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Convergence results and approximations for optimal (s,S) policies 

by 

A. Hordijk and H.C. Tijms 

ABSTRACT. In this paper we consider the dynamic inventory model with a 

discrete demand and no discounting. We verify a conjecture of Iglehart 

about the asymptotic behaviour of the minimal total expected cost. 

To do this, we give for the denumerable state dynamic programming model a 

number of conditions under which the minimal total expected cost for the 

n-stage model minus n times the minimal average cost has a finite limit 

as n ➔ m. For a positive demand distribution we establish a turnpike 

theorem which states that for all n sufficiently large the optimal n-stage 

policy (s ,S) is average cost optimal. Further, we show that the computa-n n 

tion of the (s ,S) policies supplies monotonic upper and lower bounds on 
n n 

the minimal average cost. Also, the average cost of the (s ,S) policy n n 

lies between the corresponding bounds. For a positive demand distribution 

these bounds converge as n ➔ m to the minimal average cost. 
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1 • Int;r>oduation. 

We consider the single-item dynamic inventory model with a discrete 

demand and no discounting. A fixed set-up cost, a linear purchase cost, 

convex holding and shortage costs, backlogging of excess demand, and a zero 

lead time are assumed. To derive asymptotic properties of this model, we 

discuss in section 2 the asymptotic behaviour of the minimal total expected 

cost for the denumerable state dynamic programming model. We give in 

section 3 a number of known results for the inventory model that will be 

needed in the sequel. In section 4 we prove that for a positive demand 

distribution the minimal total expected cost for then-period inventory 

model minus n times the minimal average expected cost per period has a 

finite limit as n-+oo which can be explicitly given up to a constant. 

For a continuous demand this result was first proved by Iglehart [4] for 

the case of no set-up cost and was conjectured by him for the case of a 

positive set-up cost. In section 5 we establish under the assumption of a 

positive demand distribution a turnpike theorem which states that for all 

n sufficiently large the optimal n-stage policy (s ,S) is also average n n 

cost optimal. Further, we show that the recursive method to compute the 

optimal n-stage policies (s ,S) supplies monotonic upper and lower bounds 
n n 

on the minimal average cost. Moreover, the average cost of the (s ,S) 
- n n 

policy lies between the corresponding upper and lower bound. When the 

demand distribution is positive these bounds converge as n-+oo to the minimal 

average cost. 
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2. The asymptotia behaviour of the minimat totat e:x:peated aost 

for denumerabte state dynamia programming. 

Consider a dynamic system which at times t=1,2, ••. is observed to be 

in one of a possible number of states. Let 1 denote the set of all possi­

ble states. We assume 1 to be denumerabte. After observing state i, an 

action a must be chosen from a finite set A(i) of possible actions. If the 

system is in state i at time t and action a is chosen, then, regardless of 

the history of the system, two things happen: (i) we incur an (expected) 

cost c(i,a), and (ii) at time t+1 the system will be in state j with prob­

ability p .. (a). The costs c(i,a) and the transition probabilities p .. (a) 
iJ iJ 

are assumed to be known. We suppose that the costs c(i,a) are non-negative. 

No further boundedness condition is imposed on the costs. 

Denote by Xt and At' t=1,2, ••• the sequences of states and actions. 

A potiay R for controlling the system is any (possibly randomized) rule 

which for each t specifies which action to take at time t given the current 

state Xt and the history (x1,A1, ••• ,xt_1,At-1). A stationary policy f is a 

rule that for each i selects-an action f(i)EA(i) such that always action 

f(i) is taken whenever the system is in state i. Observe that {Xt} is a 

stationary Markov chain when a stationary policy is used.-For any state i 

and policy R, let 

where ER denotes the expectation under policy R. Observe that ~(i,R) 

exists(+~ is admitted), since c(i,a) ~ O. When the limit exists ~(i,R) is 

the long run average expected cost per unit time when the initial state is 

i and policy R is used. A policy R* is called average aost optimat if 
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~(i,R*) = infR ~(i,R) for all i€1. 

Let v0(i),i€1, be an arbitrary function such that E.p . . (a)v0(j) is 
J 1.J 

finite for all i and a and is bounded from below in i and a. Define 

for n=1 ,2, ... 

v (i) = min A("){c(i,a) + E. 1 p .. (a)v 1(j)} n a€ 1. J€ 1.J n- for i€1. 

Observe that for each n the function v (i) exists, since c(i,a) ~ O. To 
n 

determine the asymptotic behaviour of v (i), we introduce the following 
n 

assumptions. 

Assumption 1. There 1.s a finite constant g and a finite function v(i),i€1, 

such that 

(i) E.p . . (a)v(j) is absolutely convergent for all i and a, and 
J 1.J 

( 1 ) for all i€1. 

(ii) ER{v(Xn)lx1 = i} is finite for all i, Rand n, and 

Let F t = {flf is a st~tionary policy such that f(i) minimizes the op 

right-hand side of (1) for all i€1}. By the remark following the proof of 

theorem 1 in [9] we have infR~(i,R) = g for all i and each policy from 

F is average cost optimal. Hence the minimal average cost is indepen-opt 

dent of the initial state and equals g. 

Assumption 2. The function v1(i) - v(i),i€1, 1.s bounded. 

Asswnption 3. For each stationary policy f the associated Markov chain 

{Xt} is non-dissipative, that is, the set of positive recurrent states is 

not empty and from each initial state the set of positive recurrent states 

will be reached with probability one. 
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Assumption 4. For each policy f€F t holds that each state which is op 

positive recurrent under policy f is aperiodic. 

Assumption 5. For each average cost optimal stationary policy the asso­

ciated Markov chain {Xt} has no two disjoint closed sets. 

THEOREM 1. 

(a) If part (i) of assumption 1 and assumption 2 are satisfied, then there 

is a finite aonstant B suah that Iv (i)-ng-v(i)l~B for aZZ. n~1 and aZZ n 

id. 

(b) If the assumptions 1-4 are satisfied, then lim {v (i)-ng-v{i)} n-+oo n 

e:x:ists for aU i and is bounded in i. This Zimit is independent of i if 

in addition assumption 5 is satisfied. 

A proof of Theorem 1 can be found in [l]. This proof is a generalization 

of proofs given in [7] and [11] for the case of a finite state space. 

3. The inventory modeZ and preZiminaries. 

We consider an inventory ~odel in which the demands ~1,~2 , •.. for a 

single item in periods t=1,2, ••• are independent random variables having 

a common probability distribution ~{j) = P{~t=j}, {j=0,1, ••• ; t=1,2, •.• ). 

We assume thatµ= E~t is finite and positive. Any unfilled· demand in a 

period is completely backlogged. At the beginning of each period the stock 

on hand is reviewed. At each review an order may be placed for any posi­

tive integral amount of stock. An order, when placed, is immediately 
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delivered (the case of a fixed positive lead time can be reduced to the 

case of a zero lead time, see [10]). The demand in each period takes place 

after review and delivery (if any). The stock on hand may take on any 

integral value, where a negative value indicates the existence of a backlog. 

The following costs are involved. The cost of ordering j units is 

Ko(j)+c.j, where K ~ o, c ~ o, o(O) = o, and o(j) = 1 for j ~ 1. Let L(k) 

be the expected holding and shortage costs in a period when k is the amount 

of stock on hand at the beginning of that period just after any additions 

to stock. We assume that L(k) is non-negative and oonvex, i.e. 

L(k+1)-L(k) ~ L(k)-L(k-1) for all k. For convenience it is assumed that 

both L(k)-+-oo and ck+L(k)-+-oo as lkl-+-oo. Finally, future costs are not discounted. 

We now give a number of known results for this inventory model 

(a) The finite period modeZ. Let Z be the set of all integers. Define 

v0(i) = 0 for all iEZ, and for n=1,2, ••. , let 

(2) v (i) = infk>.{c.(k-i)+Ko(k-i)+L(k)+E~_ov 1(k-j)~(j)}, n -1 J- n-

The choice v0(i) = 0 can be ~nterpreted as follows. In the finite period 

model it is assumed that stock left over at the end of the final period 

has no value and backlogged demand remaining at the end of the final period 

is satisfied at a cost zero. Scarf [10] proved that, for each n=1,2, •.• , 

(3) 

for i < s , 
n 

for i ~ s , 
n 

where G (k) =ck+ L(k) + E~_0v 1(k-j)~(j), S is the smallest integer 
n J- n- n 

which minimizes the K-convex function G (k), ands is the smallest integer n n 
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satisfying G (s ) s K+G (S ). Hence the right-hand side of (2) is minimal n n n n 

for k=S when i < s and for k=i when i ~ s . The quantity v (i) is the n n n n 

minimal total expected cost for then-period model when the initial state 

is i, and v (i) is achieved by the foliowing policy of the (s,S) type: 
n 

If at the beginning of period t.the stock on hand j < st' order St-j units; 

otherwise, do not order in period t (t=1, .•• ,n). Finally, the integers s n 

and S are bounded [3,4,6,14]. 
n 

(b) The infinite period modeZ. We first introduce some notation. Let the 

renewal quantity m{j) be defined by m{j) = ~{j) + Ek~O~{j-k)m(k), j=0,1, ••• , 

and let M{j) = Ek~0m(k). Lets and S be integers withs s S. The (s,S) 

policy is a stationary policy of the following form: If, at review, the 

stock on hand i < s, then S-i units are ordered; otherwise, no order is 

placed. When an (s,S) policy is used the sequence of stock levels at the 

beginning of subsequent periods just before review is a Markov chain that 

has a unique stationary probability distribution [4,12,14], say {q.{s,S)}. 
J 

Clearly, q.{s,S) = 0 for j· > S, and 
J 

. (4) q.{s,S) = r.:-1 q.(s,S)~(S-j) + E.~ q.(s,S)~(i-j) 
J i--m i i-s i 

for all j, 

where ~(k) = 0 for k.-::0. We note that Ejq.(s,S) is finite. Denote by 
J 

a(s,S) the long run average expected cost per period when an (s,S) policy 

is used. The quantity a(s,S) is independent of the initial stock and is 

given by [4,12,14] 

(5) a(s,S) = E.s-1{c.(S-j) + K + L(S)}q.{s,S) + r. 8 L{j)q.(s,S) = 
J=-= J J=s J 

= {L{S) + r::~ L(S-k)m(k) + K}/{1+M(S-s)} + cµ. 
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Let g be defined as 

g = min{a(s,S) I sSS, s, S€Z}. 

The constant g exists and is finite. Fix now finite integers s* ands* 

* * * * * * withs ss such that g=a(s ,S) and L(s -1)~g-cµ~L(s ). 

Such integers exist [4,5,12]. From definition the (s*,s*) policy is 

average cost optimal among the class of the (s,S) policies. However, the 

(s*,s*) policy is also average cost optimal among the class of all possible 

policies [4,5,12]. Hence the minimal average expected cost is independent 

of the initial stock and equals g. Define the finite function v(i)_, i€Z, by 

(6) t-c. ( i-s * +1), 
v(i) = . * 

L(i) + E~=~ L(i-k)m(k) - {g-cµ}{1+M(i-s*)}, 

. * J.< s , 

. * 
l.~S • 

Then [4,12] (in [4] the continuous demand version is given), 

where the right-hand side of (7) is minimized by k=S* for i<s* and by 

. . * k=i for i~s • 

4. The asymptotic behaviour of the minimal total expected cost 

for the inventory model. 

In this section we shall prove that if cj> ( i) >0: for all i sufficiently 

large, then v (i)-ng has a finite limit as n-+<x> for all i. To do this, we 
n 

shall define a Markovian decision model which has both the same probabilis-

tic structure and the same cost structure as the inventory model under 

consideration. Choose finite integers Land U such that L:::s ss SU for all n 
n n 
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and L<s*ss*su. Consider now the Markovian decision model defined by 

(cf. section 2), 

I= {iii integer, iSU}, A(i) = {ala integer, max(i,L)sasu}, (i€1), 

c(i,a) = c.(a-i) + Ko(a-i) + L(a), and p .. (a)=qi(a-j), (a€A(i);i,j€1). 
J.J 

By (2), (3) and (7) we have v (i) = min {c(i,a) + E.p .. (a)v 1(j)} for all 
n a J J.J n-

i€I and all n~1, and g + v(i) = min {c(i,a) + E.p .. (a)v(j)} for all i€I. 
a J J.J 

Further, E.v(k-j)qi(j) is absolutely convergent for all k. It follows from 
J 

(3) and (6) that v1(i)-v(i) is bounded in i€I. Hence part (i) of assumption 

1 and assumption 2 are satisfied. For this Markovian decision model the 

state Xt at time t denotes the stock on hand just before ordering in 

period t anu the action 6t at time t denotes the stock on hand just after 

ordering in period t. Since excess demand is backlogged, we have 

Xt+1 = 6t - ~t for t~1. Further, xtsu and LS6tsu for all t~1. Since v(i) is 

linear for i<s* and µ=E~t is finite, it now follows that ~{v(Xn)lx1=i} 

is bounded inn for each policy Rand each i, so part (ii) of assumption 1 

is also satisfied. Suppose now that qi(i)>O for all i sufficiently large. 

Then, for each stationary policy, the associated Markov chain {Xt} has a 

non-empty set of aperiodic positive recurrent states, a finite number of 

transient states and no two disjoint closed sets. Hence the assumptions 

3-5 are also satisfied, so, by part (b) of Theorem 1, there is a finite 

constant y such that v (i)-ng-v(i) converges as n-+oo- toy for all iSU. 
n 

Since U can be chosen arbitrarily large, we have proved the next theorem. 

THEOREM 2. If 4>(i)>O for aZZ i suffiaientZy "large, then there is a finite 

aonstant y suah that lim {v (i)-ng} = v(i) + y for aZZ iEZ. n-+<x> n 
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This result was first proved in [4] for the case of K=O. The next example 

shows that v (i)-ng may diverge when the condition of Theorem 2 is not n 

satisfied. Suppose that ~(1)=1, c=O, K=1, L(1)=O, and L(k)=2lkl for k~1. 

Then, v2n_ 1(-1)=v2n(-1)=n for all n~1, and g=~. Moreover, (s2n_ 1,s2n_1)=(O,O) 

and (s2n,s2n)=(O,1), where a(O,O)=1 and a(O,1)=~. 

REMARK. In this remark we consider the choice vO(i)=-ci for all i. This 

choice corresponds to the case where in the finite period inventory model 

each unit of stock left over at the end of the final period can be salvaged 

with a return of c and each unit of backlogged demand remaining at the end 

of the final period is satisfied at a cost of c. For this case, let v'(i) 
n 

be the minimal total expected cost for then-period model. The inventory 

model with a salvage cost c and a salvage value c can be reduced to an 

equivalent model with no salvage cost and no salvage value (see [14, 

pp. 528-529]). Using this reduction it is easily verified that Theorem 2 

also holds for the choice v (i)=-ci provided that we replace v (i) by v'(i). 
0 n .n 

Moreover, the assumption L(k) is convex can be weakened to -L(k) is uni-

modal (cf. [5], [12] and [15]). 

5 • A turnpike p Zanning horizon theorem and approximations. 

We first prove the following turnpike planning horizon theorem. 

THEOREM 3, If ~(i)>O for azi i suffiaientZy Zarge., then there is a finite 

integer nO suah that for aZZ n~nO the (sn,Sn) poZiay is average aost 

optimaZ. 

PROOF. Since s and S are bounded, it follows that there is a finite 
n n 



values 

Choose 

-10-

of n. Fix now an (s,S) policy such that (s ,S )=(s,S) for some n~n0 • 
n n 

a sequence {I\} with !\-+a> as k-+a> such that (s~,SI\)=(s,S) for all k. 

By Theorem 2 there is a finite constant y such that v (i}-ng converges as 
n 

n-+<x> to v(i}+y for all i. Subtracting nkg from both sides of (3) with n 

replaced by I\ and letting k-+a>, we find 

(8) 
-- {c.(S-i)+K+L(S}-g+rj:ov(S-j)~(j}+y, 

v(i}+y 

L(i)-g+rj:0v(i-j}~(j}+y, 

for i<s, 

for ssiss. 

The derivation of this equality involves an interchange of limit and 

summation which is justified by the fact that r.v(k-j}~(j} is absolutely 
J 

convergent for all k and,for some finite constant B, Iv (i)-ngl s v(i)+B n 

for all n~1 and all isS (see part (a) of Theorem 1 and section 4). It is 

now standard to prove that a(s,S}=g. To do this, multiply both sides of (8) 

with the stationary probability q.(s,S) and sum over i. Using (4) and (5), 
1 

we then find g=a(s,S), so the (s,S) policy is average cost optimal. This 

derivation of g=a(s,S) involves an interchange of the order of summation 

which is justified by the fact that r.v(j}q.(s,S) is absolutely convergent. 
J J 

We note that for the discounted cost criterion an analogous turnpike 

planning horizon theorem holds without the assumption that -~(i)>0 for all i 

sufficiently large ([3] and [14, pp. 530-531]; see also [6]). Further, 

we note that Theorem 3 implies that the cycling found in the examples given 

on p. 695 in [16] must stop after a finite number of iterations. 

We shall now demonstrate that the recursive method to compute the opti­

mal n-stage policies (s ,S) yields approximations both for the minimal n n 

average cost and for an average cost optimal (s,S) policy. To prove this, 

we shall first specify the bounds on s and S .Let.§. be the smallest inte-n n 

ger for which C.§.+L(.§.) s K+mi!\ {ck+L(k)}. Define Sas the smallest integer 
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for which L(k) is minimal, and let§ be the smallest integer not less than 

£ for which L(S+1) ~ K+L(§_). Observe that .2.,§. and Sexist, since both 

ck+L(k)-+oo and L(k)-+co as lkl-+oo. Then [6,14], sSs ss sS for all n and, more-
- n n 

over, there is an average cost optimal (s,S) policy such that .2.Sssss§. 

THEOREM 4. For any n~2, Zet r = min(s 1,s ) and Zet n n- n 

L = min{v (i)-v 1(i)jr <isS}, U = max{v (i)-v 1(i) r <isS}, n n n- n n n n- n 

and U' = max{v (i)-v 1(i)lr <iSS }. n n n- n n 

Then, 

(a) L s gs a(s ,s) s U' s U for aZZ n~2. n n n n n 

(b) L is nondecreasing and U is nonincreasing inn. 
n n 

(c) If ~(i)>O for aZZ i sufficientZy Zarge, then both L, U and U' n n n 

converge as n-+<x> tog. 

PROOF. (a) Let F = {(s,S)l.2.ssssss}. Then (s ,s )€F for all n~1, and n n 

g = a(s,S) for some (s,S)€F. Fix now n~2. By (2) and (3) we have for any 

(s,S) policy 

(9) V (i)S 
n 

c.(S-i)+K+L(S) + E.:ov 1(8-j)~(j) 
J- n-

L(i) + E.:Ov 1(i-j)~(j) 
J- n-

for i<s, 

for i~s, 

with equality for all i when (s,S) = (s ,S ). Choose now an (s,S) policy 
n n 

from F. By (3) we have v (i)-v 1(i) ~ L for all is S, so, by (9), 
n n- n 
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{

c.(S-i)+K+L(S) + r.:0v 1(S-j)~(j) 
J- n-

L(i) + r.:0v 1(i-j)~(j) 
J- n-

for i<s 

for ssisS. 

Multiplying both sides of this inequality by q.(s,S), summing over i, and 
l. 

using the relations ( 4) and ( 5), we find L s a( s ,S). Hence L s g., since 
n n 

the (s,S) policy was arbitrarily chosen from F and g = a(s,S) for some 

(s,S)eF. Consider now the (s ,S) policy. Since v (i)-v 1(i) s U' for all n n n n- n 

is S and the equality sign holds in (9) for all i when s=s and S=S, it n n n 

follows that 

V 1(i)+U 1 ~ n- n 

c.(S -i)+K+L(S) + E.~0v 1(s -J·)~(J') for i<s , n n J= n- n o/ · n 

L(i) + r.:0v 1(i-j)~(j) 
J- n-

for s SiSS. 
n n 

Multiplying both sides of this inequality by q.(s ,s ), summing over i, 
1 n n 

and using the relations (4) and (5), we find U' ~ a(s ,S ). This completes n n n 

the proof of (a). 

(b) For any m~1, let k (i) = S for i<s , and let k (i) = 1 for i~s . Then, m m m m m 

by (2) and (3), for all isS, 

v 1(i)-v (i) ~ r.:0v (k (i)-j)~(j) - r.:0v 1(k (i)-j)~(j) ~ L, n+ n J- n n J- n- n n 

so Ln+1 ~ Ln. The proof of Un+ 1 s Un is very similar and is omitted. 

(c) This assertion is an immediate consequence of Theorem 2. 

We note that an analogous theorem can be established for the discounted 

cost criterion by using results from [8] (see also [6]). In [13] results 

similar to those of this section are given for the case where a recursive 

method with a varying, appropriately chosen, discount factor is used. The 

discussion in [13] is based on results from [2]. 
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