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On the convergence of the average expected return in dynamic progralIDiling 

by 

Arie Hordijk 

Abstract 

Under a certain condition it is shown that the average expected return in 

dynamic progra1IDI1ing converges. 

The proof uses a sequence of contraction mappings. 



ON THE CONVERGENCE OF THE AVERAGE EXPECTED RETURN IN DYNAMIC PROGRAMMING. 

Arie Hordijk 

Suppose we have a dynamic programming problem with state space S, 

action or decision space A, law of motion q and bounded return function r. 

Under general conditions the optimal a-discounted return v satisfies the 
a 

functional equation (see [1]) 

(1) V (x) 
a = sup {r(x,a) + af q(dylx,a)va(y)}. 

a€A S 

Define w0(x) = 0 and 

(2) = sup {r(x,a) + J q{dylx,a)w (y)} 
a€A S n 

The sequence w is a dynamic programming sequence. n 

w represents the optimal return inn periods. It is well-known that in the 
n 

finite state and action model w /n converges to the optimal average return n 

(see [3]). 

We assume the existence of constants c and a0 such that 

and all X€S. 

This means that v has a partial Laurent series expansion and consequently 
a 

lim (1-a)v exists and is finite. Using a sequence of contraction mappings, a 
a+l 
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we shall prove that assumption (3) implies lim w /n = lim (1-a)v. 
n-+«> n a➔ l a 

Proof. Let an= 1 - I/n then for k0 such that ak0 > a0 

(4) 
n 
II ➔ 0 and 

k=k0+t 
as n ➔ 00 

Define the contraction mapping T by 
n 

(5) (T g)(x) 
n = sup {r(x,a)/n + (1-I/n)f

8
q(dylx,a)g(y)} 

aeA 

It then follows from (1) that (1-a )v is a fixed-point of T i.e. n a n 

(6) T [ (1-a )v J = n n a n 
(1-a )v 

n a 
n 

n 

Relation (2) implies 

(7) T [w 1/n-1] = w /n n n- n 

From (6) and (7) and the fact that T has contraction-modulus a it fol-
n n 

lows that 

(8) 

where 

II w /n -(1-a )v II s' a II w 1/n-1 -(1-a )v II n n a n n- n a ' n n 

II g II denotes sup I g(x) 1-
xeS 

By using the triangle inequality we deduce from (3) and (8) 

(9) 11 w /n -(1-a )v II s a ll w 1/n-1 -(1-an-l)v"' II+ an(an-an_ 1)c 
n n an n n- ~n-l 

Iterating this inequality, we find 



(10) 

From (4) it follows then 

lim II w /n -(1-a )v II = 0 n n a n~ n 

and consequently 

lim w /n = 
n 

lim 
n~ 

(1-a )v 
n a 

n 
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. □ 

To conclude we show that in the finite state and action model the function 

(1-a)v has a bounded derivative for a sufficiently near 1 from which it 
a 

follows that assumption (3) is satisfied. 

In the finite case there exists a Blackwell-optimal policy i.e. a stationary 

policy which is discounted-optimal for all discount-factors a0 <a< 1 

for some a0 (see [2]). Using the Laurent series expansion as given by Miller 

and Veinott (see theorem 1 of [4]) we find 

00 

(11) (1-a)v = l pnyn, with p 
a n=O 

-1 
= a (1-a), * y0 = P (f)r(f) and 

yn = (-l)n-l H(f)nr(f), n=l,2, ••• , for fa Blackwell-optimal poli-

cy. 

Since the series in (11) converges for all (p) < IIH(f) II -l, it follows that 

(1-a)v has a bounded derivative with respect top and consequently also the 
a 

derivative with respect to a is bounded for a sufficiently near 1. 
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