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The application of generalized Markov-programming to semi-Markov decision

problems and two algorithms for its cutting operation
by

P.J. Weeda

SUMMARY. This paper deals with the application of generalized Markov-
programming, developed by de Leve for continuous time Markov decision
problems, to semi-Markov decision problems. The criterium is the long run
average cost. It is shown that any semi-Markov decision problem can be con-
verted to a problem satisfying the generalized Markov-programming model by
an extension of the state space. Applied on problems requiring a complete
extension of the state space the iteration method of generalized Markov-
programming yields exactly Jewell's method. However in many problems this
extension of the state space is either not at all or only partly required.
Especially this class of problems is intersting because then the two
methods are different. In this and a coming report it is investigated
whether generalized Markov-programming is a useful alternative to Jewell's
method. An important difference between the two methods is that generalized
Markov-programming requires a second policy improvement operation, called
the cutting operation. Two new algorithms for this cutting operation are
developed. They are based on, the relation between the original cutting
operation of de Leve and a special type of optimal stopping problem. A
proof of this relation for the considered model is given. Computational

results will be given in a coming report.






1. Introduction

This report deals with the application of generalized Markov-program-
ming developed by de Leve [6] to semi-Markov decision problems. The semi-
Markov (or Markov-renewal) decision model was introduced by Jewell [51],
who also presented an algorithm to compute an optimal strategy. We restrict
ourselves here to undiscounted models. After the introduction of some nota-
tion and a basic lemma stating the properties of the unique fixed point of
a type of operator frequently used in Markov-programming, the semi-Markov
decision model (SMD) is introduced in section 3.1, while in section 3.2
SMD iteration method developed by Jewell is presented. Section 4.1 presents
the relevant generalized Markov-programming model (GMP) and section 4.2 the
corresponding iteration method. Although generalized Markov-programming was
originally developed to solve continuous time decision problems, it is
demonstrated in section 5 that it can be applied to any semi-Markov deci-
sion problem.

It is shown in section 5.1 that any SMD problem can be converted into
an equivalent GMP problem by an extension of the state space. The iteration
method of GMP applied to the GMP version of the problem yields then exactly
Jewell's method applied to the original problem. In section 5.2 it is shown
that any GMP problem (satisfying the model of section 4.1) can be converted
into an equivalent SMD problem. However the SMD iteration method of Jewell
applied to the converted problem differs from the GMP iteration method
applied to the original GMP problem.

The question now arises whether the GMP method is a useful alternative
to the SMD iteration method. From section 5 it can be deduced that if the
complete extension of the state space, described in section 5.1, is not
required to convert a SMD problem (which then should satisfy the GMP model
partly or completely) to a GMP problem, then the GMP iteration method
differs from the SMD iteration method. Hence the question of usefulness is
most relevant in this case, because when a complete extension of the state
space is required both methods are identical.

A first requirement to be useful will be that the method yields an
algorithm which is general enough to be applied within the class of problems
just defined. Until now this has not been the case. The application of GMP



in some examples (see [71, [9] or [3]) show that for its second policy im-
provement operation (or better: cutting operation) no general but only
special algorithms exist, which exploit the special properties of the spe-
cific problem to be solved. In section T two general algorithms for the
cutting operation are presented. One is based upon the relation between the
original cutting operation of de Leve and a special type of optimal stop-
ping problem considered in section 6. In section 7 it is proved that the
original cutting operation is equivalent to two optimal stopping problems
to be solved successively. The second cutting method differs from the orig-
inal cutting operation in that it computes no smallest optimal set but a
suboptimal set. The suboptimal cutting method reduces the required compu-
tations to such an extent that it is about as efficient as the special
devices developed in [3] and [9] which are not applicable to other problems.
In a coming publication it will be proved that both GMP algorithms converge
within a finite number of steps to an optimal strategy.

A second requirement is that the GMP algorithm is at least as fast as
Jewell's. Here again the attention is focussed on problems satisfying the
GMP model without requiring the complete extension of the state space. Com-
paring the structure of both algorithms the GMP method is probably faster
in these problems. This conjecture is supported by comparing the required
computations per step as well as by computational experience. Some numeri-

cal examples will be presented in a separate report.

2. Some notations and preliminaries

Primarily some notational principles will be introduced concerning
subvectors and submatrices. Let a and b be two N-vectors with elements
ai,bi, i=1,...,N and let P be a NxN matrix with entries pij’
i,j=1,...,N. Let J denote the set of (N) states and let A and B be two

arbitrary non-empty subsets of J. The following notation will be used.

(a)A : subvector of a with elements a; i e A.
(P)A : square submatrix of P with entries Pij’ ied, jeA.

(P),.: submatrix of P with entries p.., i € A, j ¢ B and A ¥ B.
AB 1]

The vector with elements ai'bi’ i=1,...,N will be denoted by a [ b.



Further a > b means a > b and a # b.
Secondly some useful properties of finite Markov-chains will be stated.
The NxN matrix of transition probabilities P will be called a probability

matrix. Its entries satisfy

(2.1) p.. >0

N
(2.2) Z p.. < 1.

(n)
(n) i e *d s
pij represent the n-step transition probabilities, i.e. the probability

The n-th power of P is P%. Its entries will be denoted by p . The numbers
that the state is J after n transitions if i is the initial state.

A probability matrix P is transient if its entries satisfy (1) and
(2) and moreover.

N
(2.3) max .Z pgw) < 1.

1 g=1 1J

E]

The n-th power of P, P” goes to zero for n - . Then the matrix (I—P)—1

exists and the following identity holds

v -1
(2.4) Y P" = (I-P)
n=0
with PO = I, the identity matrix.
Let H be the operator in N-dimensional Eucledian space on. an arbitrary

N-dimensional vector r defined by
(2.5) _ Hr := s + Pr

with s a given N-dimensional vector and P a given NxN transient matrix. The
operator H has a unique fixed point u given by
(2.6) w* = lim % = (1-p)”"

n->o

S.

Frequent use will be made of the following lemma.



Lemma 2.1

Let H be defined by (2.5) and its unique fixed point u be given by (2.6).
Then

* *
b. Hr >r = u >rand Hr <r = u <r

* *
c. Hr>r=u >Hr >rand Hr < r = u < Hr < r.

*
r or u =r. Reverse-

(I-P+P)(I-P) s = u*.

. n
r and 1im H'r
n>o

s + P(I-P)" s

Suppose Hr = r then by induction H'r

ly suppose r = w* then Hu" = s + Pu"

b.
q > t implies Hq > Ht hence Hr > r implies that (5%} is a non-decreasing

. n * * * .
sequence. Since H'r - u we have u > r. By the same argument: u < r 1if

r < Hr.
c.
Hr > r implies H'r > Hr for n = 2,3,... and consequently u” > Hr > r.

3. The semi-Markov decision model

3.1. The model

This model was introduced by Jewell [5], who also developed an itera-
tive algorithm to compute an optimal strategy for this model. The model is
described as follows. A system makes state transitions only at discrete
points in time among a finite member of states N. The time intervals
between these transitions are stochastic. The set of states is denoted by
J. Just after a transition to state i, say, the decisionmaker has to choose
a decision from a finite set of feasible decisions X(i). A decision

x € X(i) in state i € J specifies



(1) A probability distribution Sij(x) of the state j to which the next
transition leads.

(2) The expected length of the stochastic time interval until the next
transition: Ei(x).

(3) The expected return Ei(x) during this stochastic time interval.

We restrict ourselves to the undiscounted model. The purpose is to find a
strategy which maximizes the expected average return of this process in the
long run. Such a strategy is called optimal.

This model includes the previously developed models of Howard [4]. In
the first model of Howard the time intervals are deterministic with equal
length for all feasible decisions. In the second model of Howard the time
intervals are stochastic and have exponential distributions depending on
the decisions.

The computation of an optimal strategy can be restricted to the class
7 of stationary deterministic strategies because there exists an optimal
strategy in this class. A stationary deterministic strategy z applies the
same decision z(i) € X(i) each time the system is in state i. The policy
iteration method of Jewell which computes an optimal strategy in Z 1s sum-

marized in the next section.

3.2. Jewell's policy iteration algorithm

Let z be the strategy obtained after the (n-1)-th step. Let E(zn) and
E(zn) be the vectors with elements ﬂi(zn(i)) and Ei(zn(i)), i € J, respec-
tively and let ﬁ(zn) be the stochastic matrix with the i-th row having the

elements gij(z(i)), j € J. Then two operations are executed.

1. Value determination operation.

Solve the vectors y(zn) and v(zn) from the set of equations

y(z ) 5(zn) y(z,)

(3.1)

v(z )

0 E(zn) -y(z ) 0O E(zn) + E(zn) v(zn)-

Z
n



This set has a unique solution if in each ergodic set K(1),
1= 1,...,L(zn) of strategy z an arbitrary state i(1) is chosen unam-

biguously. For each i(1), 1 = 1,...,L(zn) we put vi(l)(zn) = 0.

2. Policy improvement operation

Compute the vectors y' and v' with elements y{ and vi defined by

y].'. = max L z Sij(x) yj(zn)]

xeX(i) Jed
and compute the set Xj(i) defined by
1 = 1 : ~ = y!
X, (1) = {x e X(1) : ] pij(X) yj(zn) yit.
Jed
Define the vector v' with elements v{, i=1,...,N by

= max [h.(x) -y @w(x)+ )} p..(x) v.(z )]
xe§1(i) * ot jeg Y J n

v!
i
Let the set X2(i) contain the decisions x ¢ X1(i) which yield v} for

each i € J, then strategy z is defined as follows. If zn(i) € Xg(i)

n+1
then take zn+1(1) = zn(l), otherwise take Zn+1(1) equal to an arbitrary
X € X2(i).
If Z 41 = 2, then z, is optimal, otherwise re-enter the value determination

operation with strategy z Within a finite number of steps, the algorithm

n+1’
converges to an optimal strategy, as was proved by Denardo [2].

L. Generalized Markov-programming applied to semi-Markov decision problems

k.1. The model and basic definitions

Generalized Markov-programming was developed by de Leve [6] for con-
tinuous time decision problems. The special generalized Markov-programming
model, which can be applied to any semi—Markov decision problem, (as will
be shown in section 5.1), is constructed as follows. Also in this model the

system makes state transitions among a finite number of states only at dis-



crete points in time. Let J denote the set of these states. A semi-Markov

process is defined which is called the natural process. This natural process

specifies

(1) A probability distribution a5 of the state J to which the next tran-
sition in the natural process leads.

(2) The expected length of the stochastic time interval between successive
transitions u, .

(3) The expected return h, during this time interval.

Just after a transition in the natural process to state i, the decision-
maker has to choose x from a finite set of feasible decisions X(i). We dis-
tinguish two types of decisions: nulldecisions and interventions. Each set

All

X(i), i € J, contains at most one nulldecision which is denoted by Xy

other decisions x e X(i), x # x. are called interventions. The nulldecision

0

X, € X(i) in state i implies that the natural process is followed at least

until the next transition has taken place. An intervention x e X(i), x # X,

in state 1 € J implies an instantaneous transformation to a stochastic

state k with probability distribution p; (x). To this transformation itself

k
a return gi(x) is associated. After this transformation the system is sub-
ject to the natural process at least until the next transition has taken
place.

A further requirement is the existence of a non-empty set Ao defined

by

AO = {ied: X, ¢ X(1i)}.

Another requirement to be fulfilled by the definition of AO is that KO con-
tains only transient states in the natural process.

A stationary deterministic strategy z € Z dichotomizes the set of
states J into a set of states AZ in which interventions are applied by
strategy z and its complement Kz in which the nulldecision is applied in

each state. AZ is defined by

A :={ieJd: z(i) #x

z o> 2(1) e X(1)} for z e Z.



The definitions of AO and Az imply

A oA for z e Z.
Z 0
Furthermore one requirement has still to be fulfilled. The state k resulting
from the intervention z(i) € X(i) for i € A, should satisfy

Plk ¢ .} = 1.
Z

The process resulting from the interventions of a strategy and the natural

process will be called the decision process

Let A and A_, be two subsets of A_ with the property that their com-

01 02 0
plements KO] and 502 contain only transient states in the natural process.
Then the matrices (Q)- and (Q)s are transient matrices. Define (k.)-
Ao Aop 0% An1

as being the unique fixed point of the operator H, on a vector r in |K01|-

1
dimensional Euclidian space.

(4.1) Hr := (h)= + (Q)= r
! o1 Aoy
and define (tO)K analogously in |E02|—dimensional space by the unique
02
fixed point of the operator
(4.2) Hor := (u)- + (Q)- r.
2 A02 AO2

The subvectors (k.) and (t.)
0 AO1 0 A02
dimensional nullvectors.

are defined to be |AO1|— and |A02|-

For each x € X(i), i € J the functions k(i,x) and t(i,x) are defined

by

(4.3) k(ix) = g (x) + ] p;(x) ky(k) - k(1)
ked

and

(L.k) t(isx) := ) pik(X) to(k) - to(i).

ked



Let k(z) and t(z) denote the N-dimensional vectors with elements k(i,z(i))
and t(i,z(i)), 1 € J respectively. For non-intervention states i € KZ it
can be shown that k(i,z(i)) = t(i,z(i)) = 0.

Let S(A) denote the non-square matrix with entries Sij(A)’ iel,
c A cJ. The s..(A) rep-

0 ij
resent the probability that j € A is the first state assumed in the set A

J € A for an arbitrary non-empty set of states A

if the natural process is followed from initial state i € A on. The matrix

S(A) is obtained from the equation
(L.5) s(a) = (Q)g, + (Q)7 s(a).

Because the matrix (I—Q)i1 exists, S(A) can be uniquely solved from (k4.5)

by

(4.6) s(a) = (1-0)7 (Q)g,-

Let P(z) denote the non-square matrix with entries p; (z(i)) for i € A, and

k
k e Kz' Let R(z) denote the square matrix of size |AZ' x IAZI defined by

(4.7) R(z) := P(z) S(AZ).

Its entries rij(z), i,J € AZ represent the probability that j is the first
future state assumed in A, if the decisionprocess of strategy z is followed
from initial state 1 € Az on.

A strategy z which maximizes the expected average return per time unit
in the long run is called optimal. Again there exists a strategy in the
class Z of stationary deterministic strategies, which is optimal. *) pol-
icy iteration algorithm based on generalized Markov-programming to perform

this computation is presented in the next section.

*)

This follows from section 5.2 which shows that any problem satisfying
this model can be converted into an equivalent semi-Markov decision
problem.
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4.2. A policy iteration algorithm based on generalized Markov-programming

Preperatory part

and t. from (4.1) and (L.2)

a. Compute the vectors ko 0

b. Compute k(ij;x) and t(i;x) from (4.3) and (4.4) each x € X(i), x # Xy

ied.

After the preperatory part the iteration cycle is entered. Let Z s
n=1,2,... be the strategies successively obtained, with initial strategy

Z Then the n-th iteration step consists of three operations executed with

1"
the strategy z_ obtained by the (n-1)-th step.

1. Value determination operation

a. Compute the matrix S(Az ) from (L4.6).
n

b. Compute the matrix R(zn) from (4.7).

¢. Solve unknown subvectors (y(zn))A and v(zn))A from the set of equa-
pA

Z
tions n n
(.Y(zn))Az = R(zn) (y(zn))AZ
(4.8) | S n
(V(zn))AZ = (k(z) - y(z) t(zn))Az + R(z ) (V(Z))AZ .
n n n
d. Compute
(v(z ))g =8, ) (y(z)),
Zn n Zn
(v(z )z =584, ) (v(z))),
Zn n Zn

A unique solution to (4.8) is obtained by choosing in each ergodic set
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K(1), 1 = 1,...,L(zn) of strategy z  en arbitrary intervention state

i(1) for which we put Vi (zn) =0, 1= 1,...,L(zn).

1)

2. First policy improvement operation

Compute the vector y(z) with elements yi(z) defined by

[ max L) pij(x) yj(zn)] for i e A,

xeX(i)\{xo} jed

max [ ) p..(x)y.(z )] for i € A_.
L xeX(i) jed 1d J n z

Compute for each i e¢ J the set X1(i) defined by
X, (1) = {x € X(1) : .. (x) y.(z) = y!1.
() () + 1m0 wy(m) = v
Compute the vector v' with elements vi defined by

v! = max [k(i,x) - y.(z) t(i,x) + p..(x) v.(z)].
xeX1(i) 1 ’ jEJ 1d J

Let Xz(i) be the set of decisions x € x1(i) which yield vi'. The strat-
egy zé is defined as follows: If zn(i) € X2(i) then take zé(i) = zn(i),

otherwise take zé(i) equal to an arbitrary decision from X2(i).

3. Second policy improvement operation (cutting operation)

Let A be any set of states satisfying A
y"(A) and v"(A) by

o < AcA,. Define the vectors

Z s..(A) y! for i € A
jeA J J
n -—
vi(4)
, .
v for 1 e A

and
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Y Sij(A) vj for i ¢ A
jeA
" =
vi(A) :
vi for 1 € A.

Let M be the collection of sets A satisfying

0 Z
and either
" f
yi(A) > yi
or
" = fl
yi(a) = y!

”" > 1
vi(A) > v

for each j € J.

* .
Compute the set A defined by
A := n A.
AeM

Then strategy zg is defined by

*
z' (1) for i e A
n
nes =
Zn(l) :

. *
X for 1 € A

If z" = z_ then strategy z_is optimal, If z" # z then take z
n n n n n n

and re-enter the value determination operation.

+1
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5. Conversion of a semi-Markov decision problem (SMD) into a generalized

Markov-programming problem (GMD) and reversely

5.1. The conversion SMD - GMP

Each SMD problem can be converted into a GMP problem by an extension
of the set of states J. However this extension is not required-in many
problems. The set of states J is extended with the new states (i,x) for
each x € X(i) and i e J. The set of states of the GMP problem J then bec

becomes
Ji=Ju{(i,x) : x e X(i), j e J}.

The natural process needs to be defined only in the states (i,X) € J \ J.

We define
Ui,x),j '~ Sij(X) for (i,x) e I\ J, j e J,
95 ,x),(k,w) = O for (i,x),(k,w) e 3\ J,
Wi 1= 8y (%) for (i,x) e 3\ J

and
h(i,x) = ﬁ'i(x) I for (i,x) e J \ J.

~

In the states 1 € J an original decision X € i(i) becomes an intervention
which implies a deterministic transformation to the state (i,x) € J \ J.

We define for i € J

X(i) := X(i)
with

1 for m = (i,x)

0 otherwise
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and
gi(x) := 0.

In each state i € J the nulldecision and in each state i € J \ J inter-

ventions are impossible. Hence

(5.1) A, = A= J for z e Z.
Because Ui %), (k,w) = 0 for (i,x) and (k,w) € A, we have
(5.2) (@) = o.
0
We take AO1 = Ay, = AO. Then by (4.1), (4.2) and (5.2) it is easily estab-

lished that

(5.3) (kO)K01 = (ko)ﬁo = (h)ﬁo
and
(5.4) (to)ﬁo2 = (to)!—\0 = (u)f*o'

From (4.3), (5.3) and the definition of h(i %)
2

k(ix) := h(i,x) = ﬁi(x)

and from (L4.4), (5.4) and the definition of U5 ox)

t(izx) := u(i,x) = ui(x)
for x e X(i), 1 € Ao. So we have for each z € Z

(5.5) (k(z)), =h(z); (k(z))g =0
0 0

and
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(5.6) (¢(z)), =ulz); (s(z))g =o.
0 0

Because of (L4.6) and (5.2) we have

(5.7) s(a.) = (Q)5
0 AOAO
and because of (L4.7) and (5.7) we have

(5.8) R(z) = B(z).

Then (5.5), (5.6), (5.7) and (5.8) imply that the set of equations

(v(2)), =R(z) (y(2)),

0 0

(v(2)), = (k(z) - y(z) D t(z)), *R(z) (v(2)),

0 0] 0

is equivalent to the set of equations of the SMB iteration method given in
section 3.2. The y(i’x)(z) and v(i’x)(z), (i,x) € A, are also computed in
the GMP value determination operation by means of

y(i’x)(Z) = _EA yj(Z) = 7 p..(x) y.(z)
JeA,

q(i’x)9j

and

Y op..(x) vj(z).

v(i,x)(z) = .z Ui ,x),j vs(z) jehy ij

dJ
0
This computation is implicitly executed in the SMB policy improvement
operation. The second policy improvement operation of the GMP method is
superfluous because each strategy has the same intervention set A_ accord-

0
ing to (5.1). Hence we may conclude two things

1. The conversion of a GMP problem to a SMD problem can always be done.

2. The GMP iteration method applied to the converted problem and the SMD
iteration method applied to the original problem yield equivalent al-

gorithms.
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5.2. The conversion GMP - SMD

In the conversion SMD - GMP the extension of the state space was

needed to dichotomize an SMD decision into an intervention immediately

followed by a nulldecision. Here we have to unite an intervention and the

nulldecision in the stochastic state k just after the intervention to a SMB

decision. No extension of the set of states 1s needed so we define

Also the sets of feasible decisions remain unchanged

For each x € X(i) we define for i,j € J and x e X(i)

(5.9)

(5.10)

(5.11)

X(i) := x(i)

Gi(x) :

ﬁ.(x)

~

E Dy (%) a5

for i

x #

The two operations of the SMD iteration method expressed in

notation of the GMP model then become

the original
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1. Value determination operation

Let z be the current strategy. Solve the set of equations in y(z) and

v(z) given by

(e = (@ )y + (g, (la)), .

(v(2)), =P(z) (@7 (y(z))5 *P(a) (@ , (y(z)),
Z Z Z 2 Z Z

(V(Z))K (h-y(z)0u); + (Q)K (V(Z))K + Q) 4 (V(Z))A R
Z Z Z zZ Z Z hA

g(z) + P(z) (b-y(z)Ou); +

'(V(Z))A
Z Z

+P(z) (@ (v(z))y +Rz) @, (v(z)), .
Z Z Z Z Z

2. Policy improvement operation

Compute the vector y' with elements yi, defined by

y! = max[ max [ ) p, (x) Z a, . y.(z)1, z q.. y.(2)1
: xeX(i) keJ 1k Jed kJ *J jed 13 74
x#xo _
: for i € Ao,
y!' = max [ Z p.. (x) Z q. . y.(z)] for i € A_.
1 xeX(i) ked ik jed LI 0

Compute the set X1(i) defined by

.x1(i) = {x € X(i) : max[ max [ } pik(x) jéJ s yj(z)],

xeX(1i) keJ
x#xo
= y! ] A
, Z q 5 yj(z)] yi} for i e Ao

Jjed

and
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Xj(i) i= {x e X(i) : max [ Z D.

xeX(1) ked lk(X) Z qkj yj(z)] B yi}

jed
for 1 € AO.

Compute the vector v' with elements v{ defined by

(5.12) v! := max[ max [q.(x) + )} p. (x) {h - y! + ) q . v.(z)]},
* xeX1(i) 4 ked ik hk 1 x jed k) J

x#xo

. =yl u. + .. i
»h -y!u L oq; e X(i)

v.(z)] if x
1 .j€J J J

0
and

(5.13) v := max [g.(x)+ ] p, (x){h -yl u + } q.v.(z)}]

1 xeX1(i) 1 ked 1k hk k “k 5T kJ J
otherwise. Let X2(i) be the set of decisions satisfying (5.12) or (5.13)
for state i. Then the next strategy is defined in the same way as in

section 3,2.

By these results two conclusions can be drawn.
1. The conversion of a GMP problem to a SMD problem can always be done.

2. The SMD iteration method applied to the converted problem and the GMP
iteration method applied to the original GMP problem yield different
algorithms.

Among the most remarkable differences are the device of the functions
k(i,x) and t(i,x), the value determination operation and the absence of the
second policy improvement operation (cutting operation) of GMP in the

resulting SMD iteration method.

6. A special type of optimal stopping problem

6.1. The model

The special type of optimal stopping problem to be considered in this

context i1s defined as follows. Let Q be the matrix of transition probabil-
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ities of a finite Markov-chain. Each state of the chain i € J is either
transient or absorbing. At least one state is absorbing. In each state i

a decision has to be chosen from a set X(i) of feasible decisions. At most
two decisions x, and x, are feasible. If the decision X,y € X(i) is applied
then the probability distribution of the state assumed after the next
transition is given by the i-th row of the matrix Q with entries qij satis-
fying .ZJ qij = 1 and O i-qij <1 for j € J. In this case no return is ob-
tained?elf the decision X, € X(i) is applied then the system remains in
state 1 and an average return W, per time unit is obtained. The following

sets of states are defined.

(6.1) Ad ={iedJ: X(i) = {XO’X1}}’
(6.2) A, := {ied: x(i)= {xo}},
(6.3) AS = {iedJ: X(i) = {x1}}.

The set As contains the absorbing states of the original chain and is
assumed to be non-empty. The goal is to find a strategy which maximizes

the expected average return for each state i € J. Such a strategy is called
optimal.

This type of optimal stopping problem is a special type of a Markov
decision problem with a finife state space and finite decision sets. Because
a stationary deterministic strategy is optimal over the whole class of
randomized history remembering strategies the computation of an optimal
strategy can be restricted to the class Z of stationary deterministic strat-
egies. Any strategies z € Z dichotomizes the state space J into two comple-
mentary sets: a stopping set to be denoted by B(z) and its complement the
continuation set B(z). The definitions (6.1) ... (6.3) imply that B(z) o A

and B(z) 2 Ac for any z ¢ Z.

An optimal strategy z. can be computed by the policy iteration method

0
of Howard. Because for each strategy z € Z the states i € B(z) are absorbing

and the states i € B(z) are transient only the yi(z), i € J, have to be

used. For notational reasons we shall write fi(z) instead of yi(z). The
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. . . *
unique maximum expected average return vector will be denoted by f and

satisfies the following functional equation

z q. . £ ieA
jed 1 J ¢
* * B
(6.4) £. =9 max[wi, ng % 5 fj] iehy
L v 1€ AS.

Let the sets B; and B: be defined by

* *
6. B, :=1{i€eA, : .. f. <w.} U A
(6.5) 1 a jZJ a5 T3 < w;)
and
* . *
(6.6) BS = {1 € Ad : ng qij fj < Wi} U As'

BI and B: are easily identified as the largest and the smallest optimal

stopping set respectively. Note that for i e BI n Kc we have

*
z Q.. £. > w..
jeg td I *

6.2. A policy iteration algorithm

Suppose at the n-th iteration the strategy z, with stopping set Bn is ob-

tained. Perform the following two operations:

1. Value determination operation

Solve the vector f(zn) from the set of linear equations

]
=

f.(z ) for i e B
1 n n

£.(z ) .z % 5 fj(zn) for i ¢ B .

Jed
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2. Policy improvement operation

Compute f{ for i € J defined by

r‘m.alx[wj.., ) a

f.(z )] for i € A
jed . n

ij

vfi(zn) for i e Ad'

. Y . . .
If f} fi(zn) then take Zn+1(1) Zn(l) otherwise take Zn+1(l) equal

to the decision which yields f{.

If Zn+1(i) = zn(i) for i € J then z is optimal, otherwise re-enter the

value determination operation.

6.3. A proof that the policy iteration algorithm yields an optimal stopping

set within a finite number of steps

In this section let z and z' be two successive strategies at any step

of the iteration with stopping sets B and B' respectively.

LEMMA 6.1.

At each step of the Lteration we have either £l > fi(z) or z'(i) = z(i)

for each i € J.

PROOF

For i e Ad‘with z'(1) # z(i) we either have

(z) = £.(z)

' =
fp=v; > I a5y i

jed
or

f! Y} oa.. £.(z) > £.(z) = w..
17 ey 1373 i i

In all other cases we have z'(i) = z(i). *
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LEMMA 6.2.

Two successive strategies z and z' satisfy either £(z') > f(z) or z' = z.

PROOF

Suppose the set B n B' is nonempty, then for i ¢ B n B'

(6.6) fi(z') W, > fi(z) = ) % 5 f (z).

jed

Also we have for 1 € B n B!

I
<
i
o
N
N

(6-7) fi(z') -

From (6.6) and (6.7) follows (f(z'))B, > (f(z))B,. Suppose the set B n B'

is nonempty then for i € B n B'

(6.8) £} = JZJ a; fj(z) > W, = fi(z)

Also we have

= . . i ‘B'.
f.(z) ) a4 fJ(z) for i € Bn B

(6.9) f!
* Jjed J

Hence from (6.8) and (6.9),and because in any case f(z'))B, z_(f(z))B,

(6.10) (£')gr = (g7 (£(2) (£(z"))g, > (£(2))g7 -

B+ Qg

By the value determination operation applied on f(z') we have

(6.11) (£(z")g7 = (@57 (£(z'))g7 + (Q)grg, (£(z"),

B'B'

Lemma 2.1 applied on (6.10) and (6.11) with u" = (£(z' )5, = (£(2))g57
s = (Q)grg (£(z'))y, and P = (Q)37 implies

(£(z'))gr > (£(2))g7 -
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If z' # z then either B n B' or B n B' or both are nonempty, implying
f(z') > £(z). *

THEOREM 6.1.

The policy iteration algorithm of section 3.1 converges within a finite
number of steps to a strategy z, satisfying
z = z

o

which is optimal.

PROOF

At each step the expected average return f(z) of the current strategy z

with stopping set B satisfies

(2(2))g = (@) (£(2))5 + (g (£(2))y

(6.12)

(f(Z))B (w)g-

The solution to (6.12) is unique because (Q)ﬁ is a transient matrix. At
each step we have f(z') > f(z) for strategy z and its successor z', except
at the terminal step. These two facts imply that no previously obtained
strategy may turn up again before a strategy z, satisfying z} = 2z, is ob-

. . . . A .
tained. Because 7 contains a finite number (= 2I dl) of strategies the

strategy z is obtained within a finite number of steps. Because z§ = zg

strategy z, satisfies
(6.13) (@5 (£zg))g + (Q)gg (£(z))g < (£(z.))5
(6.11) (w)g < (£(z )y

for any stopping set B satisfying As cBc Kc' Let z be the strategy with
stopping set B then (f(z))ﬁ satisfies (6.12). Lemma 2.1 applied on (6.12)
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and (6.13) yields
(2(2))5 < (£(z)))5.
This together with (f‘(z))B = (W)]3 < (f(zo))B implies
£(z) < f(Zo) for z € Z
or equivalently z, is optimal. *

. « e, * *
It is clear from the definitions (6.5) and (6.6) of B, and B_ that any
optimal strategy 2" with stopping set B* satisfies

(6.15) B

The policy improvement operation of section 6.2 can be simplified by the

following lemma.

LEMMA 6.3.

Let B denote the stopping sets of the successive strategies z s n=1,2,...
obtained at the successive steps of the policy iteration algorithm of sec-
tion 6.2. Let B, = Kc be the initial stopping set and let m > 1 be the in-

Bm+1 . Then

teger for which B,

(a) B ,,<B for1<n<m,

1
(b) B = B;, the largest optimal stopping set.

PROOF

(a)

Suppose that at the n-th step a state i ¢ Ad satisfies 1 € Bn n §n+1' Then

v = filz) < ] q

.. £.(z) forieB nB .
jed 1J J n n n+1
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For the successors of z.n the strategies z , k = n+1,n+2,... we have for

_ k
1€ Bn n Bn+1

(6.16) jZJ % 5 fj(zk)

v

Y a.. £.(z ) > w.
jeg 1d 7dm i
or equivalently i € Ek for k = n+1,n+t2,... . Hence a state which is thrown

out of the stopping set at any step does not return to the stopping set any-

more. Hence if m > 1 then
B o B for 1 <n<mn

which states the nesting of successive stopping sets.

(v)
According to (a) there exists for each i ¢ Em n AC an integer n, 1 < n <m

satisfying

(6.17) £;(z,) = jZJ a5 £5(z) 2 T aps £i(z) > wy

The optimality of B and the definition of B; imply Bm c BI. On the other
hand the strict inequality in (6.17) and the definition of B; imply that

*

= * . .
Bm n B, 1s empty or equivalently Bm =} Bl

Hence B = B-. *
1 m

1
By lemma 6.3 the policy improvement operation of section 6.2 can be

simplified by computing f{ only for i € Bn nA_. fi is then defined by

d

mawai, ¥ a; 5 fj(zn)] for 1 € B n A4

Jjed J

£.(z ) otherwise,
i‘“n

if one starts the iteration with Kc as initial stopping set.
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T. Two algorithms for the cutting operation of generalized Markov-program-

ming.

T.1. An algorithm for the original cutting operation

In this section we present an algorithm for the cutting operation of
generalized Markov-programming which consists of solving two optimal stop-
ping problems successively. Also in this section it will be proved that
this algorithm yields the set A¥ of section 4.2 which is the goal of the
original cutting operation defined by de Leve [6]. The algorithm consists
of the following two optimal stopping problems to be solved by the policy

iteration algorithm presented in section 6.2:

1. Optimal stopping problem I (OSP I)

Solve the optimal stopping problem applied to the imbedded Markov chain

of the natural process with

a. A :=A

s 0
b. A :=14,
= c z
o= ! ;
(B LERR R 2] for 1 € Az"

This yields an optimal stopping set B*(y‘). Determine the largest and
the smallest optimal stopping set, to be denoted by B;(y') and B:(y')

respectively.

2. Optimal stopping problem II (0OSP II)

Solve the optimal stopping problem applied to the imbedded Markov chain

of the natural process with

*
.= '
a. AS : Bs(y )
*
o= '
b. A, :=B(y')
c. w. :=v! forieA,.
= i i z

This yields an optimal stopping set B*(v'). Determine B:(v') and B;(v')

which are respectively the smallest and the largest optimal stopping set.



27

The following theorem states the equivalence of the original cutting opera-

tion with these two optimal stopping problems.

THEOREM T.1

*
Bs(v') = n A.
AeM

To prove this theorem we pfove first three lemma's.

LEMMA T.1

Let A be a set of states satisfying AO c A c J. Let the vector w be a vector
in |A|-dimensional space and let f be a vector in |J|-dimensional space
defined by the unique solution of the set

f. = Z q.. T. ieh
* Jjed 13 J
f. = w. ieA
1 1

then f is also the unique solution of
£f. = ) s..(A) w, ieh
tojeg Y J
f. = w. , ieA
1 1

and reversely. (See section 4.1 fbr the definition of the probabilities
Sij(A))'

PROOF
We only need to show that (f)ﬁ satisfying
(7.1) (£)5 = (V7 ()7 + @5, (),

is the unique solution of
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(1.2) (£)g = s(a) (w),

and reversely. Because (I-Q)i1 exists we can solve (f)ﬁ uniquely from (7.1)

and obtain

(7.3) (£)3 = (-9 (Qg, (),

Relation (4.6) together with (7.3) yield (7.2) and (7.2) with (L.6) yield
(7.3) implying (7.1). *

LEMMA T.2

Let M be the collection of sets A defined in the original cutting operation
of section 4.2 and let A be the intervention set of strategy z' obtained
by the first policy improvement operation then

A, e M.
z

PROOF

We have (referring to section 4.2)

n
<

yi(A )
(7.4) for i e Ay
VE(AZ,)

n
4‘

Because yv! > y. and v! > v. fori eA , andy! =y. and v! = v. for i e A
yi 23 i— 1 z' I3 I3 i 1 Az'

we have

yi=y. = )} a.y.< ] a.y!
i 1 e 1373 = 5¢5 1375
(7.5) for i € A,
vl =v. = z Q.. V. < z Q.. v!
i 1 seg 1 d 7 e T

On the other hand by the definitions of y"(A) and v"(A) and lemma 7.1 we

have
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n n
yi(a ) = 1 a..yUA )
iz jeg H iz i
(7.6) for i e A ,.
" - "
vi(AZ') = 2 q.ij vj (AZ')

Jjed

Lemma 2.1 applied on (7.4) and (7.6) implies

v
e

vi(A ) >
(7.7) for i e KZ,

" > v!
v1(Az') Z vy

(7T.4) and (7.7) imply that all conditions for Az' to be a member of the

collection M are satisfied.

LEMMA T.3

*
1
Bs(v ) € M.

PROOF

Because B:(v') is optimal for OSP II and OSP I and because of lemma T.2 we

have
yI(BL(v')) > yi(A_)) > !

(7.8) for i € Kz"
vI(BL(v)) 2 vi(a_,) > v!

The optimality of B;(v‘) for OSP I and OSP II implies

(7.9) yI(BL(v) > y! | for i e B)(y') n A,

and
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yI(B (v) = v!

(7.10) for i e B:(v') n Bz(y').

Wen¥F o 1
VB () 2 v

The definitions of yg(B:(v')) and vi(B:(v')) imply

]
>
o=

yI(B(v"))

(7.11) for i e B:(v')

v!

vi(By(v')) = v

(7.8) ... (7.11) with Aj < B:(v') <A, imply B:(v') e M.
THEOREM T.1.
B*(v') = n A
S AeM
PROOF

By lemma 7.3 B:(v') € M. Suppose A n B:(v') nonempty for some A € M. Then
by the optimality of B:(v') for OSP I and OSP II we have

: "(a) = oy .y (B (v !
(7.12) v (A) sz a5 v5(8) ijZJ a5 V5B (v1) < v}
and
(7.13) vi(a) = ] a i viA) < ] ap vI(BL(v')) < !

for i € A n B:(v'). (7.12) and (7.13) imply A ¢ M, a contradiction. Hence
An B:(v') is empty for A € M and consequently A 2 B:(v') for A € M.

T.2. Suboptimal cutting

In the preceding section an algorithm has been developed which yields
the smallest stopping set which is optimal for OSP I and OSP II. By theorem
T.1 this set is equivalent to the set A" which is the goal of the original
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cutting operation of generalized Markov programming. In this section we
propose a procedure called suboptimal cutting which differs from the orig-
inal cutting operation but is more attractive from a computational point of
view. The goal is then to compute a stopping set which is a member of the

collection M but not necessarily optimal for OSP I and OSP II.

Definition T.2.1.

Let B and C be two stopping sets satisfying As B, C c Kc and let w be the

C
return vector with elements Vs defined for i € Kc. Let f(B) and f(C) denote
the expected average return vectors for B and C respectively. If f(B) > £(C)
with fi(B) > fi(C) for at least one i ¢ Kc then we call B better than C with
respect to w. If f(B) = f(C) then B is called equivalent to C with respect

to w.

The algorithm of section 6.2 yields a stopping set at each non-terminal
step which is better than its predecessors by lemma 6.2. If we start the

iteration with B, = Kc and apply one policy improvement step then the re-

]
5 is already a better stopping set than B1 = Kc with respect
to w if Kc itself is not optimal. If Kc is optimal then BI =
to the definition of B; and no better stopping sets can be obtained. This

procedure to compute a better (or if no one exists an equivalent) stopping

sulting set B

Kc according

set with respect to w is used in the following

Suboptimal cutting algorithm

1. Suboptimal stopping problem T

Apply one policy improvement operation to the imbedded Markov-chain of

the natural process with initial stopping set Kc and

a. A :=A

=1

b. A = '
= c z

o
=

. :=y! forieAA,.
i Ii z'

This yields a stopping set B(y') which is better than or equivalent to
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AZ, with respect to y'. Determine the largest and the smallest stopping
set denoted by Bl(y') and Bs(y‘) respectively which are equivalent to
B(y') with respect to y'. Note that the computation of y"(B(y')) is re-
quired to obtain Bl(y') and Bs(v').

2. Suboptimal stopping problem IT

Apply one policy improvement operation to the imbedded Markov-chain of

the natural process with initial stopping set Bl(y') and

.= 1
a. A Bs(y )

.= 1
b. Ac : Bl(y )

.= : 1
c. w, i=v, forie Bl(y ).

This yields a stopping set B(v') which is better than or equivalent to
Bl(y') with respect to v'.

A proof that the GMP iteration method with either cutting algorithm con-
verges to an optimal strategy within a finite number of steps will be pre-

sented in a coming publication.
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