expected total amount of 
C 

time spent by i-customers in the system during the time elapsed from the first 

attempt in a cycle to close down the station until the next epoch at which 

the station is reopened equals 
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( 14) 

Denote by the random variable Uik the total amount of time spent by i-cus

tomers in the system during the time elapsed from a reopening of the station 

until the next epoch at which no customers are in the system, given that 

k customers of type 1 are at the station when it is reopened. Let v 1 be the 

number of 1-customers arriving during the set-up time 

from which we get 

T • a 
Then 

since the conditional distribution of v1 given that 'a= sis Poisson 

with mean A1s. Using (2), (3) and the first part of (5), we find after some 

algebra that the expected total amount of time spent by 1 - customers in 

the system during the time elapsed from a reopening of the station until 

the next epoch at which no customers are in the system is given by 

( 15) 
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The determination of EU2k is very similar to that of EW22 • To determine 

EU2k, denote by the random variable T the time elapsed from the start of 

the first service after a reopening of the station until the next epoch at 

which no 1-customers are in the system. Let the random variable n be the 

number of 2-customers who arrived during the time elapsed from a reopening 

of the station until the next epoch at which a service commences while no 

1-customers are in the system. Then 

+ (1/2)(R-k+m)(R-k+m-1) ETb2 • 

The conditional distribution of n, given that T =sand T = t, 1s Poisson a 

with mean A2(s+t). Given that v1 = n, the random variable T has the same 

distribution as the sum of k + n independent random variables which are 

distributed as T1• Finally, the conditional distribution of v1 given that 

'a= sis Poisson with mean A,1s. Now, by taking expectations succesively on 

n, ,, v1 and 'a and using (2), we find after some simple manipulations that 

Using (2), (4) and (8), we find after some algebra that the expected 

total amount of time spent by 2-customers in the system during the time 

elapsed from a reopening of the station until the next epoch at which 

no customers are in the system is given by 
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From ( 14) , ( 15 ) and ( 16) , 

where . 

Now, by (1), the long-run (expected) average number of i-customers in the 

system is equal to 1(i) = EW (i) /ET, (i=1,2). Using (6), (7), (9) and 
C C 

( 10) , we find that 

If we put A2 = 0(A 1=o) in the expression for 1( 1)(1( 2 )) we obtain formula 

(16) 

(26) in YADIN and NAOR [10]. Finally, it easily follows from JEWE11 1s paper [4] 

that the formulae 1(i) = A.W(i) and 1(i) = A.W(i) apply. Hence, by 
l q l q 

W(i) = W(i) +µ.,the long-run (expected) average number of i-customers 
q l 

in the queue equals 1(i) = 1(i) - p., (i=1,2). 
q l 
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Remark. It is easily verified that for the case where interruptions of the 

closing-down process involve no loss of close-down time, the average num

ber of i-customers in the system is given by the above expression for 

L ( i) with B replaced by AETb. 

MODEL B: CLOSING-DOWN PROCESS WITHOUT INTERRUPTIONS. 

* For this model,let the random variable T be the length of a cycle 
C 

and let the :random variable w*(i) be the total amount of time spent by 
C 

i-customers in the system during one cycle, where a cycle is the time be-

tween two successive epochs at which a service completion occurs while no 

customers are awaiting for service. Let 

( n=O, 1 , ••• ) • 

Then p represents the probability that n customers will arrive during the 
n 

. * * ,R close-down time Tb. Let pn = pn for n > R, and let pR = lk=O pk. We have by 

(13) that the expected amount of time elapsed from a reopening of the station 

until the next epoch at which no customers are in the system equals 

(n+AET ) / ;>...( 1-p -p ) - nf;>... given that n customers are at the station when a 1 2 

it is reopened, Now it is easily seen that 

To determine EW:(i), denote by ~1n and ~2n the right-hand side of (15) and 

(16), respectively, with R replaced by n. Then~- represents the expected in 
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total amount of time spent by i-customers in the system during the time elap

sed from a reopening of the station until the next epoch at which no cus

tomers are in the system given that n customers are at the station when 

it is reopened. Further, we observe that if k customers have been arrived 

during the close-down time Tb then the expected number of i-customers who 

arrived during Tb ~s equal to kAi /A.Now it is readily seen that 

Now, by (1), the long-run average number of i-customers in the system 

( i) *(.) / * . , 00 ( ) * 2 2 ,R { ( ) ( ) } equals L = EWc l. ETC, Using ln=R n n-1 pn = A ETb + lk=O R R-1 -k k-1 pk, 

we find after some algebra that 

where p~ = p 1 + p2 and p; = 0. Finally, it easily follows from reference 4 

that the formulae L(i) = A.W. and L(i) = A.W(i) apply. Hence, in particular 
]. ]. q ]. q 

COST OPTIMIZATION 

We consider the following cost structure. There are a holding cost of 

h. > 0 per unit time per i-customer in the system and a fixed cost of K > 0 
]. 
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per cycle for reopening and closing-down the station. The long-run average 

cost per unit time can be easily found. For convenience we only consider 

model A. By the elementary renewal theorem, the long-run (expected) number 

. -1 . . of cycles per unit time equals ET with probability one. Hence the long-run 
C 

(expected) average cost per unit time equals, with probability one, 

~(R) = h 1L( 1) + h2L( 2 ) + K / ETc, where ETc and L(i) are given by (13) and 

(16). To determine the value of R for which ~(R) is minimal, let us treat 

Ras a positive continuous variable. Straightforward calculations show that 

~''(R) > 0 for R > O, and so ~(R) is strictly convex for R > O. Putting 

~ 1 (R) = O, we may find the optimal value of R. Since the expression for the 

optimal R is very complicated it will be omitted. For the special case where 

the set-up time and the close-down time are zero, we obtain from ~'(R) = 0 

that 

Since ~(R) is convex, the optimal positive integer value of R is one of the 

integers [R*] and [R*] + 1. 

BLOCK-TIMES 

Let us ·extend the model A and Bas follows. We now suppose that after 

completion of the service of an i-customer the server is blocked during a 

random time B. before he can commence a new service or close-down the station 
i 

(see reference 2 for examples). When the block-time has been passed, the 

server commences a new service when customers are at the station, otherwise 

he decides to close-down the station. We suppose that the first two moments 

of B. are finite, (i=1,2). Let p 1 = A.(µ.+Eb.), (i=1,2). It is 
i 1 i i i 
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assumed that p~ + p; < 1. Further we suppose that the block-times, the 

service times, the set-up times and the close-down time are independent 

f . (i) (i) 
o each other and of the arrival process. The long-run averages L , Lq , 

W( i) and W( i) are easily found for this model. To do this, we observe 
q 

that with respect to the number of customers in the queue the model with 

block-times is equivalent to the model with no block-times and a service 

time s. + B. for an i-customer, where s. is the service time for an i-cus-i i i 

tamer in the original models A and B. Hence for the models A and B with 

( 2) 
block times we obtain expressions for L ( i) when replace and we )Ji' )1. p. 

q i i 
(2) 2 

byµ. +EB.,µ. + 2µ.EB. + EB. and p!, respectively, in the expressions i i i i i i i 

for L(i) which we have found for the original models A and B. Expressions 
q 

for L ( i ) W( i) and W( i ) next follow from L ( i) = L W( i) , L ( i) = ;\. W( i) and 
' q i q i q 

w(i) = w(i) + µ .• 
q i 
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