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ABSTRACT. This paper is concerned with the finite state, discrete-time 

Markovian decision model. For the average return criterion it is shown that 

the method of successive approximations produces monotonic upper and lower 

bounds on the maximal average return. Also, it yields at each iteration a -

stationary policy whose average return is at least as gcod as the lower 

bound found at that iteration. These results are proved without making any 

assumption about the chain structure of the Markov chains associated with 

the stationary policies. Moreover, we extend MACQUEEN's results for the 

discounted reward model and we establish some relations between the finite 

time horizon model with a discount factor near 1 and the one with no dis

counting. 





We are concerned with a dynamic system which at times t=1,2, ... is ob

served in one of a finite number of states i, labeled by the integers 

1, ... ,N. After observing state i, an action a must be chosen from a finite 

set A(i) of possible actions. If we choose at time t action a in state i, 

then we receive an (expected) reward r(i,a), and at time t+1 the system 

will be in state j with probability p .. (a). 
iJ 

Let {Xt} and {~t} denote the sequences of states and actions. A policy 

R for controlling the system is any (possibly randomized) rule which for 

each t specifies which action to take at time t given the current state Xt 

and the history (X1,~1 , ..• ,Xt_1,~t-1). A stationary po~icy, to be denoted 

by f, is a policy which prescribes in each state i a single decision 

f(i) E A(i) whenever the system is in state i. 

There is a considerable literature on this subject and much of the lit

erature was stimulated by the basic work of HOWARD [5], In his book, Howard 

gives both for the total expected return criterion and for the average re

turn criterion a policy-iteration algorithm which leads after a finite num

ber of iterations to an optimal policy. The policy-iteration algorithm has 

the drawback that each iteration involves the solution of a system of lin

ear simultaneous equations whose order is the same as the number of states. 

In the literature there are published several alternatives which avoid this 

drawback [8, 9, 10, 12, 13], An alternative which is very attractive from 

a computational point of view is the (modified} method of successive approx

imations. However, this method need not converge in a finite number of it

erations to an optimal policy. This gives rise to the question how good 

an optimal policy and the optimal value of the criterion function can be 

approximated with this method. MACQUEEN [8] has investigated this question 
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for the discounted reward model. He has shown that monotonic upper and low

er bounds on the maximal total expected discounted return are produced by 

the method of successive approximations at each iteration. Moreover, he has 

proved that the policy determined at each step achieves a total expected 

discounted return at least as good as the lower bound found at that step. 

In this paper we shall prove corresponding results for the undiscounted 

model with the long-run average return as criterion. It is important to 

note that we have not to make any assumption about the chain structure of the 

Markov chains {Xt} associated with the stationary policies. The special 

case where for each stationary policy the associated Markov chain has a 

single ergodic class and has no periodic states was studied by ODONI [10] 

who obtained only monotonic upper and lower bounds on the maximal average 

return. Other related work was done by SCHWEITZER [12] who investigated for 

undiscounted single chain Markov renewal programming an algorithm in which 

each policy evaluation is followed by repeated policy improvements. 

We shall give two approaches to analyze the undiscounted model. The 

first one treats the undiscounted model as a limiting case of the dis

counted model. In this approach we extend MACQUEEN's results and we prove 

some relations between the finite time horizon model with a discount factor 

near 1 and the one with no discounting. These results are also of interest 

in itself. The second approach is a direct one which does not use any re

sult for the discounted model. 
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DEFINITIONS AND PRELIMINARIES 

Let v0(i), 1 ~ i ~ N, be an arbitrary function. For any a with 

0 <a< 1, we define for n=0,1, •.. , 

(1~i~N), (1) 

where 

If we interprete v0(j) as the terminal reward received when in the finite 

period problem the final state is j, then V (i,a.) denotes the maximal ex-
n 

pected discounted return over the periods 1, ... ,n when there is a discount 

factor a, and the initial state is i. For n=0,1, ... , let 

that is, V (i) is the maximal expected return for then-period problem n 

when the rewards are not discounted. 

Let O <a,< 1, and let£> 0. For any n=0,1 , ... , we introduce the fol

lowing sets of stationary policies 

F (a,,£)= {fjr(i,f(i)) + a.E~ 1 p .. (f(i))V (j,a,) ~ V 1(i,a.)-£, 1~i~N}, 
n J= J.J n n+ 

F (a)= {fjr(i,f(i)) + al 1 p .. (f(i))V (j,a.) = vn+1(i,a.), 1~i~N}, 
n J= J.J n 

F = {fjr(i,f(i)) + ENJ·= 1 p .. (f(i))V (j) = V 1(i), 1~i~N}. n . J.J n n+ 

For any O <a,< 1 and any policy R, let 

and let, 
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g(i,R) = lim sup(1/n)En ER{r(Xt,~t)lx1 = i}, 
n~ t=1 

where ER denotes the expectation under policy R. That is, Va(i,R) is the 

total expected discounted return for the infinite period problem when pol

icy R is used and the initial state is i, and g(i,R) is the long-run aver

age return per unit time for policy Rand initial state i. For any station

ary policy f, we have [2,3] 

lim 1 (1-a)V (i,f) = g(i,f), 
a+ a 

Let 

That is, for the infinite period problem, V (i) is the maximal total ex-
a 

pected discounted return, and g(i) is the maximal average return per unit 

time. Both Va(i) and g(i) are achieved by a stationary policy [2,3], It is 

known that V (i,a) converges to V (i) as n~ for all i [3]. Moreover, V (i) n a a 

is the unique solution to [2,3] 

V ( i ) = max A ( . ) {r ( i , a) + aE~ 1 p . . ( a) V ( j )} , a aE i , J= iJ a 

It is known that there is a stationary policy f* such that V (i,f*) = V (i), a a 

1~i~N, for all a near enough to 1 [2,3]. Moreover, g(i,f*) = g(i) for all 

i [2,3]. Together these facts and (3) imply 

(1-a)V (i) = g(i), 
a 
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OPTIMALITY RELATIONS IN THE FINITE PERIOD MODEL. 

We shall now prove that V (i,a) converges to V (i) as a+1 and further 
n n 

we establish inclusion relations between the sets F (a,£), F (a) and F. n n n 

THEOREM 1. For any n ~ 0, lim 1 V (i,a) = V (i), 1~i~N. a+ n n 

Proof. The proof is by induction on n. Since v0(i,a) = v0(i) the theorem 

is true for n = O. Assuming that the theorem has been proved for n = m, we 

shall show that Vm+1(i,a) converges to Vm+1(i) as a+1 for'all i. To do this, 

we fix i and we observe that Vm+1(i,a) is bounded by (m+2)B for all a, 

where the constant Bis such that r(j,a) and v0 (j) are bounded by B. Hence 

it suffices to prove that Vm+ 1(i,ak) converges to Vm+1(i) ask~ for any 

sequence {ak, k~1} such that ak+1 ask~ and Vm+ 1(i,ak) has a limit ask~. 

Let {ak} be such a sequence. Since A(i) is finite, it follows from (1) that 

we can choose an action a*EA(i) and a subsequence {ak} of {ak} such that 

for all k, 

for all aEA( i), 

with equality for a= a*. Letting k~ and using the induction hypothesis, 

we get 

with equality for a 

proves the theorem. 

THEOREM 2. 

* = a • 

for all aEA( i), 

V 1 ( i) , which m+ 

(a) For any n ~ O and any£> O, there is a nwnber a(£) such that 
n 

F c F (a,£) for all a(£)~ a< 1. 
n - n n 
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(b) For any n 2 0, there is a number a such that F => F (a) +>or aU n n- n J' 

Proof. 

( a) Fix n and fix E: > o. Assume to the contrary that there is a sequence 

fok} such that a ➔1 ask~ and, for each k, F \F (ak,E:) is not empty. 
k n n 

Since both the number of stationary policies and the number of states are 

finite, we choose a stationary . * a state s and a subsequence can policy f, 

and 

r ( s , f-i, ( s ) ) + E • p . ( f* ( s ) ) V ( j ) = V 1 ( s ) . 
J sJ n n+ 

Letting k~ and using theorem 1, we obtain a contradiction. This proves (a). 

(b) The proof of (b) is very similar to that of (a) and is omitted. 

Remark. The following example shows that F c F (a) for a near 1 need not n n 

hold. There are two states 1 and 2. In state 1 two actions a 1 and a 2 are 

possible with p 11 (a1) = p 12(a2 ) = 1. Let r( 1 ,a1) = 0 and r( 1,a2 ) = 1, 

and let v0(1) = 1 and v0 (2) = O. Then, r(1,a1 ) + v0(1) = r(1,a2 ) + V0(2) 

and r(1,a1) + av0(1) < r(1,a2 ) + av0(2) for o <a< 1. 

SUCCESSIVE APPROXIMATIONS AND THE DISCOUNTED MODEL. 

We shall now extend MACQUEEN 1 s results [8]. For given a with O <a< 1, 

the following transformations are introduced. Let v(i), 1::;i::;N, be an arbi

trary function, then the function Tv(i) is defined by 



and, for any stationary policy f, the function Tfv(i) is defined by 

= v(i) - [r(i,f(i)) + a!:~ 1 p .. (f(i))v(J.)], 
J= 1.J 

The following theorem has been proved by Macqueen [8]. 

THEOREM 3. 

(1:;;i:;;N). 

{a) Tu(i):;; Tv(i) for 1:;;i:;;N impZies u(i):;; v(i) for 1:;;i:;;N. 

(b) Tfu(i):;; Tfv(i) for 1:;;i:;;N impZies u(i):;; v(i) for 1:;;i:;;N. 

For any O <a< 1 and any£> O, we define for i=1, ... ,N and n=0,1 ..• , 

u"(i,a) = V (i,a) + (1-a)-1 max1<.<N{V +1(j,a) - V (j,a)}. 
n n -J- n n 

We note that the function V (i) and the function v defined on p. 41 of n n 

reference 8 are related by v (i) = V (i) - V (s) for some fixed states, 
n n n 

which implies that the functions u'(i,a,£) and u"(i,a) are related to the 
n n 

functions u I and u" introduced by Macqueen [8] by u 1 (i ,a,£) = u' ( i )-d 1-a)-1 
n n n n 

and u"(i a)= u"(i). The proof of the next theorem follows that of Macqueen's 
n ' n 

theorem 2 [8]. 

THEOREM 4. For any O <a< and any£> o hoZds~ 

(a) For any n:2!0, u'(i,a,£):;; V (i,f):;; V (i):;; u"(i,a) for all 1:;;i:;;N and 
n a a n 

all fEF (a,£). 
n 

(b) u' ( i , a,£) is nondecreasing in n and u" ( i a) is non increasing in n. 
n n ' 

Proof. 

(a) Let us first observe that, by (4), TV (i) = 0 for 1:;;i:;;N. Further, for 
a 

any stationary policy f, V (i,f) = r(i,f(i)) +a!:. p .. (f(i))V (j,f), so 
a J 1.J a 

TfVa(i,f) = 0 for 1:;;i:;;N. Fix now n. Put for abbreviation 
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w'(a) = min.{V 1(j,a) - V (j,a)}. Let fEF (a,E). Then, by using the def-
n J n+ n n 

inition of F (a,E), for e~ch i, 
n 

-1 -1 
= V (i,a) + (1-a) w'(a) - E(1-a) - [r(i,f(i)) + 

n n 

-1 -1 
+ aI.p .. (f(i))V (j,a) + a(1-a) w'(a) - ad1-a) J:,:; 

J iJ n n 

Hence, by theorem 3(b), u'(i,a,E):::; V (i,f) for all i. Similarly, by using n a 

(1), we find that Tu"(i,a) = V (i,a)-V +1(i,a)+max.{V +1(j,a)-V (j,a)} :2: 
n n n J n n 

~ 0 = TV (i) for all i. Hence, by theorem 3(a), V (i):::; u"(i,a) for all i. 
a a n 

This completes the proof of (a). 

(b) This assertion trivially follows from theorem 2(ii) in reference 8, 

since u'(i,a,E) = u'(i) - E(1-a)-1 and u"(i a)= u"(i) where u' and u" 
n n n ' n ' n n 

come from reference 8. 

We note that u'(i,a,E) and u"(i,a) converge to V (i) - d1-a)- 1 and 
n n a 

V ( i), respec:ti vely, as n~, since V ( i ,a) converges to V ( i) as n~. 
a n a 

Further F (a) c F (a,E) for all E>O. From these facts and theorem 4 we ob-n - n 

tain Macqueen' s theorem 2 l8] 'as a corollary. 

SUCCESSIVE APPROXIMATIONS AND THE UNDISCOUNTED MODEL. 

We are nc1w in a position to prove for the undiscounted model that the 

method of successive approximations produces monotonic upper and lower 

bounds on the maximal average return and, moreover, yields at each itera

tion a stationary policy whose average return is at least as good as the 

lower bound found at that iteration. These results will be proved without 

making any assumption about the chain structure of the Markov chains {Xt} 

associated with the stationary policies. 
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THEOREM 5. Par any 1::::i::::N and any n:2:0, Zet u* = min.{V +1(j) - V (j)}, and 
n J n n 

Zet u** = max.{V 1(j) - V (j)}. Then, 
n J n+ n 

(a) For eaah n, u~:::: g(i,f) :::: g(i) :::: u:* for aU i=1, ... ,N and aU fEFn. 

(b) u* is nondeareasing inn and u** is nonincreasing inn. 
n n 

Proof. 

(a) Fix n ru1d fix E>O. Since V (i,a) is bounded by (n+1)B for some finite 
n 

constant B, we have by theorem 1 that, for i=1 , ... ,N, 

lim 1 (1-a)u'(i,a,E) = u* - E and lim 1(1-a)u"(i,a) = u** (6) 
a-➔ n n a-+ n n 

By theorem :2 (a) , there is a number a ( E) such that F c F (a, E) for all 
n n - n 

a (E)::::a<1. Let fEF . Then, by theorem 4(a), for all a (E)::::a<1, 
n n n 

(1-a)u'(i,a,E):::: (1-a)V (i,f):::: (7-a)V (i):::: (1-a)u"(i,a), (1::::i::::N). 
n a a n 

Letting a-+1 and using (3), (5) and (6), we get u*- E:::: g(i,f):::: g(i):::: u** 
n n 

for all i. 'rhis proves (a), since E was chosen arbitrarily. 

(b) This part is an immediate consequence of theorem 4(b) and (6). 

Theorem 5 can also be directly proved without using any result for the 

discounted model. 

Alternative proof of theorem 5. 

(a) Let us first note that g(i) = maxfg(i,f) for all i, since there is a 

stationary policy f* such that g(i,f*) = g(i) for all i [2,3]. For any 

stationary :policy f, denote by P( f) the N x N matrix whose ( i ,j) element is 

{ -1 n-1 k} pi/f(i)). It is known that the sequence n Ek=O[P(f)] converges to a 

stochastic matrix p*(f) such that p*(f)P(f) = p*(f) [6]. Denote by p~.(f) 
iJ 

the (i,j) element of p*(f). Clearly, for any stationary policy f, 
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g(i,f) = r~ 1 p~.(f)r(j,f(j)), 
J= 1J 

Fix n. Let f be any stationary policy. Since V0 +1(i) - V0 (i) 

we have by (2), 

$; u** for all 1, 
n 

r(i,f(i)) + E. p .. (f(i))V (j) $; V 1(i) $; V (i) + u**, (1$;i$;N). 
J 1J n n+ n n 

Multiplying the extreme sides of this inequality by p~i(f), summing over i, 

and using (7) and p*(f)P(f) = p*(f), we find g(k,f) $; u** for 1$;k$;N. 
n 

Hence g(i) $; u** for all i, since f was chosen arbitrarily. Choose now 
n 

fEF0 • Since V0 +1(i) - V0 (i) ~ u: for all i, it then follows from (2) that 

Multiplying the extreme sides of this relation by p~i(f) and summing over 1, 

we find g(k,f) ~ u* for all k. This completes the proof of (a). 
n 

(b) A direct proof of this assertion can be found in reference 10. 

We note that theorem 5(a) implies g(i,f) ~ g(i) - (u**-u*) for all 
n n 

fEF and all 1; this bound can also be deduced from theorem 6.1 in part II 
n 

of reference 1. SCHWEITZER [12] has proposed for the undiscounted single 

chain Markov renewal program an algorithm in which each value-determination 

step is followed by repeated policy improvements. The bounds in Schweitzer's 

relations (13) and (14) with N = 1 for the unmodified policy improvement 

procedure can also be easily derived from theorem 5. 

Specializing theorem 5 to the case of a single action 1n each state, 

we obtain the following corollary 

COROLLARY. Let f be any stationary policy, and let y0(i), 1$;i$;N, be an ar

bitrary function. For n=0,1, ... , we define the functions y0 +1(i) by 
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N = r( i, f( i)) + E. 1 p .. ( f( i) )y ( j), 
J= 1.J n 

Then, min.{y +1(j) - y (j)} ~ g(i,f) ~ max.{y +1(j) - y (j)} foP aZZ i 
Jn n Jn n 

and aZZ n, whePe the ZoweP (uppep) bound is nondecpeasing (nonincpeasing). 

This corollary may be helpful with regard to the procedure followed 

by MORTON to solve the systems of linear equations (3) and (4) in his 

paper [9]. 

RemaPk 1. Consider the special case where for every average-return optimal 

stationary policy the associated Markov chain {Xt} has a single ergodic 

class and has no periodic states. Then, g(i) is constant (say g) and 

lim ~{V (i)-ng} exists and is finite for all i [4,7,11]. Together this n~ n 

and theorem 5(b) imply that u* is nondecreasing tog and u** is nonincreas-
n n 

ing tog. This result has been also found by ODONI [10]. The following ex-

ample shows that u* and u** need not converge tog when there is an average 
n n 

return optimal policy with periodic states. There are two states 1 and 2. 

In each state there is a single action a0 • Let p12(a0 ) = p21 (a0 ) = 1, and 

let r(1,a0 ) = O and r(2,a0) = 1. Choose v0(i) = O, i=1,2. Then u~ = o and 

u** = 1 for all n, and g(i) - ; for i=1,2. n 

RemaPk 2. Since the sequence {V (i), n~1} 1.n general will not be bounded, 
n 

it may be inconvenient to compute u*, u** and F by the recurrence rela-n n n 

tion (2). In case g(i) 1.s constant (say g) this difficulty is avoided by 

applying WHITE's modified method of successive approximations [10,13], 

since in that case the sequence {V (i)-ng} is bounded for all 1.. 
n 
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