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On the convergence of the average expected return in dynamic programming

by

Arie Hordijk

Abstract

Under a certain condition it is shown that the average expected return in
dynamic programming converges.

The proof uses a sequence of contraction mappings.



ON THE CONVERGENCE OF THE AVERAGE EXPECTED RETURN IN DYNAMIC PROGRAMMING.

Arie Hordijk

Suppose we have a dynamic programming problem with state space S,
action or decision space A, law of motion q and bounded return function r.
Under general conditions the optimal a-discounted return \A satisfies the

functional equation (see [1])

]

(n Va(x) sup {r(x,a) + ocJ q(dylx,a)va(y)}.
S

aeA
Define wo(x) = 0 and
(2) w_ . (x) = sup {r(x,a) + [ q(dy|x,a)w 1}
n+l n
aeA S
The sequence v is a dynamic programming sequence.
v represents the optimal return in n periods. It is well-known that in the

finite state and action model wn/n converges to the optimal average return

(see [3]).
We assume the existence of constants c and ao such that
- - - < -
(3) I(l a])val(x) (1 az)vaz(x)| < Ial azlc, for all % < ag, o, <1

and all xeS.

This means that v, has a partial Laurent series expansion and consequently

lim (l—a)vOc exists and is finite. Using a sequence of contraction mappings,
o1
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we shall prove that assumption (3) implies limw /pn = lim (l1-a)v .
nro O o~>1 @

Proof. Let a = 1 - 1/n then for k, such that o, > o

0 k0 0
n n n
(4) il >~ 0 and ) I a.(ak-uk_]) >0 asn->w
k=k+1 =k *1 j=k

Define the contraction mapping Tn by

(5) (T _8)(x) = sup {r(x,a)/n + (l—l/n)f q(dy|x,a)g(y)}
aeA S

It then follows from (1) that (l—an)vu is a fixed-point of Tn i.e.
n

(6) Tn[(l—an)va] = (l—un)va
n n
Relation (2) implies

(7) Tn[wn_]/n—lj = wn/n

From (6) and (7) and the fact that Tn has contraction-modulus a it fol-

lows that
(8) ||Wn/n —(l—an)va ||S/an||wn_1/n-l —(l—an)va I,
n n
where ||g|| denotes sup |g(x)].
xXeS

By using the triangle inequality we deduce from (3) and (8)

)c

—l)va I|+ an(an-a

9) l[wn/n —(l-an)va | < an||wn_1/n-l —(l—un -1
n n-1l

Iterating this inequality, we find



k k-1

n n
(10) |w /n -=(1-0_)v_|| < = o || w, /k, -(l=a, v, ||+ ] T a.(a o
kekgtl ko' 0 ko kg kek+1 =k

From (4) it follows then
lim ||wn/n -(l—an)va =0
n>w n

and consequently

lim w /o = 1lim (l-o )v . 0
n n’ o
n->oo n->e n

To conclude we show that in the finite state and action model the function
(l—a)va has a bounded derivative for o sufficiently near 1 from which it
follows that assumption (3) is satisfied.

In the finite case there exists a Blackwell-optimal policy i.e. a stationary
policy which is discounted-optimal for all discount-factors ay <@ < 1

for some a (see [2]). Using the Laurent series expansion as given by Miller
and Veinott (see theorem 1 of [4]) we find

(a1 (l—a)va = Z pnyn , With p = a—l(l—a), Yo = P*(f)r(f) and
n=0 ’

n-l H(f)nr(f), n=1,2,..., for £ a Blackwell-optimal poli-

vy, = (=1
cy.
Since the series in (11) converges for all (p) < HH(f)Il—l, it follows that

(l-a)va has a bounded derivative with respect to p and consequently also the

derivative with respect to a is bounded for o sufficiently near 1.
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