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The application of generalized Markov-programming to semi-Markov decision 

problems and two algorithms for its cutting operation 

by 

P.J. Weeda 

SUMMARY. This paper deals with the application of generalized Markov

progra.mming, developed by de Leve for continuous time Markov decision 

problems, to semi-Markov decision problems. The criterium is the long run 

average cost. It is shown that any semi-Markov decision problem can be con

verted to a problem satisfying the generalized Markov-prograrmning model by 

an extension of the state space. Applied on problems requiring a complete 

extension of the state space the iteration method of generalized Markov

progra.nnning yields exactly Jewell's method. However in many problems this 

extension of the state space is either not at all or only partly required. 

Especially this class of problems is intersting because then the two 

methods are different. In this and a coming report it is investigated 

whether generalized Markov-programming is a useful alternative to Jewell's 

method. An important difference between the two methods is that generalized 

Markov-programming requires a second policy improvement operation, called 

the cutting operation. Two new algorithms for this cutting operation are 

developed. ~rhey are based on.the relation between the original cutting 

operation of de Leve and a special type of optimal stopping problem. A 

proof of this relation for the considered model is given. Computational 

results will be given in a coming report. 





1. Introduction 

This report deals with the application of generalized Markov-program

ming developed by de Leve [6] to semi-Markov decision problems. The semi

Markov (or Markov-renewal) decision model was introduced by Jewell [5], 

who also presented an algorithm to compute an optimal strategy. We restrict 

ourselves here to undiscounted models. After the introduction of some nota

tion and a basic lemma stating the properties of the unique fixed point of 

a type of operator frequently used in Markov-programming, the semi-Markov 

decision mo<ilel ( SMD) is introduced in section 3. 1 , while in section 3. 2 

SMD iteration method developed by Jewell is presented. Section 4.1 presents 

the relevant generalized Markov-programming model (GMP) and section 4.2 the 

corresponding iteration method. Although generalized Markov-programming was 

originally developed to solve continuous time decision problems, it is 

demonstrated in section 5 that it can be applied to any semi-Markov deci

sion problem. 

It is shown in section 5.1 that any SMD problem can be converted into 

an equivalent GMP problem by an extension of the state space. The iteration 

method of GMP applied to the GMP version of the problem yields then exactly 

Jewell's method applied to the original problem. In section 5.2 it is shown 

that any GMP problem (satisfying the model of section 4.1) can be converted 

into an equivalent SMD problem. However the SMD iteration method of Jewell 

applied to the converted problem differs from the GMP iteration method 

applied to the original GMP problem. 

The question now arises whether the GMP method is a useful alternative 

to the SMD iteration method. From section 5 it can be deduced that if the 

complete extension of the state space, described in section 5.1, is not 

required to convert a SMD problem (which then should satisfy the GMP model 

partly or completely) to a GMP problem, then the GMP iteration method 

differs from the SMD iteration method. Hence the question of usefulness is 

most relevant in this case, because when a complete extension of the state 

space is required both methods are identical. 

A first requirement to be useful will be that the method yields an 

algorithm which is general enough to be applied within the class of problems 

just defined. Until now this has not been the case. The application of GMP 
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in some examples (see [7], [9] or [3]) show that for its second policy im

provement operation (or better: cutting operation) no general but only 

special algorithms exist, which exploit the special properties of the spe

cific problem to be solved. In section 7 two general algorithms for the 

cutting operation are presented. One is based upon the relation between the 

original cutting operation of de Leve and a special type of optimal stop

ping problem considered in section 6. In section 7 it is proved that the 

original cutting operation is equivalent to two optimal stopping problems 

to be solved successively. The second cutting method differs from the orig

inal cutting operation in that it computes no smallest optimal set but a 

suboptimal set. The suboptimal cutting method reduces the required compu

tations to such an extent that it is about as efficient as the special 

devices developed in [3] and [9] which are not applicable to other problems. 

In a coming publication it will be proved that both GMP algorithms converge 

within a finite number of steps to an optimal strategy. 

A second requirement is that the GMP algorithm is at least as fast as 

Jewell's. Here again the attention is focussed on problems satisfying the 

GMP model without requiring the complete extension of the state space. Com

paring the structure of both algorithms the GMP method is probably faster 

in these problems. This conjecture is supported by comparing the required 

computations per step as well as by computational experience. Some numeri

cal examples will be presented in a separate report. 

2, Some notations and preliminaries 

Primarily some notational principles will be introduced concerning 

subvectors and submatrices. Let a and b be two N-vectors with elements 

a. ,b., i = l, ... ,N and let P be a NxN matrix with entries p .. , 
i i iJ 

i,j = 1, ••• ,N. Let J denote the set of (N) states and let A and B be two 

arbitrary non-empty subsets of J. The following notation will be used. 

(a) A subvector of a with elements a. , i € A, 
i 

(P)A square submatrix of P with entries p .. , i € A, j € A. 
iJ 

(P)AB: submatrix of P with entries p. •, i € A, j € Band A$ B. 
iJ 

The vector with elements a.,b., i i i = 1, ••• ,N will be denoted by a Db. 
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Further a> b means a~ band a# b. 

Secondly some useful properties of finite Markov-chains will be stated. 

The NxN matrix of transition probabilities P will be called a probability 

matrix. Its entries satisfy 

( 2. 1 ) 

(2.2) 

p .. > 0 
iJ 

N 

I 
j=1 

p .. < 1. 
iJ -

Then-th power of Pis Pn. Its entries will be denoted by p~~). The numbers 
iJ (n) 

pij represent then-step transition probabilities, i.e. the probability 

that the state is j after n transitions if i is the initial state. 

A probability matrix Pis transient if its entries satisfy (1) and 

(2) and moreover. 

(2.3) 
N 

max I 
i j= 1 

(N) 
p .. 
iJ 

< 1. 

Then-th power of P, Pn goes to zero for n-+ 00 Then the matrix (I-P)-1 

exists and the following identity holds 

00 

(2.4) l pn = (I-P)-1 
n=O 

with PO= I, the identity matrix. 

Let H be the operator in N-dimensional Eucledian space on an arbitrary 

N-dimensional vector r defined by 

( 2. 5) Hr .- s + Pr 

withs a given N-dimensional vector and Pa given NxN transient matrix. The 

* operator H has a unique fixed point u given by 

(2.6) * u .- lim Hnr = (I-P)-1s. 
n➔oo 

Frequent use will be made of the following lemma. 
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Lemma 2. 1 

* Let H be defined by (2.5) and its unique fixed point u be given by (2.6). 
Then 

* a. Hr = r ~ u = r 

* * b. Hr> r ~ u >rand Hr< r ==> u < r 

* * c. Hr> r ~ u >Hr> rand Hr< r ~ u <Hr< r. 

Proof 

a. 

Suppose Hr= r then by induction Hnr =rand lim Hnr 
* * * n➔oo 1 ly supposer= u then Hu = s + Pu = s + P(I-P)- s 

b. 

* = r or u = r. Reverse-
) ) -1 * = (I-P+P (I-P s = u. 

q ~ t implies Hq ~ Ht hence Hr~ r implies that {Hnr} is a non-decreasing 
. n * * * i·~ sequence. Since Hr+ u we have u > r. By the same argument: u < r ~ 

r < Hr. 

C, 

. 1· Hn H ~ 2 3 d tl * H Hr> r imp ies r > r ~or n = , , .•• an consequen y u > r > r. 

3, The semi-Markov decision model 

3, 1. The model 

This model was introduced by Jewell [5], who also developed an itera

tive algorithm to compute an optimal strategy for this model. The model is 

described as follows. A system makes state transitions only at discrete 
~ points in time among a finite member of states N. The time intervals 

between these transitions are stochastic. The set of states is denoted by 
~ J. Just after a transition to state i, say, the decisionma.ker has to choose 

a decision from a finite set of feasible decisions X(i). A decision 

x E X(i) in state i E J specifies 



( 1 ) 

5 

A probability distribution p .. (x) of the state j to which the next 
lJ 

transition leads. 

(2) The expected length of the stochastic time interval until the next 

transition: ~.(x). 
l 

(3) The expected return h.(x) during this stochastic time interval. 
l 

We restrict ourselves to the undiscounted model. The purpose is to find a 

strategy which maximizes the expected average return of this process in the 

long run. Such a strategy is called optimal. 

This model includes the previously developed models of Howard [4]. In 

the first model of Howard the time intervals are deterministic with equal 

length for all feasible decisions. In the second model of Howard the time 

intervals are stochastic and have exponential distributions depending on 

the decisions. 

The computation of an optimal strategy can be restricted to the class 

Z of stationary deterministic strategies because there exists an optimal 

strategy in this class. A stationary deterministic strategy z applies the 

same decision z( i) E X( i) each time the system is in state i. The policy 

iteration method of Jewell which computes an optimal strategy in Z is sum

marized in the next section. 

3.2. Jewell's policy iteration algorithm 

Let z be the strategy obtained after the (n-1)-th step. Let h(z) and 
n n 

;:;'.( z ) be the vectors with elements h. ( z ( i)) and ;:;'.. ( z ( i)), 1 E J, respec-n 1 n 1 n 
tively and let P(z ) be the stochastic matrix with the i-th row having the 

n 
elements p .. (z(i)), j E J. Then two operations are executed. 

lJ 

1. Value determination operation. 

Solve the vectors y(z ) and v(z ) from the set of equations 
n n 

P(z) y(z ) 
n n 

( 3. 1 ) 

h(z ) - y(z) D ~(z ) + P(z ) v(z ). 
n n n n n 
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This set has a unique solution if in each ergodic set K(l), 

1 = 1, •.. ,L(z) of strategy z an arbitrary state i(l) is chosen unam-n n 
biguously. For each i(l), 1 = 1, ... ,L(zn) we put vi(l)(zn) = O. 

2. Policy improvement operation 

Compute the vectors y 1 and v' with elements y! and v! defined by 
]. ]. 

y! = 
]. 

max [ l p .. (x) y.(z )] 
xE:X(i) jE:J l.J J n 

and compute the set x1(i) defined by 

x1(i) := {x E: X(i) : l p .. (x) y.(z ) = y!}. 
jE:J J.J J n J. 

Define the vector v' with elements v!, J. = 1, ••• ,N by 
]. 

v! = 
]. 

p .. (x) v.(z )]. 
J.J J n 

Let the set x2(i) contain the decisions x E: x1(i) which yield vi for 

each i E: J, then strategy zn+ 1 is defined as follows. If zn(i) E: x2(i) 

then take zn+1(i) = zn(i), otherwise take zn+1(i) equal to an arbitrary 

x € X2 ( i). 

If zn+1 = zn then zn is optimal, otherwise re-enter the value determination 

operation with strategy zn+ 1• Within a finite number of steps, the algorithm 

converges to an optimal strategy, as was proved by Denardo [2]. 

4. Generalized Markov-programming applied to semi-Markov decision problems 

4.1. The model and basic definitions 

Generalized Markov-programming was developed by de Leve [6] for con

tinuous time decision problems. The special generalized Markov-programming 

model, which can be applied to any semi-Markov decision problem, (as will 

be shown in section 5.1 ), is constructed as follows. Also in this model the 

system makes state transitions among a finite number of states only at dis-
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crete points in time. Let J denote the set of these states. A semi-Markov 

process 1.s defined which is called the natural process. This natural process 

specifies 

( 1 ) 

(2) 

(3) 

A probability distribution q .. of the state j_ to which the next tran-
1.J 

sition in the natural process leads. 

The expected length of the stochastic time interval between successive 

transitions u .. 
J.. 

The expected return h. during this time interval. 
J.. 

Just after a transition in the natural process to state 1., the decision

maker has to choose x from a finite set of feasible decisions X(i). We dis

tinguish two types of decisions: nulldecisions and interventions. Each set 

X(i), i E J, contains at most one nulldecision which is denoted by x0 . All 

other decisions x E X(i), x # x0 are called interventions. The nulldecision 

x0 E X(i) in state i implies that the natural process is followed at least 

until the next transition has taken place. An intervention x E X(i), x # x 0 
in state i E J implies an instantaneous transformation to a stochastic 

state k with probability distribution pik(x). To this transformation itself 

a return g.(x) is associated. After this transformation the system is sub-
1. 

ject to the natural process at least until the next transition has taken 

place. 

A further requirement is the existence of a non-empty set A0 defined 

by 

Another requirement to be fulfilled by the definition of A0 is that A0 con

tains only transient states in the natural process. 

A stationary deterministic strategy z E Z dichotomizes the set of 

states J into a set of states A 1.n which interventions are applied by 
z 

strategy z and its complement A 1.n which the nulldecision is applied in 
z 

each state. A is defined by 
z 

A := {i E J 
z z(i) # XO' z(i) E X(i)} for z E z. 



The definitions of A0 and Az imply 

A => A 
z - 0 
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for z e: z. 

Furthermore one requirement has still to be fulfilled. The state~ resulting 

from the intervention z(i) e: X(i) for i e: A should satisfy z 

P{~ e: A } = 1. 
z 

The process resulting from the interventions of a strategy and the natural 

process will be called the decision process 

Let A01 and A02 be two subsets of A0 with the property that their com

plements X01 and X02 contain only transient states in the natural process. 

Then the matrices (Q)A and (Q)A are transient matrices. Define (k0 )A 
01 02 01 

as being the unique fixed point of the operator H1 on a vector r in IX01 1-
dimensional Euclidian space. 

( 4. 1) 

and define (t0 )A analogously in IX02 !-dimensional space by the unique 
02 

fixed point of the operator 

(4.2) 

The subvectors (k0 )A and (t0 )A are defined to be IA01 1- and jA02 1-
01 02 

dimensional nullvectors. 

For each x e: X(i), i e: J the functions k(i,x) and t(i,x) are defined 

by 

(4.3) 

and 

(4.4) 
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Let k(z) and t(z) denote the N-dimensional vectors with elements k(i,z(i)) 

and t(i,z(i)), i E J respectively. For non-intervention states i EA it z 
can be shown that k(i,z(i)) = t(i,z(i)) = O. 

Let S(A) denote the non-square matrix with entries s .. (A), i EA, 
1J 

j € A for an arbitrary non-empty set of states A0 s Ac J. The sij(A) rep-

resent the probability that j EA is the first state assumed in the set A 

if the natural process is followed from initial state i EA on. The matrix 

S(A) is obtained from the equation 

Because the matrix (I-Q)i1 exists, S(A) can be uniquely solved from (4.5) 
by 

(4.6) S(A) = (I-Q):1 (Q)-. 
A AA 

Let P(z) denote the non-square matrix with entries p.k(z(i)) for i EA and 
1 Z 

k EA. Let R(z) denote the square matrix of size IA I x IA I defined by z z z 

R(z) := P(z) S(A ). 
z 

Its entries r .. (z), i,j EA represent the probability that j is the first 
1J Z 

future state assumed in A if the decisionprocess of strategy z is followed 
z 

from initial state i EA on. 
z 

A strategy z which maximizes the expected average return per time unit 

in the long run is called optimal. Again there exists a strategy in the 

class Z of stationary deterministic strategies, which is optimal.*) A pol

icy iteration algorithm based on generalized Markov-programming to perform 

this computation is presented in the next section. 

*) This follows from section 5,2 which shows that any problem satisfying 
this model can be converted into an equivalent semi-Markov decision 
problem. 
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4.2. A policy iteration algorithm based on generalized Markov-programming 

Preperatory part 

a. Compute the vectors k0 and t 0 from (4.1) and (4.2) 

b. Compute k(i;x) and t(i;x) from (4.3) and (4.4) each x € X(i), x ~ x0 , 

i € J. 

After the preperatory part the iteration cycle is entered. Let z , n 
n = 1,2, ••• be the strategies successively obtained, with initial strategy 

z1• Then then-th iteration step consists of three operations executed with 

the strategy z obtained by the (n-1)-th step. 
n 

1. Value determination operation 

a. Compute the matrix S(A ) from (4.6). 
z 
n 

b. Compute the matrix R(z) from (4.7). 
n 

c. Solve unknown subvectors (y(zn))A 
z 

tions n 

(y(zn))A = R(z) (y(zn))A n 
z 

(4.8) n z n 

(v( zn)) A = (k(z ) - y(z ) t(z ))A n n n 
z n 

d. Compute 

(y( Zn) )A = S(A ) (y(zn))A z 
z n z n n 

(v(zn))A = S(A ) (v( zn)) A z 
z n z n n 

from the set of equa-

+ R(z ) n (v( z)) A 
z z n n 

A unique solution to (4.8) is obtained by choosing in each ergodic set 
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K(l), 1 = 1 , ... ,L(z) of strategy z an arbitrary intervention state 
n n 

i(l) for which we put vi(l)(zn) = O, 1 = 1, ••• ,L(zn). 

2. First policy improvement operation 

Compute the vector y(z) with elements y.(z) defined by 
1 

y! .-
1 

max [ r 
xe:X(i)\{x0 } je:J 

p .. (x) y.(z )] 
1J J n 

max [ r p . • ( X ) y . ( Z ) ] 

xe:X(i) je:J iJ J n 

Compute for each i E J the set x1(i) defined by 

for 1 EA z 

for 1 EA. 
z 

X1(i) := {x E X(i) : l p .. (x) y.(z ) = y!}. 
je:J 1J J n 1 

Compute the vector v' with elements v! defined by 
1 

v ! • - max [k ( i ,x) - y. ( z) t ( i ,x) + 
1 xe:X1(i) 1 

p .. (x) v.(z)J. 
1J J 

Let x2 (i) be the set of decisions x E x1(i) which yield vi. The strat

egy z~ is defined as follows: If zn(i) E x2(i) then take z~(i) = zn(i), 

otherwise take z~(i) equal to an arbitrary decision from x2(i). 

3. Second policy improvement operation (cutting operation) 

Let A be any set of states satisfying A0 s As Az,· Define the vectors 

y" (A) and v" ( A) by 

s .. (A) y! 
1J J 

for 1 e: A 

y~' (A) 
1 

for 1 e: A 

and 
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s .. (A) v! 
J.J J 

v'.'(A) .
J. 

v! 
J. 

Let M be the collection of sets A satisfying 

and either 

y'.'(A) > y! 
J. J. 

or 

v~'(A) > v! 
J. - J. 

for each j E J. 
* Compute the set A defined by 

A* .- A n • 
AEM 

Then strategy z" is defined by 
n 

z"(i) .
n 

Z I (i) 
n 

for i E A 

for i EA. 

* for i EA 

If z" = z then strategy z is optimal. If z" "f z then take zn+1 = z" n n n n n n 
and re-enter the value determination operation. 
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5. Conversion of a semi-Markov decision problem (SMD) into a generalized 

Markov-programming problem (GMD) and reversely 

5.1. The conversion SMD ~ GMP 

Each S:MD problem can be converted into a GMP problem by an extension 

of the set of states J. However this extension is not required in many 

problems. The set of states J is extended with the new states (i,x) for 

each x E X(i) and i E J. The set of states of the GMP problem J then bee 

becomes 

~ J :=JU {(i,x) : x € X(i), j € J}. 

~ The natural process needs to be defined only in the states (i,X) E J \ J. 

We define 

for (i,x) E J \ J, J E J, 

q ·- 0 ( i ,x) , ( k , w) ' -
~ for ( i ,x) , ( k , w) E J \ J , 

u(. ) := ~- (x) 
J. ,x J. 

for (i,x) E J \ j 

and 

h(. ) := h. (x) , 
J. ,x J. 

for (i,x) E J \ J. 

In th~ states i €Jan original decision x E X(i) becomes an intervention 

which implies a deterministic transformation to the state (i,x) E J \ J. 
We define for i E J 

X(i) := X(i) 

with 

1 form= (i,x) 

p. (x) .-
i ,m 

0 otherwise 
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and 

g. (x) := O. 
J. 

In each state i E J the nulldecision and in each state i E J \ J inter

ventions are impossible. Hence 

for z E z. 

Because q ) (i,x ,(k,w) = 0 for (i,x) and (k,w) E A0 we have 

We take A01 = A02 = A0. Then by (4.1), (4.2) and (5.2) it is easily estab

lished that 

(5.3) 

and 

From (4.3), (5.3) and the definition of h(. ) 
J. ,x 

k(i;x) := h(. ) = h. (x) 
J. ,x J. 

and from (4.4), (5.4) and the definition of u(. ) 
J. ,x 

t(i;x) := u(. ) = ~- (x) 
J. ,x J. 

for x E X(i), i E A0 . So we have for each z E Z 

(5.5) 

and 

(k(z))A = h(z); 
0 

(k( z) )- = 0 
AO 



(t(z))A = ~(z); 
0 

15 

(t(z))A = o. 
0 

Because of (4.6) and (5.2) we have 

and because of (4.7) and (5.7) we have 

R(z) = P(z). 

Then (5.5), (5.6), (5.7) and (5.8) imply that the set of equations 

= R(z) (y(z))A 
0 

(v(z))A = (k(z) - y(z) D t(z))A + R(z) (v(z))A 
0 0 0 

is equivalent to the set of equations of the SMB iteration method given in 

section 3.2. They(. )(z) and v(. )(z), (i,x) E A.0 are also computed in i,x i,x 
the GMP value determination operation by means of 

Y(· )(z) = I q( . ) . y. ( z) = I p .. (x) y.(z) i ,x 
jEAO 

i,x ,J J 
jEAO 

1J J 

and 

v(" /z) = I q( . ) . V. ( Z) = I p . . (x) v.(z). i,x 
jEAO 

i,x ,J J 
jEAO 1J J 

This computation is implicitly executed in the SMB policy improvement 

operation. The second policy improvement operation of the GMP method is 

superfluous because each strategy has the same intervention set A0 accord

ing to (5.1). Hence we may conclude two things 

1. The conversion of a GMP problem to a SMD problem can always be done. 

2. The GMP iteration method applied to the converted problem and the SMD 

iteration method applied to the original problem yield equivalent al

gorithms. 
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5.2. The conversion GMP-+ SMD 

In the conversion SMD-+ GMP the extension of the state space was 

needed to dichotomize an SMD decision into an intervention immediately 

followed by a nulldecision. Here we have to unite an intervention and the 

nulldecision in the stochastic state~ just after the intervention to a SMB 

decision. No extension of the set of states is needed so we define 

j .- J. 

Also the sets of feasible decisions remain unchanged 

X(i) .- X(i) for i e: J. 

For each x e: X(i) we define for i,j e: J and x e: X(i) 

(5.9) p . . (x) .-
l.J 

q .. 
l.J 

X = 

I pik(x) ~ 
;. (x) .-

l. 
(5.10) 

u. 
l. 

l p.k(x) ~ + g.(x) 
k l. l. 

(5.11) h'.. (x) .-
l. 

h. 
l. 

The two operations of the SMD iteration method expressed in the original 

notation of the GMP model then become 
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1. Value determination operation 

Let z be the current strategy. Solve the set of equations in y(z) and 

v(z) given by 

(y(z))A = P(z) (Q)A (y(z))A + P(z) (Q)A A (y(z))A , 
z z z z z z 

(v(z))A = (h-y(z)Ou)A + (Q)A (v(z))A + (Q)A A (v(z))A , 
z z z z z z z 

(v(z))A = g(z) + P(z) (h-y(z)Ou)A + 
z z 

+ P(z) (Q)A (v(z))A + P(z) (Q)A A (v(z))A. 
z z z z z 

2. Policy improvement operation 

Compute the vector y' with elements y!, defined by 
1 

y! = max [ l p.k(x) l qkJ. y.(z)J 
1 XEX(i) kEJ 1 jEJ J 

Compute the set x1(i) defined by 

I q .. y.(z)J = y!} 
. J 1J J 1 JE 

and 
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x 1 (i) := {x € x(i) max [ l p.k(x) l qkj y.{z}J = y!} 
X€X(i) k€J 1 j€J J 1 

Compute the vector v' with elements v! defined by 
1 

for i € A0• 

(5.12) vi := max[ max. [ii(x) + l Pik(x) {~ - Yi 11:k + 
X€X1(1) k€J 

x;&x0 

and 

, h. - y! u. + 
1 1 1 

q .. v.(z)J 
1J J 

if x0 € X(i) 

(5.13) v! .- max [i.(x) + k~J pik(x) {~ - yk 11:k + l qk. v.(z)}J 
1 X€X 1 ( i ) 1 ~ j J J J 

otherwise. Let x2(i) be the set of decisions satisfying (5.12) or (5.13) 

for state i. Then the next strategy is defined in the same way as in 

section 3.2. 

By these results two conclusions can be drawn. 

1. The conversion of a GMP problem to a SMD problem can always be done. 

2. The SMD iteration method applied to the converted problem and the GMP 

iteration method applied to the original GMP problem yield different 

algorithms. 

Among the most remarkable differences are the device of the functions 

k(i,x) and t(i,x), the value determination operation and the absence of the 

second policy improvement operation (cutting operation) of GMP in the 

resulting SMD iteration method. 

6. A special type of optimal stopping problem 

6.1. The model 

The special type of optimal stopping problem to be considered in this 

context is defined as follows. Let Q be the matrix of transition probabil-
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ities of a f'ini te Markov-chain. Each state of the chain i E J is either 

transient or absorbing. At least one state is absorbing. In each state i 

a decision has to be chosen from a set X(i) of feasible decisions. At most 

two decisions x0 and x 1 are feasible. If the decision x0 E X(i) is applied 

then the probability distribution of the state assumed after the next 

transition is given by the i-th row of the matrix Q with entries q .. satis
iJ 

fying I q .. 
. J iJ JE 

tained. If the 

= 1 and 0 

decision 

< q .. < 1 
- iJ -

x 1 E X(i) 

for j E J. In this case no return is ob-

is applied then the system remains in 

state i and an average return wiper time unit is obtained. The following 

sets of states are defined. 

( 6. 1 ) Ad .- {i E J X( i) - {xo ,x1}}, 

(6.2) A := {i E J X( i) - {xo}}' C 

(6.3) A := {i E J : X( i) = {x1}}. s 

The set A contains the absorbing states of the original chain and is 
s 

assumed to ·be non-empty. The goal is to find a strategy which maximizes 

the expected average return for each state i E J. Such a strategy is called 

optimal. 

This type of optimal stopping problem is a special type of a Markov 

decision problem with a finite state space and finite decision sets. Because 

a stationary deterministic strategy is optimal over the whole class of 

randomized history remembering strategies the computation of an optimal 

strategy can be restricted to the class Z of stationary deterministic strat

egies. Any strategies z E Z dichotomizes the state space J into two comple

mentary sets: a stopping set to be denoted by B(z) and its complement the 

continuation set B(z). The definitions (6.1) ... (6.3) imply that B(z)::, A 
-- - s 

and B(z)::, A for any z E z. 
- C 

An optimal strategy z0 can be computed by the policy iteration method 

of Howard. Because for each strategy z E Z the states i E B(z) are absorbing 

and the states i E B(z) are transient only the y.(z), i E J, have to be 
i 

used. For notational reasons we shall write f.(z) instead of y.(z). The 
i i 
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unique maximum expected average return vector will be denoted by f* and 

satisfies the following functional equation 

I q .. f~ i e: A 
je:J l.J J C 

(6.4) * max[w., I * i f. = q .. f .] e: Ad 
l. l. 

je:J l.J J 

w. i e: A • 
l. s 

Let the sets * B1 and B* defined by be s 

(6.5) ' a .J. f~ < w.} u A l ,_ J - i s 
j e:J 

and 

* {" \ Bs : = :!. E: Ad : L 
je:J 

(6.6) * q .. f. < w.} u A • 
l.J J l. s 

B~ and B: are easily identified as the larges!_and the smallest optimal 

stopping set respectively. Note that for i e: B~ n Ac we have 

> w .• 
l. 

6.2. A policy iteration algorithm 

Suppose at then-th iteration the strategy z with stopping set B is ob-n n 
tained. Perform the following two operations: 

1. Value determination operation 

Solve the vector f(z) from the set of linear equations n 

f.(z) = w. 
l. n l. 

f.(z) = 
i n I 

je:J 
q .. f.(z ) 

l.J J n 

for i e: B n 

for i e: B . n 



2, Policy improvement operation 

Compute :f ! for i E J defined by 
1. 

f! := 
1. 

max[w., 
J. 
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q .. f.(z )J 
J.J J n 

for J. E Ad 

f.(z) for J. E Ad. 
J. n 

If fi = fi(zn) then take zn+1(i) = zn(i) otherwise take zn+1(i) equal 

to the decision which yields f!. 
J. 

If z 1(i) = z (i) for i E J then z is optimal, otherwise re-enter the n+ n n 
value determination operation. 

6.3. A proof that the policy iteration algorithm yields an optimal stopping 

set within a finite number of steps 

In this section let z and z' be two successive strategies at any step 

of the iteration with stopping sets Band B' respectively. 

LEMMA 6. 1. 

At eaah step of the iteration we ha:ve either f! > f.(z) or z'(i) = z(i) 
J. J. 

for eaah i E J. 

PROOF 

For i E Ad with z ' ( i ) 'f z(i) we either have 

f! = w. > I q .. f.(z) = f.(z) 
J. J. 

jEJ J.J J J. 

or 

f! = I q .. f. ( z) > f. ( z) = w .. 
J. jEJ J.J J J. J. 

In all other cases we have z' ( i) = z(i). * 
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LEMMA 6.2. 

Two suaaessive strategies z and z' satisfy either f(z') > f(z) or z' = z. 

PROOF 

Suppose the set B n B' is nonempty, then for i € B n B' 

(6.6) f.(z') = w. > f.(z) 
l. l. l. 

Also we have for i € B n B' 

(6.7) f.(z') = w. = f.(z). 
l. l. l. 

q .. f (z). 
l.J 

From (6.6) and (6.7) follows (f(z'))B, > (f(z))B'' Suppose the set B n B' 

is nonempty then for i € B n B' 

{6.8) 

Also we have 

(6.9) 

f! = I q .. f.(z> 
l. j€J l.J J 

> w. = f.(z) 
l. l. 

f! = f.(z) = L 4i. f.(z) 
l. l. j€J J J 

for i € B n B'. 

Hence from (6.8) and (6.9) and because in any case f{z'))B, ~ (f(z))B, 

(6.10) 

By the value determination operation applied on f(z') we have 

(6.11) 

Lemma 2.1 applied on (6.10) and (6.11) with u* = (f(z'))B', r = (f(z))B', 

s = (Q)B'B' (f(z'))B, and P = (Q)B' implies 
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If z' 'f z then either B n B1 or B n B' or both are nonempty, implying 

f( Z I ) > f( Z) • 

THEOREM 6. 1 .• 

The policy iteration algorithm of section 3.1 converges within a finite 

nwnber of si;eps to a strategy z0 satisfying 

which is optimal. 

PROOF 

At each ste:p the expected average return f(z) of the current strategy z 

with stopping set B satisfies 

(6.12) 

* 

The solution to (6.12) is unique because (Q)B is a transient matrix. At 

each step we have f( z 1 ) > f( z) for strategy z and its successor z 1 , except 

at the terminal step. These two facts imply that no previously obtained 

strategy may turn up again before a strategy z0 satisfying Zcj = z0 is ob-

tained. Because Z contains a finite number (= 21Adl) of strategies the 

strategy z0 is obtained within a finite number of steps. Because z~ = z0 

strategy z satisfies 
0 

(6.13) 

(6.14) 

for any stopping set B satisfying Ass B s Ac. Let z be the strategy with 

stopping set B then (f(z))B satisfies (6.12). Lemma 2.1 applied on (6.12) 
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and (6.13) yields 

This together with (f(z))B = (w)B ~ (f(2:o))B implies 

f(z) < f(z ) 
- 0 

or equivalently z is optimal. 
0 

for z e: Z 

* * It is clear from the definitions (6.5) and (6.6) of B1 and Bs that any 

optimal strategy z* with stopping set B* satisfies 

(6.15) 

The policy improvement operation of section 6.2 can be simplified by the 

following lemma. 

LEMMA 6.3. 

Let B denote the stopping sets of the suaaessive strategies z , n=1,2, ••• n n 
obtained at the suaaessive steps of the poZiay iteration aZgorithm of sea-

tion 6.2. Let B1 = Ac be the, initiaZ stopping set and Zet m > 1 be the in

teger for uJhiah Bm = Bm+, • Then 

(a) 

(b) 

Bn+, c Bn for 1 ~ n < m, 

* Bm = B1 , the Zargest optimaZ stopping set, 

PROOF 

(a) 

Suppose that at then-th step a state i e: Ad satisfies i e: B n B 1• Then n n+ 

w.=f.(z)< l 4i-f.(z) 
i i n je:J J J n 

* 
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For the successors of zn the strategies zk, k = n+1,n+2, •.. we have for 

i E B n B 
n n+1 

(6.16) q .. f.(z ) > w. 
iJ J n l 

or equivalently i E Bk fork= n+1,n+2, .... Hence a state which is thrown 

out of the stopping set at any step does not return to the stopping set any

more. Hence if m > 1 then 

B ::J B 1 n n+ for 1 < n < m 

which states the nesting of successive stopping sets. 

(b) 

According to (a) there exists for each i E Bm n Ac an integer n, 1 < n < m 

satisfying 

(6.17) f.(z ) = 
i m 

I q .. f. ( z ) > I q .. f. ( z ) 
jEJ iJ J m - jEJ lJ J n 

> w .• 
l 

. . . . . * . * The optimality of Bm and the definition of B1 imply Bm ~ B1 . On the other 

hand the strict inequality in (6.17) and the definition of B~ imply that 
- * . . * * Bm n B1 is empty or equivalently Bm ~ B1 . Hence Bm = B1 . 

By lemma 6.3 the policy improvement operation of section 6.2 can be 

simplified by computing fi only for i E Bn n Ad. fi is then defined by 

f! .
i 

max[w. , 
i 

f.(z) 
i n 

q .. f.(z )J 
iJ J n 

otherwise, 

if one starts the iteration with A as initial stopping set. 
C 

* 
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7. Two algorithms for the cutting operation of generalized Markov-program

ming. 

7.1. An algorithm for the original cutting operation 

In this section we present an algorithm for the cutting operation of 

generalized Markov-programming which consists of solving two optimal stop

ping problems successively. Also in this section it will be proved that 

this algorithm yields the set A* of section 4.2 which is the goal of the 

original cutting operation defined by de Leve [6]. The algorithm consists 

of the following two optimal stopping problems to be solved by the policy 

iteration algorithm presented in section 6.2: 

1. Optimal stopping problem I (OSP I) 

Solve the optimal stopping problem applied to the imbedded Markov chain 

of the natural process with 

A ·- AO .-s 

A .- A z' C 

w . . - y! for i € A I• 
1 1 z 

This yields an optimal stopping set B*(y'). Determine the largest and 

* * the smallest optimal stopping set, to be denoted by B1 (y') and Bs(y') 

respectively. 

2. Optimal stoppi?lfi problem II (OSP II) 

Solve the optimal stopping problem applied to the imbedded Markov chain 

of the natural process with 

a. A .- B: (y') s 

b. A 
C 

.- B~(y') 

.£. • w . .- v! for i € A I • 1 1 z 

This yields an optimal stopping set B*(v'). Determine B:(v') and B~(v') 

which are respectively the smallest and the largest optimal stopping set. 
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The following theorem states the equivalence of the original cutting opera

tion with these two optimal stopping problems. 

THEOREM 7 .1 

* B (v') = 
s 

n A. 
AEM 

To prove this theorem we prove first three lemma's. 

LEMMA 7 .1 

Let A be a set of states satisfying A0 ~A~ J. Let the vector w be a vector 

in !Al-dimensional space and let f be a vector in !JI-dimensional space 

defined by the unique solution of the set 

f. = I q .. f. 
l jEJ lJ J 

l E A 

f. = w. l E A 
l l 

then f is also the unique solution of 

f. = I s .. (A) w. 
l 

jEJ lJ J 
l E A 

f. = w. l E A 
l l 

and reversG!ly. (See section 4.1 for the definition of the probabilities 

s .. (A)). 
lJ 

PROOF 

We only need to show that (f)A satisfying 

( 7. 1 ) (f)- = (Q)- (f)- + (Q)- (w) A A A AA A 

is the unique solution of 
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(f)A = S(A) (w) A 

and reversely. Because (I-Q)i1 exists we can solve (f)A uniquely from (7.1) 
and obtain 

(7.3) 

Relation (4.6) together with (7.3) yield (7.2) and (7.2) with (4.6) yield 

(7.3) implying (7.1). * 

LEMMA 7 .2 

Let M be the aoZZeation of sets A defined in the original autting operation 

of seation 4.2 and Zet A, be the inter>Vention set of strategy z' obtained z 
by the first poZiay improvement operation then 

PROOF 

A , e: M. 
z 

We have (referring to section 4.2) 

for i e: A , • 
z 

Because y! > y. and v! > v. for i e: A, and y! = y. and v! = v. for i e: A, 
1- 1 1- 1 Z 1 1 1 1 z 

we have 

y! = y. 
1 1 

v! = v. 
1 1 

q .. y! 
1J J 

= l q .. v. ~ l q .. v! 
je:J 1J J je:J 1J J 

for 1 e: A , • 
z 

On the other hand by the definitions of y"(A) and v"(A) and lemma 7 .1 we 

have 
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r y'.'(A ) = I q .. y'!(A I) ]. z I 
jEJ 1J J Z 

(7.6) 

l v'.'(A ) = I % . v':(A 1 ) 
1 Z I 

jEJ J J z 

Lemma 2.1 applied on (7.4) and (7.6) implies 

(7. 7) 

y~'(A ) > y! 
1 z' - 1 

v~'(A ) > v! 
1 z' - 1 

for 1 E A , • 
z 

for 1 E A , 
z 

( 7. 4) and ( 'l. 7) imply that all conditions for A , to be a member of the 
z 

collection Mare satisfied. 

LEMMA 7,3 

* B (v') E M. 
s 

PROOF 

Because B*(v') is optimal for OSP II and OSP I and because of lemma 7.2 we 
s 

have 

* y~(B (v')) > y~(A ) > y! 
i s - 1 z' - i 

(7.8) 

v~(B*(v')) > v~(A ) > v! 
1 s - 1 z' - 1 

The optimality of B*(v') for OSP I and OSP II implies 
s 

(7.9) 

and 

for 1 E A 1 • 
z 
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* y'.'(B (v')) = y! 
l. s l. 

(7.10) * * for i E: B s ( v' ) n B1 ( y' ) • 

* v'.' ( B ( v' ) ) > v ! 
l. s - l. 

The definitions of y'.'(B*(v')) and v.(B*(v')) imply 
l. s l. s 

* y~'(B (v')) = y! 
l. s l. 

(7.11) * for i E: B (v') 
s 

THEOREM 7 • 1 • 

PROOF 

= v! 
l. 

n A. 
A1::M 

By lemma 7.3 B*(v') E: M. Suppose An B*(v') nonempty for some A E: M. Then s s 
by the optimality of B*(v') for OSP I and OSP II we have 

s 

(7.12) 

and 

(7. 13) 

y'.'(A) = 
l. 

v'.'(A) 
l. 

l q .. y'!(A) < 
jE:J l.J J 

l q .. y'!(B*(v')) < y! 
. J l.J J s - l. 
J € 

"( ) \ "( *< "!)) I q .. v. A < l q .. v. B v < v. 
l.J J - • J l.J J s l. 

JE: 

- . * for i E: An B (v'). (7.12) and (7.13) imply A¢ M, a contradiction. Hence 
s 

An B:(v') is empty for A E: Mand consequently A 2 B:(v') for A E: M. 

7.2. Suboptimal cutting 

In the preceding section an algorithm has been developed which yields 

the smallest stopping set which is optimal for OSP I and OSP II. By theorem 

7,1 this set is equivalent to the set A* which is the goal of the original 
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cutting operation of generalized Markov programming. In this section we 

propose a procedure called suboptimal cutting which differs from the orig

inal cutting operation but is more attractive from a computational point of 

view. The goal is then to compute a stopping set which is a member of the 

collection M but not necessarily optimal for OSP I and OSP II. 

Definition 1r .2.1. 

Let Band C be two stopping sets satisfying A ~ B, C ~ A and let w be the 
S C 

return vector with elements w. defined for i EA. Let f(B) and f(C) denote 
1 C 

the expected average return vectors for Band C respectively. If f(B) > f(C) 

with f.(B) > f.(C) for at least one 1 EA then we call B better than C with 
1 1 C 

respect tow. If f(B) = f(C) then Bis called equivalent to C with respect 

tow. 

The algorithm of section 6.2 yields a stopping set at each non-terminal 

step which is better than its predecessors by lemma 6.2. If we start the 

iteration with B1 = Ac and apply one policy improvement step then the re

sulting set B2 is already a better stopping set than B1 = A with respect 
* C to w if A 

C 
itself is not optimal. If A is optimal then B1 = A according 

C C 

to the definition of B~ and no better stopping sets can be obtained. This 

procedure to compute a better (or if no one exists an equivalent) stopping 

set with respect tow is used in the following 

Suboptimal cutting algorithm 

1. Suboptimal stopping problem I 

Apply one policy improvement operation to the imbedded Markov-chain of 

the natural process with initial stopping set A and 
C 

a. A := AO s 

b. A .- A z' C 

c. w. .- y! for 1 E A ' . 1 1 z 

This yields a stopping set B(y') which is better than or equivalent to 
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A I with respect toy'. Determine the largest and the smallest stopping 
z 

set denoted by B1 (y') and Bs (y') respectively which are equivalent to 

B(y') with respect to y'. Note that the computation of y" (B(y')) is re

quired to obtain B1 (y') and Bs(v'). 

2. Suboptimal stopping problem II 

Apply one policy improvement operation to the imbedded Markov-chain of 

the natural process with initial stopping set B1(y') and 

a. A .- B (y') s s 

J2.. A .- Bl (y') 
C 

c. w. .- v. for i E: Bl (y'). i i 

This yields a stopping set B(v') which is better than or equivalent to 

B1 (y') with respect to v'. 

A proof that the GMP iteration method with either cutting algorithm con

verges to an optimal strategy within a finite number of steps will be pre

sented in a coming publication. 
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