
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE

B. J. LAGEWEG
AN ALGORITHM FOR A MAXIMUM WEIGHTED
COMMON PARTIAL TRANSVERSAL

BW 25/73

RA

~
MC

JULY

2e boerhaavestraat 49 amsterdam

BIBLIOTHEE~ MATHEMATISCH C6N1R-UM
AMSHRDAM

PJt-i.nted at :the Mathema.,t.i.cai. Centtz.e, 49, 2e BoeJLhaavu.tJtaa;t, Am-6:teJLdam.

The Mathema.ti..c.al. Centtz.e, 6ou.nded :the 11-;th 06 Feb1tu.aJl.y 1946, -l6 a. non
p1to6U ,int,;t;UU,t,lon cwn,Lng at .the pJtomoUon 06 pUll.e mathema.,t.i.C-6 a.nd ili
a.ppUc.a.Uon6. I.t -l6 .6pon601ted by :the Ne.thell1.a.nd6 GoveJLnmen;t :th/tough :the
Ne.thell1.a.nd6 OJtga.n.iza.,t.i.on 601t .the Adva.nc.ement o 6 PUite Ru ea.Jtc.h (Z. W. 0 l ,
by :the Mu.n.ic..ipa.U;ty 06 Am-6.teJLdam, by .the Un.iveMUy 06 Am6;teJLdam, by
;the F Jtee Un.iveMUy at Am6;teJLdam, a.nd by .indr.u,:tJuu.

AMS(MOS) subject classification scheme (1970): 05B40, 90C35

Table of contents

O. Abstract

1. Introduction

2. Description of the algorithm

3. Construction of an augmenting path

4. Proof of correctness and efficiency

5. A common partial transversal of maximum cardinality

6. Computational aspects

References

Appendix: ALGOL-procedure

page

2

4

8

12

19

22

25

26

O. Abstract

An efficient primal-dual algorithm is presented for determining a connnon

partial transversal of two families of sets, maximizing the sum of the

weights of its elements. The problem is a generalization of the linear

assignment problem and a specialization of the problem of determining a

maximum weighted connnon independent set of two matroids. An algorithm for

determining a common partial transversal of maximum cardinality is inferred

from the former one.

2

1. Introduction

E = {e 1, ••• ,,ek, •••• ,ep} 1.s a finite set of elements. Let element ek have

a real valm:d weight ck. The weight of a subset F c E is the sum of the

weights of the elements of F. Let A= (A1, ••• ,A., ••• ,A) and
l. m

B = (B 1, ••• :,B j, ••• ,Bn) be two families of non-empty subsets of E.

A subset F of Eis called a tranversal of family A if F consists of m

distinct elE:ments of E, one from each set A .• F is a partial transversal
l.

of A if Fis a tranversal of a subfamily of A. A common partial transversal

of A and Bis a set which is a partial transversal of both A and B.
The subject of this report is: determine a common partial transversal of

A and B with a maximum weight.

An example of the problem is the following. Eis a set of jobs, each to be

processed during one time unit. The weights

jobs. A. is the set of jobs that work party
l.

is the set of jobs that can be processed on

ck indicate the priority of the

i is qualified to process. B.
J

machine j. A maximum common

partial transversal provides a set of jobs with maximum total priority,

each job processed by a qualified work party on a suitable different machine.

It is wellknown that the pariial transversals of family A are the indepen

dent sets of a matroid on E, a so-called transversal matroid. An efficient

algorithm for determining a partial transversal of A with maximum weight

therefore is the greedy algorithm [3].

The subject of this report is how to find a maximum common independent set

of two transversal matroids. The more general problem of finding a maximum

common independent set of two matroids, without restrictions on the kind of

matroids involved, has been solved efficiently by Edmonds [2] and Lawler

• [6]. Some special classes of the latter problem have been solved efficient

ly also, e.g. the problem of constructing a maximum weighted directed tree

1.n a directed graph, equivalent to finding a maximum common independent set

of a graph Tiaatroid and a special transversal matroid (Edmonds [I]).

We here present an efficient algorithm for the maximum connnon partial

transversal problem. If the subsets of family A are mutually disjoint, and

the same holds for family 8, the problem reduces to the linear assignment

3

problem and the algorithm simplifies to the Hungarian method [4][5].

In section 2 a linear programming formulation of the problem and its dual

are used to state optimality conditions. The algorithm starts with con

structing an initial primal and dual solution. The algorithm then searches

for improved primal solutions given the dual solution, until no better one

is found. In that case an improved dual solution is constructed given the

operative primal one and the algorithm restarts searching for primal im

provements. In section 3 this process is described as a search for an

augmenting path in a directed tree, growed by means of a labelling process.

Section 4 provides the proof of the method, in particular concerning its

efficiency. In section 5 the case ck= I for all elements of Eis treated,

i.e. an algorithm for determining a common partial transversal with maxi

mum cardinality is derived from the preceding sections. Section 6 finally

deals with details of the implementation of the algorithm and lists some

computational results.

4

2. Description of the algorithm

We associate with the common transversal problem a graph Gas follows: the

vertex-set of G consists of the subsets A = { a. I A. EA},
1 1

B = {bj J Bj EB}, EA= {e¾: I ek € E} and EB= ebk I ek E E}; the edge-set

D(G) of G contains an edge (e¾:,ebk) fork= 1, ••• ,p, an edge (ai,e¾:) for

each ek E ·\ and an edge (b j , ebk) for each ek E B j •

Fig.I: An example of graph G.

Definition. A set of edges M of the graph G is called a matching, if

1) at most one edge of Mis incident to vertex x, for each

XE Au B;

2) if any edge of Mis incident toe¾: E EA (ebk E EB), then

exactly two edges of Mare incident to eak (ebk), one of which

is (e¾:,ebk).

We shall denote the set of vertices of G, incident to a matching M, by M.
V

If we assign weight ck to edges (e¾:,ebk) and weight zero to the other

edges of G, the maximum corrnnon partial transversal problem clearly is

equivalent to finding a matching (in the sense of the above definition)

with a maximum weight in G.

We also can formulate the transversal problem as a zero-one linear pro

gramming problem. Let a variable xijk be one if element ek EE links sub

set A. of family A with subset B. of family B, and zero else. The i.p.-
1 J

formulation of the transversal problem reads:

(1) Maximize f l I ck xijk
k=l ilkEA. jlkEB.

l. J

subject to:

I l. xijk
:,;

1 ' i = 1 , ••• , m.
kEA. j lkEB.

l. J

I I xijk
:,;

1 ' J = I, ••• ,n.
kEB. ilkEA.

J l.

I I xijk
:;;;

1 ' k = l, ••• ,p.
ilkEA. j lkEB.

l. J

(2) xijk 2:: o, i = 1 , ••• ,m;

J = 1, ••• ,n;

k = l, ... ,p.

(3) xijk integer, l. = 1 , ••• , m;

J = 1, ••• ,n;

k = l, ••• ,p.

A solution (xr.k) of (2) - (3) corresponds with a matching M 1.n the graph
l.J

G and vice versa:

The dual problem of linear programming problem (1) - (2) reads:

m
(4) Minimize Y.

i=I
u. +

l.

n
I

j=I
v. +

J

5

6

subject to:

u. + v. + wk :?:: ck, k = 1, ••• ,p;
l. J

i k E A.;
l.

j k E B. •
J

(5) u. :?:: o, i = I , ••• , m.
l.

v. :?:: o, j = 1 , ••• , n.
J

wk :?:: o, k = t, •.• ,p.

The duality theorem of linear progranuning says, that a solution (x .. k)
l.J

satisfying (2) is optimal if and only if a solution (u.,v.,wk) satisfying
l. J

(5) exists such that the criterion values (1) and (4) are equal. Assuming

(x .. k) satisfies (3) also, there is a matching M with vertex set M cor-
l.J V

responding with (x .. k). The equality of the criterium values holds if£:
l.J

(6) xijk > 0 ===> u. + v. + wk = ck l. J

(7) u. > 0 ====> a. E M
l. l. V

(8) v. > 0 ~ b. E M
J J V

(9) wk >0.====:> (eak,ebk) EM.

Thus we can solve the maximum common partial transversal problem by finding

a pair of dual solutions (x .. k) and (u.,v.,wk) satisfying the optimality
. l.J l. J

conditions (2), (3), (5), (6), (7), (8) and (9).

The algorithm starts with solutions violating only some of the conditions

(7):

M = !II <~ (x .. k)
l.J

= (0)).

u. = max {0, max ck} i = I , ••• , m.
l. ' kEA.

l.

v. = 0 '
j = I, •.• ,n.

J
wk = 0 , k = t, ••• ,p.

During the execution of the algorithm the conditions (7) are fulfilled one

by one, and that by constructing an augmenting path in G, while any once

satisfied condition remains satisfied.

Let Sand T be sets of edges of G. We define the complement S(T) of S with

respect to T as

S(T) =(Su T) \(Sn T),

7

i.e. edges of T, not yet belonging to S, are added to Sand the other edges

of Tare removed out of s.
A path P = (x0 , ••• ,xr) in G is a sequence of vertices of G such that

(x.,x. 1) is an edge of G and each vertex of G occurs at most once in P.
1 1+

A path P of the form (x0 , ••• ,x 1,a.) is called an augmenting path (AP) for
r- 1

a matching M, if M({(x0 ,x1), ••• ,(xr-I'ai)}) satisfies all optimality con-

ditions so far satisfied and in addition condition i of (7).

By constructing AP's successively ending jn a 1,a2, ••• and am, the algorithm

will reach a pair of optimal solutions (x .. k) and (u.,v.,wk), and thus an
1J 1 J

optimal solution of the transversal problem.

8

3. The construction of an augmenting path

Let we have at our disposal a dual solution (u.,v.,wk) and a matching M,
1 J

corresponding with an integer solution (x .. k). The pair of solutions satis-
1]

fies all optimality conditions except some of (7). a0 is a vertex of G

which violates (7), i.e. u0 > 0 and a0 i Mv. If there is no such a vertex,

the present matching is optimal and the algorithm ends. Else a0 becomes the

root of an arborescence, i.e. a directed tree, a part of which finally is

meant to result in an AP.

Before describing the construction of an AP we need one more definition.

Definition. An edge (ai,e~), resp. (e~,ebk), resp.

called admissible with respect to a dual

if there is a path (ai,e¾,ebk,bj) in G,

ui + vj +wk= ck.

(ebk,bj) of G is

solution (u.,v.,wk),
1 J

such that

Each edge of an AP belongs to a matching - either Mor M({AP}) -, which we

want to satisfy the conditions (6). Henceforth, only admissible edges are

candidates for inclusion into an arborescense.

CHANGE
DUAL.
VARIABLES

NO

INITIALIZE

LABELLING
PROCES

YES AUGMENT
>-------- MATCHING

Fig.2. The construction of an AP

We now can describe the construction of an AP and the subsequent augmen

tation of the matching (fig. 2). Firstly a labelling process grows an arbores

cence rooted at a0 • When an AP is met during the labelling process, the la

belling halts and a new matching is found by taking the complement of M with

9

respect to AP. If the labelling process ends by exhaustion, the growed

arboresceince has a maximum number of edges given the present dual solution.

Now the values of (some of) the dual variables are changed, in that way

that the labelling process can be continued, restarting from the arbo

rescence growed before. After a finite number of changes of the dual vari

ables the arborescence will contain an AP.

The labelling process below assigns labels to the vertices of G. The state

of a vertex is either labelled or unlabelled. Two vertices are in the same

state if they are both labelled or both unlabelled. Else they are in a

different state.

We now state the algorithm for constructing an augmenting path, ending in

LABELLING PROCESS:

11: Initialize all vertices of Gas unlabelled and unscanned. Assign to

a0 label [OJ.

12: Seli~ct a labelled, unscanned vertex x.

13:

If there is no such a vertex the arborescence is maximal with regard

to the present dual solution: go to DUAL VARIABLE CHANGE,

Vertex x becomes scanned; if x EA go to 13;

if x E EA go to 14; if x E EB go to LS;

if x EB go to 16.

Let x = a .• If u.
i i

= O, an AP has been found, starting in

BREAKTHROUGH.

a. :
i

go to

Assign label [i] to all unlabelled vertices ea E EA, incident to an

admissible edge (a.,ea).
i

Go to 12.

14: Let x = e¾:• If e<\ is matched, assign then label [k] to the match

of e<\ in A, i.e. to vertex ai EA such that (ai,eak) EM.

Else assign label [OJ to vertex ebk.

Go to 12.

JO

L5: Let x = ebk. Assign label [k] to all unlabelled vertices b EB, in

cident to an admissible edge (ebk,b).

L6:

If e~ unlabelled and wk= O, assign then label [OJ toe~.

Go to L2.

Let x = b .• If b. is unmatched, an AP has been found, starting in
J J

go to BREAKTHROUGH. b.:
J

Assign label [j] to the match

such that (ebk,bj) EM.

Go to L2.

of b. in EB,
J

i.e. to vertex ebk E EB

DUAL VARIABLE CHANGE:

DJ:

D2:

D3:

D4:

D5:

Compute di = min
i

Compute d2 = min
i

Compute d3 = min
k

Compute d4 = min
k

{u. I a. labelled}.
1. 1.

{ min {u.+v.+w -c
{k,j) 1. J k k

{wk I' e~ unlabelled,

{min {v. I (ebk,bj) E
j J

- min {v. I (ebk,bj)
J J

lebk labelled}.

(ai,e~) E D(G),

(ebk,bj) E D(G),

e~ unlabelled ,

ebk and bj in the same state}

a. labelled}.
1. .

ebk label led}.

D(G), b. unlabelled}
J

E D(G), b. labelled}
J

d = min {di ,d2,d3,d4}.

Change the dual variables:

after the change, then:

u. - d
u! { 1. =

1. u.
1.

v. + d
v! = { J

J v.
J

if (u!,v!.wk') denote the dual variables
1. J

, a. labelled
1.

, else.

, b. labelled
J

, else.

wk+

w' = w -
k k

wk

d

d

, e~ labelled, ebk unlabelled

eak unlabelled, ebk labelled

, e~ and ebk in the same state.

D6: Determine the vertices of G which are starting-points for a further

labE?lling by transferring them into the collection of unscanned

vertices:

1. If d = d, each labelled vertex a. such that for i = i 0 the
r io

minimum d is assumed in Dr (r = 1,2);
r

2. If d = dr' each vertex ebko' such that fork= k0 the minimum dr

is assumed in Dr (r = 3,4).

D7: Go to L2.

BREAKTHROUGH:

Construct the augmenting path by running back in the growed arbores-

I I

cence from the breakthrough-point a. orb. into the reverse direction
i J

of the edges of the arborescence until the root a0 is reached, i.e.:

go from a vertex b EB toe~ if label bi= [kJ;

go from a vertex ebk E EB to { bj if lab;l ebk =

eak if label ebk =

[jJ, J > O;

[OJ;

go from a vertex eak E EA to { ai if label e~ = [iJ, i > 0,

ebk if label eak = [OJ;

go from a vertex a EA to eak, if label a= [kJ, k > O,

else stop.

Determine the new matching by removing the edges of the AP, already

belonging to M, out of M, and adding the other edges of the AP to M.

12

4. Proof of correctness and efficiency

Firstly we prove some properties of the change of the dual variables (DVC),

among others that a DVC does not violate any already satisfied optimality

condition. Afterwards we show that an AP is known after the execution of

finitely many DVC's. The correctness and finiteness of the algorithm im

mediately follow.

We start with a trivial observation. Let ui + vj +wk~ ck for each path

(ai,eak,ebk,bj) of G. If ai0 is incident to the admissible path

(a. ,ea ,ebk,b.), more precisely, if a. is incident to the admissible edge
i 0 K J i 0

(ai0 ,e~) and ui0 + vj +wk= ck' then

= min
i

D(G)}.

The dual variables u. of all vertices a. EA, adjacent to a vertex ea by
i i K

an admissible edge, are equal. Likewise, if b. is incident to the admis
Jo

sible path (a.,eak,ebk,b.) then
i Jo

= min
J

{v. I (ebk,b.) E D(G)}.
J J

Lemma 1: If an edge (ai,e~), resp. (ebk,bj), of G belongs to M, then the

vertices ai and e~, resp. ebk and bj' are in the same state.

Proof: If e~ has received a label, then also ai (see 14). No matched

vertex in A can receive a label unless his match in EA previously

received a label.

A similar reasoning proves the lemma with respect to (ebk,bj).

Lemma 2: A DVC does not violate any optimality condition already satisfied.

Proof: The optimality conditions (2) and (3) are independent of the dual

solution. Conditions (7), (8) and (9) are easily checked: a DVC

makes no u. positive (7); v. becomes positive only if b. is
i J J

labelled, but then bj E Mv (8); wk becomes positive iff eak is

labelled and ebk unlabelled, but then (e~,ebk) E M (9).

13

The change of the dual variable wk can be split up in the change

due to the state of e~ and the change due to ebk. 1ennna I implies

that if xijk > 0 then ai and e~ are in the same state, and ebk

and b. also. If the two vertices, incident to an edge of G, are in
J

the same state, the changes in the corresponding dual variables,

due to the state of those vertices, are zero or equal in absolute

value with opposite sign, so their sum is zero. Hence if x .. k > 0,
l.J

the resulting change of ui + vj + wk is zero and (6) is not vio-

lated.

ui and wk do not become negative by a DVC because of DI, D3 and

D5. The remaining check concerns the nonnegativity of

ui + vj + wk - ck on each path (ai,eak,ebk,bj) of G. We split up

the change in u. + v. + wk in the change due to the states on
1. J

(ai,e~) and the change due to the states on (ebk,bj). Problems

only arise if a decrease of the dual variables due to one of both

edges· is not compensated by the other one. We discern three cases:

I. ai labelled, e~ unlabelled, ebk and bj in the same state:

condition (5) holds because of D2;

2. ebk labelled, bj unlabelled, ai and eak in the same state:

in this case ebk is incident to an admissible path, say

(a. ,eak,ebk,b.). Furthermore, b. is labelled, either accord-
11 J1 JI

ing to 15, or due to 16. 1ennna I and D4 imply v! ~ v! after
J J1

the DVC. On the path (a.,eak,ebk,b.) the vertices are pairwise
1. J I

in the same state, hence the total change of the dual variables

is zero and

u! + v! + wk' ~ u! + v!
1. J i. JI

+ w' =
k u. + v. +wk~ ck;

1. J I

3. ai and ebk labelled, e~ and bj unlabelled: in this case ebk

must have a label IO, say [j 1J.

b. is labelled and on an admissible path, so according to D4
JI

u; + vj +wk~ ui + vj
1

+wk.The path (ai,e~,ebk,bj 1) falls

14

under the first case above, hence ui + vj +wk~ ck.

This suffices to check (5) and concludes the proof of the lemma.

Lemma 3: The dual solution after a DVC admits the same arborescence as the

solution before the DVC.

Proof: The value of the dual variables is only relevant to the labelling

by L3 and LS.

Concerning L3, let e~ have received a label from ai, and

(ai,eak,ebk'bj) be an admissible path before the DVC. Now ai and

eak have the same state. If eak ¢ Mv then ebk and bj both are

labelled according to L4 and LS, and the total change of the dual

variables is zero, so (ai,e~) still is admissible after the DVC.

Else eak E Mv and ebk E Mv and there is a vertex b. with
J 1

(ebk,b.) EM, hence ebk and b. are in the same state and we see
J 1 J 1

(a.,eak,ebk,b.) is admissible before and after the DVC, having in
1. J 1

mind the observation at the beginning of this section.

Concerning LS, let bj have received a label from ebk. If e~ is

labelled there is a path (ai,e8ic,ebk,bj) fully labelled. Else there

is a labelled vertex b. , the match of ebk in B. Before and after
J 1

the DVC (ebk,b.) is admissible, v. = v. and v! = v! , so
JI J JI J JI

(ebk,b.) is admissible. The last thing to check is that wk re
J I

mains zero if eak has received a label from ebk. Well, eak and ebk

then are in the same state and DS completes the proof.

Lemma 3 says that the old arborescence remains valid. The next

thing to show is that the arborescence actually can be expanded

after a DVC, or hids an AP so the labelling can be ended. Before

proving this we show that no vertex twice receives a label.

Vertices in EA o~ B only receive a label if they are unlabelled,

so at most once. Vertices ai EA, except the root a0 , only receive

a label from their match in EA, namely when that match, labelled

and unscanned, is selected in L2. Once scanned, a vertex ea E EA

15

never becomes unscanned again. A vertex ebk E EB can receive a

label from eak if ebk i/. Mv' or else from its match in B. For both

vertices holds that they are only once selected in L2.

At the same time we observe that the labelled vertices, except the

root a0 , can be divided into pairs, incident to the same edge of

G. With any labelled vertex b. corresponds its match in EB; with
J

any labelled vertex e~ corresponds either its match in A or ebk.

The changes of the dual variables of the paired vertices compensate

each other in the dual criterion function (4). The total decrease

of (4) by a DVC therefore is equal to d. Clearly d > O, because

otherwise the continuation of the labelling, as indicated by lemma

4 below, could have taken place before the DVC.

If the coefficients ck are integral valued, d ~ holds, and the

maximum number of DVC's is equal to the criterion value of the

initial dual solution.

Lennna 4: After a DVC either an AP is found before the labelling ends by

exhaustion, or at least two more vertices receive a label.

Proof: The in DS computed value dis or d4• equal to d 1,d2 ,d3
with u. = 0 is If d = d 1, a label,led vertex a.

io
declared unscanned

io
in D6 and we meet the situation in L3 that ends the labelling. If

d = d2 , a labelled vertex a. is adjacent to an unlabelled vertex
io

e~ by an edge which becomes admissible by executing the DVC. So

in A receive a label. e~ and either ebk or the match of e~

If d = d3 , a wk becomes zero and eak and its match in A receive
0 0

labels.

If d = d4 , an edge (ebk ,b.) with b. unlabelled, becomes admissible
0 J J

after the DVC. Then either the match of b. in EB receives a label,
J

Vl.Z. if b. E M v' or the
J

labelling ends in situation LS. The proof

that an AP really has been found when the labelling ends in the

situations L3 or LS, is given in lemma 5.

16

Lennna 5: The arborescence will contain an AP after the execution of finite

ly many DVC's.

Proof: If the graph G has v vertices, lemma 4 and the fact that each

vertex only at most once receives a label, imply that after

(v-1)/2 DVC's a vertex a. with u. = O, or a unmatched vertex b.,
1 1 J

or all vertices have received a label. In the latter case another

DVC will yield a minimum d = d 1 for i = i 0 , and ui becomes zero.

Thus after finitely many DVC's the algorithm will ~urn up at the

breakthrough-routine. Yet to show is that the path P determined by

this routine, conforms to the definition of an AP.

Matching Mand AP with

start in b, ending in

root ao

Matching M, constructed by

taking the complement of M

with respect to the AP

edge, not in matching

edge, in matching

> direction of labelling of an edge in AP

Fig. 3. Example of an AP

First of all we check that taking the complement of the matching

M with respect to P, produces a new matching M, i.e. M satisfies

(2) and (3) (figure 3).

I 7

Now each vertex of G occurs at most once in P, because each vertex

has received a label at most one. We restrict our attention to

vertices of G, incident to P, because to the other vertices of G
-the same edges of Mand Mare incident.

The root a0 and a starting point b. of P do not belong to M, so
- J V

exactly one edge of Mis incident with any of then. A starting

point a. of P belongs to M and not to M.
i V V

To a vertex x EA u Bon P, except the extremal vertices of P, two

edges of Pare incident. One of then is the edge of M incident to

x and hence not contained in M. Then the other one cannot belong
- -to Mand therefore belongs to M. So exactly one edge of Mis in-

cident to x and x EM.
V

If e~ is incident to P and (e~,ebk) ¢ M, there exists a path

(b.,ebk,ea ,a.) c P, of which the edges are not contained in M.
J k i -

Those edges are the only ones incident to eak or ebk in M.

If eak is incident to P and (e~,ebk) EM, either there exists a

path (ai,e~,ebk,bj) .=. P, and the edges of this path belong to M

and not to M, or '(e~, ebk) t P.

In the latter case (eak,ebk) E M. The vertex eak now is incident

to Pin a way as above described for x EA u B: one of the two

edges of P incident toe~ belongs to Mand the other one not,

and after the breakthrough the same holds for M, after exchanging

the edges.
-As the same considerations hold in the case of ebk, M really is a

matching.

The breakthrough does not concern the dual solution, hence with

respect to condition (5) nothing changes. The other conditions,

namely (6), (7), (8) and (9), remain satisfied by the construc

tion of the arborescence. For it consists of admissible edges,

which suffices to maintain (6). A vertex b., once incident to a
. J

matching, is incident to all succeeding matchings, and that proves

18

(8). If wk> O, the arborescence and hence the AP does not contain

(e~,ebk), so (e~,ebk) € M (9). If condition (i) of (7) was

satisfied before the breakthrough, either u. > O, so a. is no
i i

starting point of the AP and a. EM, or u. = O. The same reasoning
i i -holds for the root a0 of the arborescence: a0 €Mor u0 = O.

This completes the check of the optimality conditions and proves

an AP has been found.

Theorem: The algorithm computes a maximum matching in a efficient way.

Proof: The above lennna's imply that after constructing at most m AP's a

maximum matching has been found.

The efficiency has been proven, if the order of the amount of work

to construct an AP is shown to be polynomial inn, m and p.

During the growth of an arborescence at most m + n + 2p vertices

receive a label. Labelling from vertices in EA u B requires a time

proportional top+ n, and labelling from a vertex a€ A a time

proportional top* n, included the time to establish the admissi

bility of an edge. The time due to assigning a label to a vertex

of A, also is proportional top* n. Hence the total time for

assigning labels to vertices of A and from vertices of A, is pro

portional tom* p * n. In a similar way the time involved in

labelling vertices of EB is proportional top* n. So the label

ling requires a time of the order m * n * p. The time for deter

mining a new matching is proportional to the length of the AP and

therefore at most of the order of the labelling.

The order of time of a DVC depends on the computation of the

minima d2 and d4 , hence ism* n * p. As after at most (m+n+2p)/2

DVC's an AP has been met, the time needed for DVC's and also the

time for constructing an AP, is proportional to

(m+n+p) * m * n * p.

The algorithm itself

Assuming O(m) = O(n)
3 2 portional tom p.

Q.E.D.

2 therefore is of the order m np (m+n+p).

and p >> m, the total computing time is pro-

In section 6 a tighter bound will be given.

19

5. A common partial transversal with maximum cardinality

We can determine a common partial transversal of A and B with maximum car

dinality, i.e. with a maximum number of elements of E, by applying the al

gorithm of section 2 and 3 with ck= I for all elements of E. The case

however allows some simplifications.

To see this, assume we proceed according sections 2 and 3. We then con

struct an initial dual solution with u. = 1 for all i, because each set A.
1 1

is non-empty. Next we start growing an arborescence, say with root a0 •

Remark all edges up to now are admissible. If an unmatched vertex b. re-
J

ceives a label, an AP has been found and we continue by determining the new

matching and growing again an arborescence. The alternative is that the

labelling ends by exhaustion, as all u. are 1 and no a. with u. = 0 can
1 1 1

receive a label. In that case the algorithm executes a DVC, resulting in

d = 1 and u0 = 0 after the DVC. So an AP containing zero edges has been

found, starting and ending in a0 • In the sequel of the algorithm a0 is un

matched and never will receive a label again, hence we know a0 will be un

matched in the optimal solution.

Instead of executing a DVC and a breakthrough with AP= 0, we therefore

remove a0 out of G, together with all edges of G, incident to a0 • In the

reduced graph G' we maintain the initial dual solution (except u 0 = 1) and

the matching of G. We continue the algorithm by growing a new arborescence

in G' with root at any unmatched a .•
1

We observe that this method always maintains the same dual solution in the

operative graph G': u. for all a. in G', v. = 0 for all j and wk= 0 for
1 1 J

all k. All edges present in G' are admissible and we do not need explicitly

the dual solution.

Summarized the modifications with respect to the algorithm for growing an

arborescence, presented in section 3, are the following:

The root a0 is an unmatched vertex in the present, possibly reduced graph

G;

20

L3: No breakthrough can occur, all u. being one;
l.

assigns labels to all unlabelled vertices adjacent to a.;
l.

LS: Assign labels to all unlabelled vertices adjacent to ebk, included

e~;

DUAL VARIABLE CHANGE:

Stop growing the arborescence. Construct a reduced graph G' by removing

out of G vertex a0 and all edges incident to a0 •

BREAKTRHOUGH:

The starting vertex of an AP always is a vertex b EB.

The order of the above algorithm depends on the time for growing a maximum

arborescence in G. Each edge adjacent to x EA u EB once is scanned, viz.

during the labelling from x; the time needed for labelling from x E EA u B

is proportional to IEAI + IBI l) = p + m. Because IB. I ~ 1, the total
J

labelling time is proportional to the number of edges of G,
m n

p + I IA, I + l.
i=l 1. j=l

I B. I.
J

The computing time of the maximum cardinality algorithm is proportional

to the number of sets in family A times the number of edges of G.

Another kindred problem is how to select among the common partial trans

versals of ·A and B with maximum cardinality the one with maximum weight

That set could be determined by applying the algorithm of section 2 and 3,

replacing the original weights ck by ck= ck+ M. M must be chosen that

large that the partial transversal with more elements weights more than

the one with less elements, e.g.

A more direct approach however is possible. Suppose the weights ck are

Y denotes the cardinality of a set Y.

21

used in the algorithm of sections 2 and 3. The initial values of u1, ••• ,um

are in the order of M. During a DVC the minimum d will be equal to d2, d3
or d4 , and not of order M, unless all sets involved with the computation

of d 1, d2 and d3 are empty. In the latter cased= d1 holds, say for i = i 0 •

We know that a. will not be matched in the final solution •
. io .

Instead of adJusting the dual solution and afterwards computing a new

matching, we can proceed as follows. We remark the method mentioned below

can be applied also in the standard algorithm of section 2 and 3, and

actually is applied in the ALGOL-procedure of the appendix.

We immediately determine the new matching M by means of the AP starting in

a .• Next we remove a. and its incident edges from the graph G, and thus
io io

get a reduced graph G'. M satisfies condition (0) of (7) and all optimality

conditions so far satisfied except condition (i0) of (7). That condition

however does not occur in G' because of the absence of a. in G'. We thus
io

evade a change of the dual variables of order M, and the variables u. in i
G' still are of order M.

We do not have to specify M. We set u. = max {ck (ai,e~) E D(G)} in the
i k

initial dual solution.

During a DVC we first of all computed'= min {00 ,d2,d3,d4}. If d' < 00 we

adjust the dual solution and continue the labelling as usual. Else we

compute u. = min {u. I a. labelled} and proceed as described above. When
i 0 i i i

we employ the values of ui derived from the original ck, the labelling of

a vertex a. with u. = 0 does not imply an AP has been found, as u. really
i i i

stands for u. + M = M > 0.
i

22

6. Computational aspects

The algorithms of sections 2 and 3 and section 5 have been implemented in

ALGOL and tested on the EL-X8 computer of the Mathematical Centre.

Some results for a series of small problems are given in table 1. In the

randomly generated problems the expectation of the number of elements in

a set A. or B. varies between 2 and 5.
l. J

Table 1.

Max. CPT algorithm Max. card. algorithm
p m = n

DVC's time I)
time 1)

100 25 7 1.3 .4

26 5.5 .9

100 50 32 5.5 .9

70 18.7 2. 1

100 75 24 4.5 1.6

93 26.9 3. 1

1)
1.n seconds

We further restrict us in this section to the procedure for the maximum

connnon partial transversal problem, included in the appendix.

It uses a recursive labelling, which enables us to code the labelling

rather shor.tly. A different order of labelling, e.g. alternately from un

scanned vertices in A and EB, could be preferable.

A second feature of the procedure is how it decides an edge to be admissible.

The procedure initially computes, and if necessary updates, a set of

pointers rb(k), k = 1, ••• ,p, satisfying

= min
j

23

An edge (ai,el\.) is admissible if ui + vrb(k) +wk= ck. An edge (ebk,bj)

is admissible if vj = vrb(k) and (ebk,brb(k)) is admissible; we only have

to decide if (ebk,bj) is admissible, when we already know there exists an

admissible path (ai,e¾_,ebk,bj 1) through ebk, i.e. we know (ebk,brb(k)) is

admissible.

If ebk is matched to bj' the procedure sets rb(k) = j. For the rest rb(k)

has to be updated only after executing a DVC. If for an index k

(e¾_,ebk) EM, or el\. and/or ebk are labelled, or rb(k) is unlabelled,

rb(k) does not change by a DVC. Else rb(k) has to be computed according to

its definition. The time for a complete update of rb(k), is proportional

to l I B. I. . l.
Thel.use of rb(k) decreases the order of time for labelling during the

growth of an arborescence: the labelling time now is proportional to the

number of edges of G.

The most time consuming part of the algorithm is the DVC and in particular

the computation of d2 and d4 • However we can reduce somewhat the order of

the time for the DVC.

Concerning d4, we observe

min
J

{v. I (ebk' ,b.) E D(G), b. labelled} =
J J J

n
and the time for computation of d4 is proportional to l IB. j.

j=l J
To compute d2 we use a second set of pointers minu (k), k = 1, ••• ,p,

satisfying

uminu (k) = min {u.
i l.

a. labelled, (a.,eak) E D(G)}. l. l.

If there is no such i, we set minu (k) = O; we define u0 = 00 •

This computation requires a time proportional to J.(Ai), summed up over all

i with ai labelled. During the next DVC's, as long as no breakthrough

occurs, we only have to evaluate the influence upon minu (k) of those

vertices a. that have received a label since the preceding DVC. So the time
l.

to initially compute and to update afterwards minu (k) during the growth of

24

m
an arborescence is proportional to 2 IA.I, whereas the time for labelling

i=l 1
m n

is proportional to l IA. I
i=l 1

+ 2 IB.I + p. d2 now can be computed as
j=l J

d2 = min {min {u . (k) + v. + wk - ck
k j m1nu J

n
in a time proportional to 2 IB. I.

j=l J

(ebk,bj) E D(G)

ebk and b. in the same state}
.1

e~ unlabelled},

The construction of an AP therefore requires a time proportional to

·IIA. I + LIB.I + P + (n+m+p) *{LIB.I+ p}.
i 1 j J j J

Assuming each element of E occurs at least once in family B, we can sim

plify this formula as IIA.I + (n+rn+p) * 2.IB.I.
. 1 • J
1 J

The computing time for the whole procedure is of the order

If l IA. I is
• 1
1

m * {(n+m+p) * ~IBjl + (IAil}.
J 1

of the same order as IIB.I, and O(m) =
j J .

O(n), the computing time

is proportional to:

the number of sets of a family times

the number of sets of a family plus the number of elements of

E times

the sum of the cardinalities of the sets of a family.

25

References

1. Edmonds, J., "Optimum Branchings",

J. Res. Nat. Bureau of Standards, l!.._! (1967), 223-240.

2. Edmonds, J., "Submodular functions, Matroids and Certain Polyhedra",

pp. 69-87 in R. Guy (ed.), CombinatoriaZ Structures and their

AppZications, Gordon and Breach, New York (1970).

3. Edmonds, J., "Matroids and the greedy algorithm",

MathematicaZ Programming,..!. (1971), 127-136.

4. Ford Jr., L.R. and D.R. Fulkerson, FZOuJs in Neworks, Princeton Uni

versity Press, Princeton (1962).

5. Kuhn, H.W., "The Hungarian Method for the Assignment Problem",

Navai Res. Logist. Quart., I (1955), 83-97.

6. Lawler, E.L., "Optimal Matroid Intersections", pp. 233-234 in

R. Guy (ed.), CombinatoriaZ Structures and thei~ AppZications

Gordon and Breach, New York (1970).

7. Mirsky, L., Transversai Theoy,y,

Academic Press, New York (1971).

26

Appendix

l~IE~,B fBQ,E~YBE MAXl~UM COMMON PA~TIAL TRANSV~RSAL
(0,N,P,tARDA,C,PA,PB,LISTA,LIST~,RA,RH)l
~Al.~E M,N,P,CARDA; J.tlIEGEB M,N,P,CAHUAI
!~I,~~B ABBAX C,PA,PB,LiSTA,LiST~,RA,~BJ

l::Q~tJl:.tlI
INPUT! M, RESP, N IS THE NUl1Bl:.R OF' SE.TS OF F'AMll.,V A1 RESP, B,

P IS THE NUMBtR OF ELEMENTS Uf SET E,
CARDA IS THE SUM OF THE CARUINAL!TIES OF THE SETS OF FAMILY A,
ARRAY C CONTAl~S THE YEIGHT~ OF THE ELEMENTS OF SET E,
PX[Q] CONTAINS THE ADDRESS ut· THE FIRST ELEMENT
OF SET Q OF' F~MILY X iN ~ISTX (X:A 1 6),
THE NEXT ADDRESSES OF LI STX I LJNT IL A ZERO IS Ml!:T 1

CONTAIN THE OTHER ELEMENTS Uf SET Q OF' FAMILY X (X:A 1 8) 1

OUTPUT: IF RA[K]:RB[KJ:Q ELEMENT K UUtS NOT OCCUR IN THE FINAL SOLUTION
ELSE ELEMENT K MATChES SET Hk[KJ OF' FAMll.,V A ANO SET RB[Kj OF FAMILY 8 1

RA[n] IS EQUAL TO THE CARDINALITY OF THI:. SOLUTION ANO
MAXIMUM CO~MON PARTIAL TRAN~VtRSAL TO ITS WEIGHT;

tlf.!aJ.t:l J.~r,12,a , , J, K, K1,G, 11, o, s, s 1, sJ, D, 1 o, u 1, vJ, cK, NA, No, vl'I IN, NA 1;
6QQL.E8tl LEK; J.~IE~EB ~Baai fk~At1:CAADA+Ml,NEWLABEL\111Dl,
F',MATCHA[llM] 1 U,NEXTA[Ul1IJ,M~TC~R,LD[llNJ,V[OIN] 1 LEA,LEB1CW[llP)J

eso,t.:Q!JBE LA Bt.L A (I , l ltAI.UE I l J.tlUliEB I l
!H,lz.1.~ .1.t:1I s,ur,,1NJ NEXTA[llA):= NAI= II ur-1111:a U[lll

J.f. UMl'-1:0 It;j:;~ 81-!EAK A(I); S:: f[lll
f,gB Kl: FA~A[Sl ~g.l.~L K > D QC
.e,~iu s:= s+11 ,E L~ACKJ<u l~~~

.e~!ilJ.U, 11:= HA[KJ1 u; 11,0 It.i,ti
~~~J.U ir U[ll]:UMIN I~,~ 

~,~~~ LtA[KJ!= ll LABEL A(ll) ,ijQ 
t~~ ,~§, J.t CWIKl"VIRS[K!J=uMIN I~E~ 
Q,~.1.U LEA[KJ:: I I LABEL E6(K 1 0) f~Q 

e~Q£~Q~8~ LABEL EBtK,Lll ~8-w~ K,LI !~!'~'8 K,L; 
!!&§..HJ INT s,vr-11N1 LEB[K]I:: LI VMINp: V[RB[KJJJ S:: PF3[KJJ 

EQB J:: LISTB[SJ iLI.1.b~ J > 0 Q~ 
9,~l~ s1= s+11 ~~ L~[JJ<O A VCJJ:VMIN I~,~ 

USl!J.~ t..B[.i)1= KJ L:: MATCHB[JJ; 
J.t L=U I~,U BREAK B(J)J 
LABtL E~(L,J)J .I.~ LEA[Lj<O A C~[LJ=C(Ll I~,~ 
~,~.1.u LEALLl:= u; LABEL A(RA[LJ) ~~Q 



E!:H:l~,QIHH; BREAK 
.e,li.Lt:! EQB I I= 

~f,lilt'll 

A< 1 > : ~IH,11& 1 1 l!::!H!i:rn , 1 
1,L.EAtKll ~Ol~E I , 0 QQ 
Kli: MATCHA[ili "'IA'l'CHA[lll= K:1.J RA[Klll: II 
Kl:= Ki .LE Kl=O I~,~ !i:QIQ BREAK -

E!iitli 
RA[K1JI: OJ BREAK BCL.t:B[Kl]) 

,~1:2; 

eaQ,EQYBE BREAK B(J)J ~,~uE Ji lt:l!'i'B JI 
.e,li.Lt:! EQB J1= J,L.EB[Kll Wol~E J ,- □ QQ 

ElilQ; 

.f;H;~Ut:! MATC.:11B[Jl I= K11: L,B[,Jl l RB[K1) p: J r;1:1~; 
BREAK A(L,t:A[K1]l 

eac,E~YBE DUAL. CHANGEJ 
.L!:!IE~~B ~~BAX MINU[l!Pll eag, MINVj 
6E~.Lt:! VMINI: CK+1J sJ1: PB(Kli 

Et:!C! l 

E.~B J1= h,sru[sJ1 WtjJ.~, J>o 2e ~,~~!::! SJI• SJ+1i !E L,B[Jl<O Itj,!:1 
~E~~t:! VJ1: V[Jll .L~ VJ<VMjN I~E!:1 VMtN1: VJ E!:112 

E!:1121 
CKI= CK•VMINi .LE CK~O IOE~ NEWL.ABEL.L.ING(l.,EKI 

eac, NEWl.,ABE~L,ING(Nt:~ll .egQ~,e!:I NEG; 
.eE~.Lt:! .L~ CK>O I~E!:1 ~E~.L!:I Q1: lJ Orm o~cK ,!:IQ 

,1.i; ~[ 0<10 I~E!::! 01: G+1J . 
NEwL.ABEL.[QJ1= .LE NEG Itjf.!:I •K ,1.i, K 

Et:!121 

EQB K:: 1 ~IEe l ~t:!IlL. P QQ MINU[K]:= 01 10:c NOi• 01 
oco: D1= ULID]I a:: 1;-li:= 'ID; NExTA[NAJ:= O; 

E.QB 11:= NEXTA[lll :!tU,LI.' l:L>O QQ 
ia;Hu u11= U[llll-.Lf: Ui<O !tj'!:I M~J.!:I D:= UIJ 1D1: 11 Et::!l.1i 

s1= f!lllt t:Q~ i<:= FAMA!Sl UjJ.l.fi K>U ~Q 
~,~.L!:I s1= s•1j .LE Ul<UCM!NU[Kll ItjE!:I MINUIKJ:• 11 E!:IQ 

,1:1101 
EQB K;: 
.e,~HI 

El:lC: l 

1 ~IEP, 1 ~t:!+l~ P BQ 
L,EK1: ~EB[KJ~DI ![ L.EAfKJ~0:1.EK I~,~ 
~f;laJ,t:I G:: HINU[Kll .LE: G'Q ItJtl:1 

~,§.LU CK:= D-U[~]+CW(Kl; J.E CK~O I~,1:1 MINV ,~~ 
t~Q ,~§, .LE L.EK I~E~ 
~,~J,U CK:~ cfi<l•CW[Kl; G1= MINUtK!i l~ GfO l~,1:1 

!H;§.Lbl UI:= U[G]-U[RA[Klll .LE Ui<CK J:tjl~ CKI: UI ,ij~l 
CKl~ D•CKi ~E CK~O J:~,U NEWL.ABEL.~ING(t6~~,); 
CKI= UMV[L,E~[Klll MINV 

lf: U(ID]:D J:~6t:I b~EAK AtiD)l ND:: IJAJ 
EQB 11:: NE-XTACOJ,NC:XTA[lll rll;,l.Ll.f; 11, □ OQ Ulll]:= Ufill"!Dl 
ECB J:= 1 ~Ite 1 Yt:1I11., ~ QQ !E 1.,atJJ>a i~,~ vcJJ:= v1J1+oi 
EQS K:: 1 ~Itg l ijUl.LL. P QQ 
DE~lU L.EKI= L.EA!Ki<u; .Li L.EK:L.EB[Kl~O Il;.lt~ 

CW[KJ;: l[ ~LK !~,t:! CWtKJ+D ti.~, CWlKJ•D i~§, l' L.EK A ~A11si=u r~,u 
D,~!U G:: RH[i<J; !E L,d[GJ>C I~,~ 

J~~l~ V~!N:: V[GJ; SJ;: Pd[KJ; 
[98 J;: ~iSTB[SJ] ~O~~E J>O QQ 
a,~l~ 5JI= SJ+lJ VJI= V[Jll lt VJ<VM!N ;~,~ 

e~Gl~ RB[KJ:: Ji VMINI= VJ t~Q 

27 



28 

1 "1 IT l 

t:!l!f2 l 
(OR Q:: 

§~§.Lt:! 

'~" 
o §I[g •l ~~I.Lb 1 Qg 
K;: NEWLABEL[Q]J !~ K<O !~i~ LABEL EB(•KtLEB!•K!) ,~~, 
.Lt LEA[Kl<O Io,~ 
~,ilt:l LtALK)I= i~ LEB[KJ>n • CW(Kl=C[Kl Iu,~ 0 ,~a, MtNUtKIJ 

11:: wA[Kll Lt 11:r Id,~ LABEL E~CK 1 0) ,~~, LABE~ AC Ill 

t:t:lll; 
~Q1'l DCO 

,tJCl DL'/IL CHANGE; 

Kll= NAl= O:: Dl Ut □ l:= V[OJ;: ~6; 
EQB 1 : = 1 :a,e 1 l1HfU!.. I'" llQ u l 1 , : = F c 1 1 : = MA re HA c 1 1 : = 11; 
E~B J:= 1 ~It:e 1 Y~I.Lb ~ QQ vcJJ:= MATCHar.111= o, 
E~B Kl= 1 SI~e 1 Yt:l1lb Pye 
a,~J.t:J CW[K]l: CK::: C[IC)j s,:: PA[K)J SJI• 1.IS'l'B[Pl:HK]]l 

.LE CKSO y LIS~A[SI lsu y SJSU I~~ti RA[K]I= •l ,~~, 
llt:~U:l RA[Kll= ill HLiLK]:: SJJ EQB 11= LISTA[Sll.Wt:1.LI.& I> U gg 

.11,iJ,t:J S I : : S I + 11 F [ I ! : : . F [ I l • 11 
LE Cl-:>U[l J J;l;lt:tl a,iu MATCHA[I]:= Kl U[lll= CK ,tie 

,~c; 
EYB 1 := 1 Sit:e 1 U~l.Lb I'" QQ 
e,~J.t:l K:= MATCHAll]J lE K:u I~t~ §QJ;Q tNll 

F[ I J:: Q;: Q+r[ I j+1l fAMA[QJ:: UJ 
lE RA[Kl*O It:t,t:l ~QIU 1Nn; SJ:: PB[KJ; 
EQB J:: LISTB[SJ] ·~~!~, J>O QQ 
lE MATCHB[JJ*~ ru,t:l SJ;: SJ+1 t:l.ij{ 
~t:Silt:I 'lATChB[J]I: KJ i-lB[K]I= JI RA[K]:: II ~QIQ lr-1 t:t:ltll 

I NO : ;,JEX TA [ r~ A ] : • NA : : I ; 
Jt-11: 
t:tiQ; 
f:QB K:= 
~{.Si.J.t:l 

~~Ql 

1 Sltf 1 Y~1lb P ~Q !l ~A[KJ~O I~,~ 
SI:: 1-'A[K]l f.Qf1 I 1: LiSTA[SI] ~tl.LI., I > 0 QQ 
IJt~lll s1:= 51+1; Q:: F[IJ:= rlll•ll FAMA[Q]:: K ~~0 

Nf;XTA[NA]:: 01 r><AII: 'lEXTA[•J); 

AL•G1it:NT i NC. PAni: 

f:~B I : .. 

~f,~,!.::! 
[JA I :itt:lll.t I f l' Q!:j 
Eg~ J := l ~!~f 1 Y~IlL ~ QQ L~ CJ]:: "l; 

B>lt:11K: 

1;;!:ll.ll 

EQB K :: l ~!&El YUI,!.b P 2Q LEA[Kl:= ~EB[KJ:: •lJ 
'lA:: MATCHA[I]:: 01 NAil: NEXTAll ]I 
LABEL A (I) I DUAL Clll\fHoE; 

CK:= r; EgB Kl= 1 ~Itel U~I~~ P Qg 
i~ RA[KliO !~~t RA[Klt= R~[K):: 0 ~-i' ~,~,!.~ K1:: K1•1l CK:= CK+C[Ki t~Ql 
RA[Ol:= Kll MAXIMUM co~•ON PA>1TIAL TRANSVERSAL == CK 


