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A modified form of the iterative method of undiscounted dynamic programming 

by 

A. Hordijk and H.C. Tijms 

ABSTRACT. This paper considers the discrete time finite state Markovian 

decision problem with the average return criterion. A modified form of the 

iterative 1nethod of dynamic programming is studied. Under the assumption 

that the maximal average return is independent of the initial state the 

asymptotic behaviour of the sequence of functions generated by this modi­

fied method is found. It is shown that the modified iterative method sup­

plies both upper and lower bounds on the maximal average return and £-Op­

timal policies. Moreover, a convergence result is proved for the policies 

produced by the modified iterative method. 
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1. Introduction. We are concerned with a dynamic system which at times 

t = 1, 2, .•• is observed to be in one of S states labeled 1, •.• , S. Af­

ter observing state i, an action a must be chosen from a finite set A(i) 

of possible actions. Let Xt and 6t, t = 1, 2, ... , denote the sequences of 

states and actions. If the system is in state i at time t and action a is 

chosen, then two things happen: 

(i) We receive an immediate (expected) reward r(i,a) and 

(ii) P{Xt+1 = J 

rewards r(i,a) and the transition probabilities p .. (a) are assumed to be 
J.J 

known. 

A policy R for controlling the system is any (possibly randomized) 

rule which for each t specifies which action to take at time t given the 

current state Xt and the history (x1,61, ... ,Xt_1,6t_1). A stationary poli­

cy f is a rule which for each i selects an action f(i) € A(i) such that 

always action f(i) is taken whenever the system is in state i. For any 

stationary policy f, let r(f) be the S component column vector whose ith 

element is r(i,f(i)), and let P(f) be the S x S Markov matrix whose 

(i,j) element is pij(f(i)). It is known that the sequence (n+1)-1t~=O[P{f)]k 

converges as n ➔ 00 to a Markov matrix p*(f) such that p*(f)P(f) = p*(f). 

We shall be concerned in this paper with the average return criterion. 

For any policy R, let 

( 1 ) for i = 1 , ..• ,S. 

Thus ~(i,R) is the long run average expected return per unit time when the 

initial state is i and policy R is used. Clearly, for any stationary policy 

* f, ~(f) = P (f)r(f), where ~(f) is the S component column vector whose ith 
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element is ~(i,f). Let 

g(i) = supR ~(i,R) for 1 = 1, ... ,s. 

A policy R is called optimal if ~(i,R) = g(i) for all i. It is known that 

there is a stationary policy which is optimal (cf. Derman [5]). 

Let {a , n = 1,2, •.• } be an arbitrary sequence of finite numbers, and 
n 

let y0(i) be an arbitrary function. Define for n = 1, 2, .•. , 

The purpose of this paper is to investigate the iterative method given by 

(2). If a = 1, then (2) reduces to the standard iterative method of dynamic 
n 

programming. For the case a = 1 the asymptotic behaviour of the sequence 
n 

{y (i), n ~ O} was studied by Bather [1], Brown [4], Hordijk and Tijms [6], 
n 

Lanery [9] and Schweitzer [10]. Bather [1] investigated also the sequence 

{y (i)} for the case a = 1 - 1/n. For a Markov decision model with a fini-
n n 

te number of communicating s~ates and a convex decision space, he used this 

sequence to prove the existence of an optimal policy. Also, under the as­

sumption that for each stationary policy the associated Markov chain {Xt} 

is irreducible, Bather [1] determined the asymptotic behaviour of these­

quence {y (l)}. This latter result will be generalized in section 2. Under 
n 

the assumption that g(i) = g for some constant g, we shall prove that for 

each sequence {a } which satisfies certain conditions a sequence {yn} n 

be found such that y (i) - y g has a finite limit as n +oo for all i. 
n n 

limit result was established for the case a - 1 under the additional 
n 

sumption that for each optimal stationary policy the associated Markov 

chain {Xt} is aperiodic. 

can 

This 

as-
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In section 3 we shall show that the iterative method (2) supplies 

upper and lower bounds on the maximal average return g(i) and, moreover, 

yields at each iteration a stationary policy whose average return is at 

least as good as the lower bound found at that iteration. If g(i) is in­

dependent of i and if {a} satisfies certain conditions, then for all n 
n 

sufficient large the policy found at the nth iteration is optimal. 

As compared with the standard iterative method of dynamic programming 

the modified method (2) has the advantage that it is insensible to possible 

periodicity of the Markov chains {Xt} associated with the stationary 

policies. Moreover, it is our conjecture that the convergence of the modi­

fied method will in general be faster than that of the standard iterative 

method. 

2. Asymptotic behaviour of {y (i)}. The discussion in this section will 
n 

be based on the next assumption. 

ASSUMPTION For some constant g, g(i) = g for i = 1 , ••• , S. 

This assumption is satisfied if there is an optimal stationary policy 

such that the associated Markov chain {Xt} has a single recurrent class. 

Given the sequence {a}, we define the sequence {y} by 
n n 

( 3) Yo = 0 and for n = 1 , 2, . . . . 

Under certain conditions on {a} we shall prove that lim {y (i) - y g} n n-+oo n n 

exists and is finite for all i. To do this, let r(i,a) = r(i,a) - g, and 

define for n = 1, 2, ... , 

for i = 1 , ... , S, 
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where y0(i) = y0(i) for all i. By induction on n, we obtain from (2) and 

(4) that 

(5) y (i) = y (i) - y g 
n n n for i = 1, ••• ,s and n = 0,1, ... , 

Further, for any a with G <a< 1 and any policy R, let 

V (i,R) 
a 

\"00 t-1 { .... ( ) I 1. l = lt=1 a ~ r Xt,~t X1 = and 

.... 
That is, given a reward function r(i,a) and a discount factor a, V (i,R) is 

a 

the total expected discounted return when the initial state is i and policy 

R is used, while V (i) is the maximal expected discounted return. It is known 
a 

that V (i) is the unique solution to(Blackwell [3] and Derman [5]) 
a 

(6) 
.... N .... 
V (i) = max {r(i,a) + a}:. 1p .. (a)V {j)} 

a a J= iJ a for l = 1, •• ,,S. 

We shall need the following lemma. 

LEMMA 1. There is a nwnber a*, 0 <a*< 1, and a finite constant B such that, 

for aZZ i, 
..... .... 

lva(i) - v8(i)I ~ la - BIB * for all a, BE (a ,1). 

PROOF. Choose a stationary policy f such that V (i,f) = V (i) for all i and all 
a a 

a close enough to 1. Blackwell [2] proved that such a policy exists. Moreover, 

it follows from part (a) of Theorem 4 in [2] that each element of p*(f)r(f) 

equals g. See also [5]. Let V be the S component vector whose ith element is 
a .... 

V (i,f), and let Q = P(f) - p*(f). Using [P{f)]n - p*(f) = Qn for n ~ 1, we 
a 

( ) \"00 n n ( ) find Va f = ln=Oa Qr f *( ) ( ) \"00 n n ( ) P fr f. The series L.oa Q is bounded in a E 0,1 , 

since this series converges absolutely for O <a< 1 and has a finite limit as 

a~ 1 (see [2] and [11]). It can be directly verified that (see also the resol­

vent equation (6) in Veinott [11, p.1640]) 

\" 00 n n n \"00 n n \" 00 n n 
l 0 (a -B )Q r(f) = (a-B)Q(L.0a Q )(L.08 Q )r(f) 
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for all a, BE (0,1). Now it is readily seen that there is a finite constant B 
A A 

such that lva(i,f) - v 8(i,f)I ~ la-BIB for all i and all a, BE (0,1). This 

completes the proof. 

The next theorem gives the asymptotic behaviour of the sequence {y (i)}. 
n 

THEOREM 1. Let the sequence {a, n = 1,2, ... } be such that (i) 0 < a < 1 n n 

for aZZ n ~ 2; (ii) an+ 1 as n + 00; (iii) a2a3 ... an+ 0 as n + 00; 

(iv) lj=2(anan-1' .. aj) I aj - aj-l I + 0 as n + 00 • Then, 

l:i.m {y ( i )-y g}exists and is finite for aZZ i. 
n➔oo n n 

PROOF. The proof is a generalization of one given in [7]. For any S compo­

nent vector x, let I lxl I = max. Ix- I. For any n ~ 2, denote by V the S 
l l n 

component vector whose i th element is V ( i), and for n ~ 1 , let y be the 
a n 

n 
S component vector whose ith element is y (i). From (4) and (6) we easily 

n 

deduce 

A A 

I IY - V 11 n n ~ an IIYn-1 - vnll for n = 2, 3,. . . . 

Since an~- 1 as n + 00 , we have by Lemma 1 that there is an integer n0 ~ 2 

and a finite constant B such that 

A 

( 8) llv n 

A 

- V II ~ 
m la - a IB n m for all n, m ~ n. 

0 

Fix now an integer K ~ n0 . By the triangle inequality, we obtain from (7) 

and (8) that for n = 1, 2, ... , 

A A 

IIYn+K-Vn+KII ~ an+K I IYn+K-1 - Vn+K-11 I + an+K lan+K - an+K-11B. 

Iterating this inequality, we find for n = 1,2, ... 

A 

I IYn+K-Vn+KI I 
A 

~ (an+K ... aK+1) IIYK-vKII + rj:~+1 (an+K' .. aj) laj-aj-1 IB, 
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from which we get lim {y (i) - V (i)} = 0 for all i. It follows from relat-
n~ n n 

ion (8) that V (i) has a finite limit as n ➔ 00 for all 1, so, by (5), the 
n 

proof is complete. 

REMARK. . c ( n-1 ) c _< 1 ,n -c f n x-c d.x i· s Using n - for all n ~ 1 and L.k= 1 k - 1 

bounded inn when O <cs: 1, it is readily verified that the conditions 

(i) - (iv) of Theorem are satisfied for any choice a 
n 

-b . 
= 1 - n with 

1/2 < b s; 1. In case a = 1 - 1/n for all n, then y = (n+1)/2 for n ~ 1. 
n n 

For the choice a = 1 - 1/n Theorem 1 was proved in a different way by 
n 

Bather [1] under the assumption that for each stationary policy the associa-

Markov chain {Xt} is irreducible. 

3, Bounds on the maximal average return and E-optimal policies. The next 

theorem deals with the question how good the maximal average return and an 

optimal policy can be approximated with the iterative method (2). The first 

part of the theorem below involves no assumption about the chain structure 

of the Markov chains {Xt} associated with the stationary policies or about 

the sequence {a}. 
n 

THEOREM 1. For any n ~ 1, denote by r the set of the stationary policies n 

f such that f'(i) mazimizes the right-hand side of (2) for all i. Let 

L = min.{y (i) - a y 1(i)}, and let U = max.{y (i) - a y 1(i)}. Then, n ~ n n n- n ~ n n n-

(a) For each n ~ 1, L s: ¢(i,f) ~ g(i) s: U for all i=l, ... ,s and f Er. n n n 

(b) If g(i)= g for all i for some constant g and if the sequence {a} satis­n 

fies the conditions (i) - (iv) of Theorem 1, then both L and U converge n n 

as n ➔ 00 tog, and, moreover, there is a finite integer N such that for all 

n ~ N each policy from r is optimal. n 

PROOF. (a) Let y be the S component column vector whose ith element is 
n 
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yn(i), and let e be the S component column vector of ones. Fix n. Let f 

be any stationary policy. Then, by (2), r(f) + anP(f)yn_1 Syn, so 

r(f) + a P(f)y 1 say 1 + U e. 
n n- n n- n 

Multiplying both sides of this inequality by p*(f) and using the relations 

* ~(f) = P (f)r(f) * * . and P (f)P(f) = P (f), we find ~(f) s U e. Hence 
n 

g{i) s Un for all 1, since g(i) = maxf~(i,f) for all i. Choose now f € rn. 

Then, by (2), r(f) + a P(f)y 1 = y so n n- n' 

r(f) + a P(f)y 1 ~ a y 1 +Le. 
n n- n n- n 

Multiplying both sides of this inequality by p*(f), we find ~(f) ~Le. 
n 

This completes the proof of (a). 

(b) By Theorem 1 and (3) we have that both L and U converge as n + 00 

n n 

tog. Since the number of stationary policies is finite, it follows that 

a finite integer N exists with the following property: if f € r for some 
m 

m ~ N, then f € r for infinitely many values of n. Let f € r for some 
n n 

n ~ N. Choose a sequence {n} with n + 00 ask+ 00 such that f € r for 
k k ~ 

all k. By (2) and (3), 

for all k. 

Letting k + 00 and using Theorem 1, we find v = r(f) + P(f)v - ge for some 

S component column vector v. Multiplying both sides of the latter equality 

by p*(f), we find p*(f)r(f) = ge, so policy f is optimal. This ends the proof. 

It follows from Theorem 2 that if g(i) is independent of i, then, by 

an appropriate choice of a , we can determine by (2) for each E > 0 a stati­
n 

onary policy whose average return differs at most E from the maximal average 
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return. In contrast with Howard's [8] policy-iteration algorithm the ite­

rative method (2) does not involve the solution of a set of linear simul­

taneous equations at each iteration. 

REMARK. Let f be any stationary policy such that for some constant$ the 

average expected return $(i,f) =$for all i. Theorem 2 provides us with 

a way to compute$ without solving a set of S linear simultaneous equa­

tions. Choose a sequence {a} that satisfies the conditions (i)-(iv) of 
n 

Theorem 1, and choose a function w0(i). For any n ~ 1, define the function 

w by w = r(f) + a P(f)w 1. Specializing Theorem 2 to the case of a n n n n-

single action in each state, we find 

min.{w (i) - aw 1(i)} s $ s max.{w (i) - aw 1(i)} for all n ~ 1, 
i n n n- i n n n-

As {a} satisfies the conditions (i)-(iv) of Theorem 1, these bounds n 

have$ as limit, and w = lim {w -y $e} satisfies $e + w = r(f) + P(f)w. n-+<x> n n 
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