39
-

stichting

mathematisch

centrum MC
-AFDELING MATHEMAT | SCHE BESL|SKUNDE BW 25/73 JULY

B.J. LAGEWEG
AN ALGORITHM FOR A MAXIMUM WEIGHTED
COMMON PARTIAL TRANSVERSAL

&

e
g
.

2e boerhaavestraat 49 amsterdam

BIBLIOTHEEK MATHEMATISCH CER KM
AMSTERDAM

Printed at the Mathematical Centre, 49, Ze Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
profit institution aiming at the promotion of pure mathematics and its
applications. 1t is sponsored by the Netherlands Government through the
Netherlands Onganization §or the Advancement of Pure Research (Z.0.0),
by the Municipality of Amsterdam, by the University of Amsterdam, by
the Free University at Amsterdam, and by industries.

AMS(MOS) subject classification scheme (1970): 05B40, 90C35

Table of contents

Abstract

Introduction

Description of the algorithm

Construction of an augmenting path

Proof of correctness and efficiency

A common partial transversal of maximum cardinality

Computational aspects
References

Appendix: ALGOL-procedure

page

12
19
22

25

26

0. Abstragg

An efficient primal-dual algorithm is presented for determining a common
partial transversal of two families of sets, maximizing the sum of the
weights of its elements. The problem is a generalization of the linear
assignment problem and a specialization of the problem of determining a
maximum weighted common independent set of two matroids. An algorithm for
determining a common partial transversal of maximum cardinality is inferred

from the former one.

1. Introduction

E = {e],...,ek,....,ep} is a finite set of elements. Let element e, have

a real valued weight ¢, . The weight of a subset F ¢ E is the sum of the

weights of the elementg of F. Let A = (A1’°"’Ai""’Am) and

B = (Bl"°"Bj""’Bn) be two families of non-empty subsets of E.

A subset F of E is called a tranversal of family A if F consists of m
distinct elements of E, one from each set Ai‘ F is a partial transversal

of A if F is a tranversal of a subfamily of A. A common partial transversal
of A and B is a set which is a partial transversal of both A and B.

The subject of this report is: determine a common partial transversal of

A and B with a maximum weight.

An example of the problem is the following. £ is a set of jobs, each to be

processed during one time unit. The weights c, indicate the priority of the

k
jobs. Ai is the set of jobs that work party i is qualified to process. Bj
is the set of jobs that can be processed on machine j. A maximum common
partial transversal provides a set of jobs with maximum total priority,

each job processed by a qualified work party on a suitable different machine.

It is wellknown that the partial transversals of family A are the indepen-
dent sets of a matroid on E, a so-called transversal matroid. An efficient
algorithm for determining a partial transversal of A with maximum weight
therefore is the greedy algorithm [3].

The subject of this report is how to find a maximum common independent set
of two transversal matroids. The more general problem of finding a maximum
common independent set of two matroids, without restrictions on the kind of
matroids involved, has been solved efficiently by Edmonds [2] and Lawler
[6]. Some special classes of the latter problem have been solved efficient-
"1y also, e.g. the problem of constructing a maximum weighted directed tree
in a directed graph, equivalent to finding a maximum common independent set
of a graph matroid and a special transversal matroid (Edmonds [1]).

We here present an efficient algorithm for the maximum common partial
transversal problem. If the subsets of family A are mutually disjoint, and

the same holds for family B, the problem reduces to the linear assignment

problem and the algorithm simplifies to the Hungarian method [4][5].

In section 2 a linear programming formulation of the problem and its dual
are used to state optimality conditions. The algorithm starts with con-
structing an initial primal and dual solution. The algorithm then searches
for improved primal solutions given the dual solution, until no better omne
is found. In that case an improved dual solution is constructed given the
operative primal one and the algorithm restarts searching for primal im-
provements. In section 3 this process is described as a search for an
augmenting path in a directed tree, growed by means of a labelling process.
Section 4 provides the proof of the method, in particular concerning its
efficiency. In section 5 the case ¢ = 1 for all elements of E is treated,
i.e. an algorithm for determining a common partial transversal with maxi-
mum cardinality is derived from the preceding sections. Section 6 finally

deals with details of the implementation of the algorithm and lists some

computational results.

2. Description of the algorithm

We associate with the common transversal problem a graph G as follows: the
vertex-set of G consists of the subsets A = {ai | Ai eA},

B = {bj | Ej e B}, EA = {eak | e, € E} and EB = eb, | e
D(G) of G contains an edge (eak,ebk) for k = 1,...,p, an edge (ai,eak) for

each ek € A.i and an edge (bj’ebk) for each ek € Bj'

€ E}; the edge-set

Fig.l: An example of graph G.

Definition. A set of edges M of the graph G is called a matching, if
1) at most one edge of M is incident to vertex x, for each
x € AU B;
2) if any edge of M is incident to ea ¢ EA (ebk € EB), then
exactly two edges of M are incident to ea, (ebk), one of which

is (eak,ebk).
We shall denote the set of vertices of G, incident to a matching M, by Mv'

If we assign weight c, to edges (eak,ebk) and weight zero to the other

k
edges of G, the maximum common partial transversal problem clearly is
equivalent to finding a matching (in the sense of the above definition)

with a maximum weight in G.

We also can formulate the transversal problem as a zero-one linear pro-

gramming problem. Let a variable xijk be one if element e, € E links sub-

set Ai of family A with subset Bj of family B, and zero else. The i.p.-

formulation of the transversal problem reads:

(1) Maximize E 2 z e X
k=1 ilkeA, jlkeB. 1]
1 J
subject to:
, X.op £ 1,1 =1,,,.,m,
keA. jlkeB. 13k
1 J
X... <1 = l,000,0,
R T
j i
z E X... £1, k=1,...,p.
ilkeA, jlken, 13K
1 J
(2) X ik 20, 1i=1,.,..,m
j = 1l,...,n3
k=]’...,p.
(3) X,. integer, 1 = 1,...,m;

ijk
j = 1l,...,n3

k=1,cee,pPs

A solution (X{jk) of (2) - (3) corresponds with a matching M in the graph

G and vice versa:

Xijk =] &= (ai,eak) € M, (eak,ebk) e M, (ebk’bj) e M,

The dual problem of linear programming problem (1) - (2) reads:

m

n
(4) Minimize ; u, + ; v, + E W
i=1 ' 3= k

subject to:

u, + Vj + W > L’ k=1,.0.,p;

il ke A.;

i

j 1 ke Bj.
(5) < uiZO, is=],...,m.
vj 20, j=1l,iee,n,
vy 20, k=1,.0.4pP-

AN
The duality theorem of linear programming says, that a solution (xijk)
satisfying (2) is optimal if and only if a solution (ui,vj,wk) satisfying
(5) exists such that the criterion values (1) and (4) are equal. Assuming

(xijk) satisfies (3) also, there is a matching M with vertex set Mv cor-

responding with (xijk)' The equality of the criterium values holds iff:
(6) xijk > 0 =— u, + vj + Wi = ¢
(7) u. > 0= a. e M
i i v
(8) v, > 0=—= Db, e M
j i v
(9) vy > 0 =—> (eak,ebk) e M.

Thus we can solve the maximum common partial transversal problem by finding
a pair of dual solutions (xijk) and (ui,vj,wk) satisfying the optimality
conditions (2), (3), (5), (6), (7), (8) and (9).

The algorithm starts with solutions violating only some of the conditions

(7):

M= (= (x) = (O).
u, = max {0, max c } , 1= 1,.0.,m.
. keA. k
P4 1
vj = 5] = lyeea,n,
W, = 0 s k= 1,.0.,D.

During the execution of the algorithm the conditions (7) are fulfilled one
by one, and that by constructing an augmenting path in G, while any once

satisfied condition remains satisfied,

Let S and T be sets of edges of G. We define the complement §(T) of S with

respect to T as
S(T) = (SuT) \ (SnT)),

i.e. edges of T, not yet belonging to S, are added to S and the other edges
of T are removed out of S.
A path P = (xo,...

(xi,xi+]) is an edge of G and each vertex of G occurs at most once in P.

,xr) in G is a sequence of vertices of G such that

A path P of the form (XO""’xr—l’ai) is called an augmenting path (AP) for
a matching M, if ﬁ({(xo,x]),...,(xr_],ai)}) satisfies all optimality con-

ditions so far satisfied and in addition condition i of (7).

By constructing AP's successively ending in 33,500 and a s the algorithm

2
will reach a pair of optimal solutions (Xijk) and (ui,vj,wk), and thus an

optimal solution of the transversal problem,

3. The construction of an augmenting path

Let we have at our disposal a dual solution (ui,vj,wk) and a matching M,

corresponding with an integer solution (x..,). The pair of solutions satis-

fies all optimality conditions except som:Jgf 7). a, is a vertex of G
which violates (7), i.e. uy > 0 and a, ¢ Mv' If there is no such a vertex,
the present matching is optimal and the algorithm ends. Else a, becomes the
root of an arborescence, i.e. a directed tree, a part of which finally is
meant to result in an AP,

Before describing the construction of an AP we need one more definition.

. Definition. An edge (ai,eak), resp. (eak,ebk), resp. (ebk’bj) of G is
called admissible with respect to a dual solution (ui,vj,wk),
if there is a path (ai,eak,ebk,bj) in G, such that

+ + = .
us vj Wi =

Each edge of an AP belongs to a matching - either M or M({AP}) -, which we
want to satisfy the conditions (6). Henceforth, only admissible edges are

candidates for inclusion into an arborescense.

INITIALIZE
LABELLING
PROCES
CHANGE
DUAL .
VARIABLES
NO AP? YES AUGMENT

\\\\\V///// MATCHING

Fig.2. The construction of an AP

We now can describe the construction of an AP and the subsequent augmen-

tation of the matching (fig. 2). Firstly a labelling process grows an arbores-

cence rooted at ag. When an AP is met during the labelling process, the la-

belling halts and a new matching is found by taking the complement of M with

respect to AP, If the labelling process ends by exhaustion, the growed
arborescence has a maximum number of edges given the present dual solution.
Now the values of (some of) the dual variables are changed, in that way
that the labelling process can be continued, restarting from the arbo-
rescence growed before. After a finite number of changes of the dual vari-
ables the arborescence will contain an AP.

The labelling process below assigns labels to the vertices of G. The state
of a vertex is either labelled or unlabelled. Two vertices are in the same
state if they are both labelled or both unlabelled. Else they are in a

different state.

We now state the algorithm for constructing an augmenting path, ending in
ag
LABELLING PROCESS:

Ll: 1Initialize all vertices of G as unlabelled and unscanned. Assign to

a, label [01].

L2: Select a labelled, unscanned vertex Xx.
If there is no such a vertex the arborescence is maximal with regard
to the present dual solution: go to DUAL VARIABLE CHANGE.
Vertex x becomes scanned; if x € A go to L3;
if x € EA go to L4; if x € EB go to L5;
if x € B go to L6.

L3: Let x = a.. If u, = 0, an AP has been found, starting in a;: 8o to
BREAKTHROUGH.
Assign 1label [i] to all unlabelled vertices ea ¢ EA, incident to an
admissible edge (ai,ea).

Go to L2.

L4: Let x = ea, . If ea, is matched, assign then label [k] to the match
of eak in A, i.e. to vertex a; € A such that (ai,eak) e M.
Else assign label [0] to vertex eb

Go to L2.

ko

10

L5:

16:

DUAL

Dl1:

D2:

D3:

D4:

D5:

Let x = ebk. Assign label [k] to all unlabelled vertices b € B, in-
cident to an admissible edge (ebk,b).
If ea, unlabelled and w

Go to L2,

e 0, assign then label [0] to ea, .

Let x = bj' If bj is unmatched, an AP has been found, starting in
bj: go to BREAKTHROUGH.

Assign label [j] to the match of bj in EB, i.e. to vertex ebk € EB
such that (eb bj) e M,

Go to L2.

k’

VARIABLE CHANGE:
Compute d, = min {ui | a, labelled}.
i
Compute d2 = min {(219) {u.+v.+wk--ck | (ai,eak) e D(G),
2] (ebk’bj) € D(G),
ea, unlabelled ,
ebk and bj in the same state}
| ai_labelled}.
Compute d3 = min {wk | ea unlabelled, eb, labelled}.
Compute d, = min {min {v. | (eb, ,b.) € D(G), b. unlabelled}
o oy 3 k*7] i
- m;n {vj | (ebk,bj) e D(G), bj labelled}
}ebk labelled}.

d = min {d]’dz’d3’d4}'

Change the dual variables: if (ui,vé.wé) denote the dual variables

after the change, then:

u, - d > a; labelled
u! = {
t u, , else,
v, +d , b. labelled
vi= (]]
] V. , else.

D6:

D7:

Determine
labelling

vertices:

1. Ifd=4d
r

minimum d

T

2, Ifd=4d
T

is assumed

Go to L2,

BREAKTHROUGH :

11

v, * d > eay labelled, ebk unlabelled
w -d > ea unlabelled, ebk labelled
W > eay and ebk in the same state.

the vertices of G which are starting-points for a further

by transferring them into the collection of unscanned

each labelled vertex ai

0
is assumed in Dr (r = 1,2);

such that for i = iO the

each vertex ebk » such that for k = k
0
in Dr (r = 3,4).

the minimum d
0 T

Construct the augmenting path by running back in the growed arbores-

cence from the breakthrough-point a, or bj into the reverse direction

of the edges of the arborescence until the root a

g0
go

g0

go

Determine

belonging

from a vertex ebk € EB to { bj
e

from a vertex eak e EA to ai
e

0 is reached, i.e.:

from a vertex b € B to ea, if label bj = [k];

1f label ebk

ak if label ebk

= [il, 7 > 03
[0J;

if label ea = [il, i > 0O,

bk if label ea, = [07;

from a vertex a € A to ea,, if label a = [k], k > O,

k
else stop.

the new matching by removing the edges of the AP, already

to M, out of M, and adding the other edges of the AP to M,

12

4, Proof of correctness and efficiency

Firstly we prove some properties of the change of the dual variables (DVC),
among others that a DVC does not violate any already satisfied optimality
condition, Afterwards we show that an AP is known after the execution of
finitely many DVC's. The correctness and finiteness of the algorithm im—

mediately follow,

We start with a trivial observation. Let u, + vj + w2 for each path

> c
k k

(ai,eak,ebk,bj) of G. If a, is incident to the admissible path

(ai ,eak,ebk,bj), more precisely, if a, is incident to the admissible edge

(ai ,eak) and u, + vj W, = Cps then 0

O L
u, = min {ui | (ai,eak) e D(G)}.
0 i

The dual variables u. of all vertices a; € A, adjacent to a vertex ea, by

an admissible edge, are equal. Likewise, if b. 1is incident to the admis-

J
. 0
sible path (ai,eak,ebk,bjo) then
v. = min {v. eb, ,b.) € D(G)}.

Lemma 1: If an edge (ai,eak), resp. (ebk,bj), of G belongs to M, then the

vertices a; and ea,, resp. eb, and bj’ are in the same state.

k

Proof: If ea, has received a label, then also a; (see L4). No matched

vertex in A can receive a label unless his match in EA previously

received a label.

b.).

A similar reasoning proves the lemma with respect to (ebk, ;

Lemma 2: A DVC does not violate any optimality condition already satisfied.

Proof: The optimality conditions (2) and (3) are independent of the dual
solution. Conditions (7), (8) and (9) are easily checked: a DVC
makes no u, positive (7); vj becomes positive only if bj is
labelled, but then bj € MV (8); Wy

labelled and ebk unlabelled, but then (eak,ebk) e M (9).

becomes positive iff ea, is

13

The change of the dual variable v

due to the state of ea, and the change due to eb

can be split up in the change
K Lemma 1 implies

that if x.. > 0 then a. and eak are in the same state, and eb
1jk i k

and bj also. If the two vertices, incident to an edge of G, are in
the same state, the changes in the corresponding dual variables,
due to the state of those vertices, are zero or equal in absolute

value with opposite sign, so their sum is zero. Hence if Xijk > 0,

the resulting change of u + vj + w,. 1is zero and (6) is not vio-

k
lated.

us and W do not become negative by a DVC because of D1, D3 and

D5. The remaining check concerns the nonnegativity of

K i on each path (ai,eak,eb

the change in u, + vj +w

k’
in the change due to the states on

u. + v, +w,_-c b.) of G. We split u

1] J) p P
k
(ai,eak) and the change due to the states on (ebk’bj)' Problems

only arise if a decrease of the dual variables due to one of both

edges is not compensated by the other one. We discern three cases:

1. a; labelled, ea, unlabelled, eb, and bj in the same state:

k
condition (5) holds because of D2;

2, ebk labelled, bj unlabelled, a; and ea, in the same state:
in this case ebk is incident to an admissible path, say

(a. ,ea, ,eb ,b.). Furthermore, b. is labelled, either accord-
1, k’ 'k 1 i
ing to L5, or due to L6. Lemma 1 and D4 imply vg 2 vi after
1
the DVC. On the path (ai’eak’ebk’bj) the vertices are pairwise
1
in the same state, hence the total change of the dual variables

is zero and

' ! ' +w =y, +v., +
k 2 ui + VJ Wk ul VJ1 Wk

u! + v! +w
i j |

3. a. and eb, labelled, ea, and b. unlabelled: in this case eb
1 k k| k

must have a label # 0, say [jlj.

bj is labelled and on an admissible path, so according to D4
1

vl w2 oul o+ vl ' : .) fall

ul * Vj w2z oug vjl o The path (al,eak,ebk,bjl) alls

14

Lemma 3:

Proof:

under the first case above, hence ui + vj + w& > Cpe

This suffices to check (5) and concludes the proof of the lemma.

The dual solution after a DVC admits the same arborescence as the

solution before the DVC.

The value of the dual variables is only relevant to the labelling
by L3 and L5.
Concerning L3, let ea have received a label from a;s and

(ai,ea bj) be an admissible path before the DVC. Now a. and

k*pk’
ea, have the same state. If ea, ¢ M then eb, and b. both are
k k v k j

labelled according to L4 and L5, and the total change of the dual
variables is zero, so (ai,eak) still is admissible after the DVC.

Else ea, ¢ M and eb, € M and there is a vertex b. with
k v k v i

k,bj) € M, hence ebk and bj are in the same state and we see
1 1
(ai,eak,ebk,bj) is admissible before and after the DVC, having in
1

mind the observation at the beginning of this section.

(eb

k
labelled there is a path (ai,eak,ebk,bj) fully labelled. Else there

Concerning L5, let bj have received a label from eb, . If ea, is

is a labelled vertex bj , the match of eb, in B. Before and after

k
1
the DVC (eb, ,b.) is admissible, v. = v. and v! = v! , so
L3 A i
(ebk’bj) is admissible. The last thing to check is that W, re-
1
mains zero if ea, has received a label from ebk. Well, ea, and ebk

then are in the same state and D5 completes the proof.

Lemma 3 says that the old arborescence remains valid. The next
thing to show is that the arborescence actually can be expanded
after a DVC, or hids an AP so the labelling can be ended. Before
proving this we show that no vertex twice receives a label.
Vertices in EA oY B only receive a label if they are unlabelled,

so at most once. Vertices a; e A, except the root a,, only receive

0
a label from their match in EA, namely when that match, labelled

and unscanned, is selected in L2. Once scanned, a vertex ea € EA

Lemma 4:

Proof:

15

never becomes unscanned again. A vertex ebk € EB can receive a
label from ea, if ebk ¢ Mv, or else from its match in B. For both
vertices holds that they are only once selected in L2,

At the same time we observe that the labelled vertices, except the
root a,, can be divided into pairs, incident to the same edge of
G. With any labelled vertex bj corresponds its match in EB; with
any 1abe11edvertexeak corresponds either its match in A or ebk.
The changes of the dual variables of the paired vertices compensate
each other in the dual criterion function (4). The total decrease
of (4) by a DVC therefore is equal to d. Clearly d > 0, because
otherwise the continuation of the labelling, as indicated by lemma
4 below, could have taken place before the DVC.

If the coefficients ¢, are integral valued, d = 1 holds, and the
maximum number of DVC's is equal to the criterion value of the

initial dual solution.

After a DVC either an AP is found before the labelling ends‘by

exhaustion, or at least two more vertices receive a label.

2,d3 or d4.

If d = dl’ a labelled vertex a; with u, = 0 is declared unscanned
‘ 0 0

in D6 and we meet the situation in L3 that ends the labelling. If

The in D5 computed value d is equal to dl’d

d = d2, a labelled vertex ai is adjacent to an unlabelled vertex
0
ea, by an edge which becomes admissible by executing the DVC. So

ea, and either eb, or the match of ea, in A receive a label.

k

If d = d3, a w, becomes zero and ea, and its match in A receive

ky kg

labels.

Ifd = d4’ an edge (ebk s
0

after the DVC. Then either the match of bj in EB receives a label,

bj) with bj unlabelled, becomes admissible

viz, if bj € Mv’ or the labelling ends in situation L5. The proof
that an AP really has been found when the labelling ends in the

situations L3 or L5, is given in lemma 5.

16

Lemma 5: The arborescence will contain an AP after the execution of finite-—

Proof:

ly many DVC's.

If the graph G has v vertices, lemma 4 and the fact that each
vertex only at most once receives a label, imply that after
(v-1)/2 DVC's a vertex a, with u, = 0, or a unmatched vertex bj’
or all vertices have received a label. In the latter case another
DVC will yield a minimum d = d1 for i = 10, and u, becomes zero.
Thus after finitely many DVC's the algorithm will gurn up at the

breakthrough-routine. Yet to show is that the path P determined by

this routine, conforms to the definition of an AP,

Matching M and AP with Matching M, constructed by
start in b, ending in taking the complement of M
root a, with respect to the AP

edge, not in matching

edge, in matching

> direction of labelling of an edge in AP

Fig. 3. FExample of an AP

First of all we check that taking the complement of the matching
M with respect to P, produces a new matching ﬁ, i.e. M satisfies
(2) and (3) (figure 3).

Now each vertex of G occurs at most once in P, because each vertex
has received a label at most one. We restrict our attention to
vertices of G, incident to P, because to the other vertices of G
the same edges of M and M are incident.

0
exactly one edge of M is incident with any of then. A starting

The root a, and a starting point bj of P do not belong to Mv’ so
point a; of P belongs to Mv and not to ﬁv'

To a vertex x € A U B on P, except the extremal vertices of P, two
edges of P are incident. One of then is the edge of M incident to
x and hence not contained in M. Then the other one cannot belong
to M and therefore belongs to M. So exactly one edge of M is in-
cident to x and x € ﬁv.

If ea, is incident to P and (eak,ebk) ¢ M, there exists a path
(bj’ebk . d
Those edges are the only ones incident to ea, or eb, in M.

k k
If ea, 1is incident to P and (eak,ebk) € M, either there exists a

,ea ,ai) c P, of which the edges are not contained in M.

path %ai’eag’ebk’bj)-i P, and the edges of this path belong to M
and not to M, or (eak,ebk) ¢ P;

In the latter case (eak,ebk) € M. The vertex ea now is incident
to P in a way as above described for x € A U B: one of the two
edges of P incident to ea, belongs to M and the other one not,
and after the breakthrough the same holds for M, after exchanging
lthe edges.

As the same considerations hold in the case of eb , M really is a

k’
matching.

The breakthrough does not concern the dual solution, hence with
respect to condition (5) nothing changes. The other conditionms,
namely (6), (7), (8) and (9), remain satisfied by the construc-
tion of the arborescence. For it consists of admissible edges,
which suffices to maintain (6). A vertex bj’ once incident to a

matching, is incident to all succeeding matchings, and that proves

18

Theorem:

Proof:

(8). If W > 0, the arborescence and hence the AP does not contain

(eak,ebk), so (eak,ebk) e M (9). If condition (i) of (7) was

satisfied before the breakthrough, either u. > 0, so a; is no

starting point of the AP and a; € ﬁ, or u. 0. The same reasoning

holds for the root ao of the arborescence: ao e M or uO = 0.
This completes the check of the optimality conditions and proves

an AP has been found.
The algorithm computes a maximum matching in a efficient way.

The above lemma's imply that after constructing at most m AP's a
maximum matching has been found.

The efficiency has been proven, if the order of the amount of work
to construct an AP is shown to be polynomial in n, m and p.

During the growth of an arborescence at most m + n + 2p vertices
receive a label. Labelling from vertices in EA U B requires a time
proportional to p + n, and labelling from a vertex a € A a time
proportional to p * n, included the time to establish the admissi-
bility of an edge. The time due to assigning a label to a vertex
of A, also is proportional to p * n. Hence the total time for
assigning labels to vertices of A and from vertices of A, is pro-
portional tom * p * n. In a similar way the time involved in
labelling vertices of EB is proportional to p * n. So the label-
ling requires a time of the order m * n * p. The time for deter-
mining a new matching is proportional to the length of the AP and
therefore at most of the order of the labelling.

The order of time of a DVC depends on the computation of the

minima d, and d,, hence is m * n * p. As after at most (m+n+2p)/2

2 4
DVC's an AP has been met, the time needed for DVC's and also the
time for constructing an AP, is proportional to

(m+n+p) * m * n * p. Q.E.D.

. . 2
The algorithm itself therefore is of the order m np (m+n+p).
Assuming O(m) = O(n) and p >> m, the total computing time is pro-
portional to m3p2.

In section 6 a tighter bound will be given.

5. A common partial transversal with maximum cardinality

We can determine a common partial transversal of A and B with maximum car-
dinality, i.e. with a maximum number of elements of E, by applying the al-
gorithm of section 2 and 3 with e = 1 for all elements of E. The case
however allows some simplifications.

To see this, assume we proceed according sections 2 and 3. We then con~—
struct an initial dual solution with u, = 1 for all i, because each set Ai
is non-empty. Next we start growing an arborescence, say with root ag.
Remark all edges up to now are admissible. If an unmatched vertex bj re-
ceives a label, an AP has been found and we continue by determining the new
matching and growing again an arborescence. The alternative is that the
labelling ends by exhaustion, as all u, are 1 and no a; with u, = 0 can
receive a label. In that case the algorithm executes a DVC, resulting in

d =1 and u, = 0 after the DVC. So an AP containing zero edges has been

0

found, starting and ending in a,.. In the sequel of the algorithm a, is un-

0 0

matched and never will receive a label again, hence we know ag will be un-

matched in the optimal solution.

Instead of executing a DVC and a breakthrough with AP = ¢, we therefore
remove a. out of G, together with all edges of G, incident to a.. In the

0 0
reduced graph G' we maintain the initial dual solution (except u, = 1) and

the matching of G. We continue the algorithm by growing a new argorescence
in G' with root at any unmatched a,.

We observe that this method always maintains the same dual solution in the
operative graph G': u, for all a; in G', Vj = 0 for all j and W = 0 for
all k. All edges present in G' are admissible and we do not need explicitly
the dual solution.

Summarized the modifications with respect to the algorithm for growing an

arborescence, presented in section 3, are the following:

The root a. is an unmatched vertex in the present, possibly reduced graph

0
Gs

20

L3: No breakthrough can occur, all ui being one;

assigns labels to all unlabelled vertices adjacent to a;s

L5: Assign labels to all unlabelled vertices adjacent to ebk, included
ea, ;

DUAL VARIABLE CHANGE:

Stop growing the arborescence. Construct a reduced graph G' by removing

out of G vertex a, and all edges incident to a

0 0°

BREAKTRHOUGH :
The starting vertex of an AP always is a vertex b € B.

The order of the above algorithm depends on the time for growing a maximum
arborescence in G. Each edge adjacent to x € A U EB once is scanned, viz.
during the labelling from x; the time needed for labelling from x ¢ EA U B

is proportional to |EA| + |B]| D p + m. Because IBjI > 1, the total

labelling time is proportional to the number of edges of G,
m n
p+) lal+) B,

i=1 3= 3

The computing time of the maximum cardinality algorithm is proportional

to the number of sets in family A times the number of edges of G.

Another kindred problem is how to select among the common partial trans-
versals of A and B with maximum cardinality the one with maximum weight

That set could be determined by applying the algorithm of section 2 and 3,

1

replacing the original weights Cr by Cp TGt M. M must be chosen that

large that the partial transversal with more elements weights more than

the one with less elements, e.g.

M= z Ic
k=1

k

A more direct approach however is possible. Suppose the weights cé are

1

Y denotes the cardinality of a set Y.

21

used in the algorithm of sections 2 and 3. The initial values of Upseee,t
2> 943

or d4, and not of order M, unless all sets involved with the computation

of d], d2 and d3 are empty. In the latter case d = d1

We know that ai will not be matched in the final solution.

are in the order of M. During a DVC the minimum d will be equal to d

holds, say for i = io.
Instead of adjugting the dual solution and afterwards computing a new
matching, we can proceed as follows. We remark the method mentioned below
can be applied also in the standard algorithm of section 2 and 3, and
actually is applied in the ALGOL-procedure of the appendix.

We immediately determine the new matching M by means of the AP starting in

a; . Next we remove a; and its incident edges from the graph G, and thus
0 0
get a reduced graph G'. M satisfies condition (0) of (7) and all optimality

conditions so far satisfied except condition (io) of (7). That condition

however does not occur in G' because of the absence of a; in G'. We thus
0

evade a change of the dual variables of order M, and the variables u, in

G' still are of order M.

We do not have to specify M, We set u. = max {c

2 (ai,eak) € D(G)} in the

|
initial dual solution.

During a DVC we first of all compute d' = min {w,dz,d3,d4}. If d' < = we
adjust the dual solution and continue the labelling as usual. Else we

compute u, = min {ui I a, labelled} and proceed as described above. When
0 i

we employ the values of u, derived from the original CLs the labelling of
a vertex a, with u, = 0 does not imply an AP has been found, as u, really

stands for ui +M=M>0.

22

6. Computational aspects

The algorithms of sections 2 and 3 and section 5 have been implemented in
ALGOL and tested on the EL-X8 computer of the Mathematical Centre.

Some results for a series of small problems are given in table 1. In the

randomly generated problems the expectation of the number of elements in

a set Ai or Bj varies between 2 and 5.

Table 1.
Max. CPT algorithm Max. card. algorithm
P m=n
DVC's time D time D
100 25 7 1.3 o4
26 5.5 .9
100 50 32 5.5 .9
70 18.7 2.1
100 75 24 4.5 1.6
93 26.9 3.1

1)

in seconds

We further restrict us in this section to the procedure for the maximum
common partial transversal problem, included in the appendix.

It uses a recursive labelling, which enables us to code the labelling
rather shortly. A different order of labelling, e.g. alternately from un-

scanned vertices in A and EB, could be preferable.

A second feature of the procedure is how it decides an edge to be admissible.
The procedure initially computes, and if necessary updates, a set of

pointers rb(k), k = 1,...,p, satisfying

= m%n {vj | (ebk’bj) e D(G)}.

v
rb (k) ;

23

An edge (ai,eak) is admissible if u; + v
and (eb

rb (k) two= . An edge (ebk,bj)

is admissible if vj =)) is admissible; we only have

Vb (k) 1*Prb (k
to decide if (ebk’bj) is admissible, when we already know there exists an
admissible path (ai,eak,ebk,bjl) through ebk, i.e. we know (ebk’brb(k)) is
admissible.

If ebk is matched to bj’ the procedure sets rb(k) = j. For the rest rb(k)

has to be updated only after executing a DVC. If for an index k

(eak,ebk) € M, or ea,_ and/or eb, are labelled, or rb(k) is unlabelled,

k k
rb(k) does not change by a DVC. Else rb(k) has to be computed according to
its definition. The time for a complete update of rb(k), is proportional
to Z]Bi

The'use of rb(k) decreases the order of time for labelling during the

growth of an arborescence: the labelling time now is proportional to the

number of edges of G.

The most time consuming part of the algorithm is the DVC and in particular
the computation of d2 and d4. However we can reduce somewhat the order of
the time for the DVC.

Concerning d4’ we observe

m;n {vj | (ebk,bj) € D(G), bj labelled} = Vib (k)
n
and the time for computation of d4 is proportional to 2 |B.|.
A j=1
To compute d2 we use a second set of pointers minu (k), k = 1,...,p,
satisfying
Uoinu (k) = min {ui | a, labelled, (ai,eak) € D(G)}.
If there is no such i, we set minu (k) = 0; we define u, = o,

0
This computation requires a time proportional to X(Ai), summed up over all

i with a; labelled. During the next DVC's, as long as no breakthrough
occurs, we only have to evaluate the influence upon minu (k) of those
vertices a; that have received a label since the preceding DVC. So the time

to initially compute and to update afterwards minu (k) during the growth of

24

m
an arborescence is proportional to Z |Ail’ whereas the time for labelling
m n =1
is proportional to) IAi| +) IBjI + p. d2 now can be computed as
i=1] j=1

d. = min {m%n {u (ebk’bj) e D(G)

. + v, + -
2~ 0T Painu (k) Vi T %% T %
ebk and bi in the same state}
| ea unlabelled},
o Uk
in a time proportional to |Bj .
i=1

The construction of an AP therefore requires a time proportional to

'ZIAiI +)|B.| + p + (n+mtp) * {)|B.| + pl.
i j'] jJ

Assuming each element of E occurs at least once in family B, we can sim—

plify this formula as Z|Ai| + (n+m+p) * E[Bj
i j

The computing time for the whole procedure is of the order

m * {(n+m+p) * E"Bj! + 5‘|All}.
] 1

If Z|Ai| is of the same order as ElBj|, and O(m) = 0(n), the computing time
i j

is proportional to:
the number of sets of a family times
the number of sets of a family plus the number of elements of
- E times

the sum of the cardinalities of the sets of a family.

25

References

].

Edmonds, J., "Optimum Branchings",

J. Res. Nat. Bureau of Standards, 71 B (1967), 223-240.

Edmonds, J., '"Submodular functions, Matroids and Certain Polyhedra",
pp. 69-87 in R. Guy (ed.), Combinatorial Structures and their
Applications, Gordon and Breach, New York (1970).

Edmonds, J., "Matroids and the greedy algorithm",
Mathematical Programming, 1 (1971), 127-136.

Ford Jr., L.R. and D.R. Fulkerson, Flows in Networks, Princeton Uni-

versity Press, Princeton (1962).

Kuhn, H.W., "The Hungarian Method for the Assignment Problem'",
Naval Res. Logist. Quart., 2 (1955), 83-97.

Lawler, E.L., "Optimal Matroid Intersections", pp. 233-234 in
R. Guy (ed.), Combinatorial Structures and their Applications
Gordon and Breach, New York (1970).

Mirsky, L., Transversal Theory,
Academic Press, New York (1971).

26

Aggendix

LNIEGER BRQCEDURE MAXIMUM COMMON PARTIAL TRAMSVERSAL
(ityN,P,CARDA,C,PA,PB,LISTA,LISTE,RA,RB);
VALUE MyN,P,CARDA; LINIEGER M,M,P,CARDA}
ILTEGER ARRAY C,PA,PB,LISTA,LIST,RA,RB}

COMUENT .
INPUT: M, RESP, N IS THE NUMBER OF SETS OF FAMILY A, RESP, B8,
P IS THE NUMBER OF ELEMENTS OF SET E,
CARDA 1S THE SUM OF THE CARLINALIT|ES OF THE SETS OF FAM|LY A,
ARRAY C CONTAINS ThHE WE|GHTS OF THE ELEMENTS OF SET E,
PX[Q) CONTAINS THE ADDPRESS ub THE FIRST ELEMENT
OF SET @ OF FAMILY X |N LISTX (X=A,;8),
THE NEXT ADDRESSES OF LISTX, UNTIL A ZERO |S MET,
CONTAIN THE OTHER ELEMENTS OF SET @ OF FAM|LY X (X=A,B),
OUTPUT: |F RA[K]=RB[K)=0 ELEMENT K LOUES NOT OCCUR |N THE FINAL SOLUT|ON
ELSF ELEMENT K MATCHES SET Ra[K] OF FAMILY A AND SET RB[K)] OF FAM|LY B,
RA[11] 1S EQUAL TO THE CARDINaLITY OF THE SOLUT|ON AND
MAX I MUM COMMON PARTIAL TRANSVERSAL TO | TS WE|GHT;

=
m
1
—
| =4

INTEGER |,J,K,K1,6,11,0,5,81,8J,0,|0,U],VJ,CK,NA,ND,VHIN)NAL;
BOOLEAN LEK; INIEGQER ARBAY FAmMA[13CARDA+M],MNEWLABELLl11101,
FoyMATCHA[1:M], U, NEXTA[USii),MATCHS, LBILIN],V[OIN],LEA,LEB,CW[1IP]}

BRQCERURE LABEL A(1); MALUE 1) LNTEGER 11
BEGLY LNI S,UMIN; NEXTA[MNAj:= NAS= 1} UM|Mi= U[]])3
LE UMIN=D IHEN BREAK A(1); S:= F[|]);
EQR Kt= FAMALS]) yolhkk K > 0 QQ
BEGLN $= S+1} LE LeA[K]<u IHEN
BEGLYN . 11:s RAIK]; LE 11%0 IWEN
36G.6 LE Ul11)=UMIN THEN
BEGLN LEA[KII= |5 LABEL A(|1) ENQ
END EkSE LE CWIKI~VIRB[K]]=UMIN IHEN
JEGLN LEA(K]:= 1} LABEL EB(K,0) BNR

Eli
END
EUR;
PROCEDURE LABEL EB(K,L); VARWE K,Li LNTLGER K,L;
BEGIN INT S,VMIN} LEB[K]:= Lj; VMIN:=s VIRB[K]])} S:= PB[K];
EQR Ji= LISTBIS) wHikE v > 0 RQ
BEGLIN St= S+ij JE LBlJI<O ~ V[JI=VM|N THEN

BEGLN LWBlJls= K; Li= MATCHS(J];
LE L=u IHEN BREAK B(J)}
LABEL EX(L,J); LE LEA(L)<U ~ Cu(k]=CIL] THEN
BEGLN LEA[L):= 0; LABEL A(RA[L]) ENP
Ebe
Epl
ENQ;

BROCEDYURE BREAK A(1); YALWE 13 INIEGER I}

BRelN EQR

lt= 1,LEA[KL] WHLILE | % 0 RQ

SEGLN Kis MATCHA[|]} MATCHA[|lt= K1} RA[KL)I= |}

ENQ;

Klis K; LE Ki=0 IHEN GQIQ BREAK

RA[KL1)1= 0) BREAK B(LEBIK1])

END;

BROCEPYRE BREAK B(J)) VYBLWE J; LNIEGEBR VI

BESIN EQR

Jiz JyLEB(K1] WplwE J # 0 RQ

BEGLIN MATCHBLJ)I1= Kli= LB(JI]; RBIKL]i= J ENR;
BREAK A(LEAKL]) '

ENR;

BRQSCERURE DUAL CHANGE)
BEGLN LNIEGER ABBAY MINUl1:iPl))

BROC MINV;

BEGIN VMINi= CKx1}) sSJi= PBIK]);

ENRS

EQR Ji= LISTB[SJ] WHIKE J>0 DO
BEGLIN SJts sJw1; LE LBIJI<O THEN

BEGLN VJi= VIJ]S LE VJSVMIN THEN VMINI= VvJ END
ENRI

CKI3 CK=VyMIN; LE CK20 THEN NEWLABELLING(LEK)

ERQS NEWLABELLING(NEG)} BQQLEAN NEG;
BEGIN LE CK>0 TgEN BEGLN Qi= 1; D:s DnCK END

ENR;

EQR
DCO: D=
EQR

EWSE LE 0<10 THEN Qi=z 0+1)
NEWLABEL[@]y1= LE NEG THEN =K ELSE K

Kiz 1 STIER 1 UNIlL P RQ MINUIK]}i= 0 |Di= NDiz Q)
ULID); Q:= 1; 11:= NDj NEXTA[NA):=s 0;
Il:= NEXTA[I1] gHlLE 13>0 DQ

BEGLH U= UlI1); LE V|I<D THEN BEGLYN O:= Vi 1D1= 11 ENR;

ENR;
EQB

Si1= F[I1); EQR Xi= FAMALS] WHILE K>U RO
BRGLY S1= S1j LE UI<UIMINUTKI] TpEN MINUCKI:= 11 END

Ki= 1 §TERP 1 UNIl. P RQ

BEGIN LEKi= LEB([KJ205 LE LEAIK]}20zLEK THEN

ENES

BEGLN Gi= MINUIK]; LE 6%0 THEN
BEGLN CKi= D=UlGI+CWIK); LE CKz0 IHEN MINV END
ENR ELSE LE LEK THEN

BEGLN cKk:ia CIKl=CwlK]); Gi= MINU[KJ; LE G40 IHEN
BEGLN Uli= UIGI=U[RAIK]I]; LE U|<CK THEN CKt= U| ENR;
CKt2 DmCK; LE CK20 THEN NEWLABELL|NG(EALSE);
CK:3 DwV[LEB[K]]} MINV

ENR

=

LE UlID)=D IHEN BREAK A(|D); NDiz NAj

EQR

£QR
EQR

I1t= NEXTALO],NEXTACt[1] WHLWE 12%0 RQ ULI11:= Ufl1]=D;
Jiz 1 $IER 1 WNILL N RQ LE LBLJI>0 JHEN Viulis vIJ1+D;
Ki= 1 STEP 1 WbIluL P QQ

BEGLIN LEKI= LEA[K]<(0; LE LEKZLEB(K]z0 TIHEN

CW[K)i= J|E LEK THEN CW[K]+D ELSE CW(K]«D ELSE
LE LEK ~ RA(K]=0 THEY
BE@IN Gi= Relx]; LE LBIG)>C IHEN
BEGLU VIMINi= VIG]; SJi= PBIK];
EQR Ji= L|STBISJ] WHLLE v¥>0 R@
3E5.N SJt=s SJ*1lj) VJi= VY15 LE VJ<VM|N IHEN
BEGLN RBIK]li= J; VMINI= VJ ENR

27

28

oL
RNR
EbR
EnBs
EQR 0:= o SIER =1 UNIJL % RO
BEGIN Ki= NEWLABEL[@); LF K<O THEN
LE LEAIKI<O IpnEN
BEGLIN LEALK)I= LE LEBIK]>0
11t RALK]; LE
ENR
ENRs
GQIQ DCO

ENG DUAL CHANGE;

INITS KLii= A
FQR 1=
EQR Ji
EUR K1
Bkelu

Oi= 0;
SIEE 1
SIEE 1 WUNILIL & QO v[Jd):s=
SIEE 1 UNTLL P Q0
CwlKli=z CKis C[K];

UL2li= VIClizs wé;

[

S13= PA[K]}

YuTll ¥ QO uUllys= Fll):i=
MATCHB[J]t= 03

LABEL EB(=K(LEBI=K)) ELSE

~ Cwikl=clK] TIHEN 0 ELSE MINUIK];
I1=0 IHEN LABEL ES(K,0) ELSE LABEL ACI1)

MATCHALl)i= 03

SJie L |STBIPBIK])]S

LE CKSC v LISTALSIIgU v SJUSU IHEN RAIKI:= =1 ELSE

BEGLN RALKI§= 03 Ru|Klts SJj EQR Ii= LISTA[SI] WHLLE | > 0 pQ
BRGLY Sit= sl+1}) Fllli= F[])«l}
LE CK>UL1] IHEN BEGLN MATCHALI1:= ki ullli= cK ENR
ENQ
£ng
ENQ;
EQB 13= 1 SIEE 1 YnIlL v Q@
BEG.IN Ki= MATCHALI]; LE K=u IgEN QQIQ IN1;
FLIlt= Qi= Q+F([|]j+1; FAMA[Q]= U}
LE RAIKI#0 IHEN GQIQ INn; SJi= P8IK];
EQR Ji= LISTB[Su] WHlLE J>0 DRQ
LE MATCHBIJI#0 IUEN SJi= SJ+1 ELSE
BEGLN MATCHBIJII= K} wBIK]}i= J} RA[KI!= 1} @QIQ IN1 ENQS
IO NEXTA[NA)I= NA= |
(R R
END;
EOR ®k:= 1 SI1EE 1 WUOMTLIL P QO LE RA[KI20 IHEN
BEGIN Sii=z Pa(xk]ls EQR 1i= LiSTA[SI] ¥olkE | > 0 QR
BEGLY S1i® Si+l; Q= FlI1]s=s F|l=1} FAMA[Ql:i= K ENQ
END;

NEXTA[NA]:= 0; NAlls NEXTALD];

ALGIHENT ING PATH:

[J)i=

~i;

L UHTLE P DQ LEA[K])i= LEB[K]):i= =13

EQR 1= nal WHILE | % 0 RQ

BEGELYN FQR J 1= 1 8IEZP 1 UnI kL N RO LB
EQR K := 1 SIEP
MAYE MATCHA[I)t= 03 WAL= NEXTA[]]S
LABEL A(1)3 DUAL ClaNGE;

BREAK S

ENQS

cke= 0 EQR ki= 1 S$IEP 1 YNILw ° ROQ

LE RA[K)gO THEM RA[KII= RAIK)i= § ELSE
BEGLN Kl:i:s Ki+1; Cki=z CK+clx, EMD;
RA[G] = K13 MAX|IMUM

END MAXIMUM COMMON PARTIAL TRANSVERSAL

COMNON PARTIAL TRANSVERSAL =

CK

