
stichting 

mathematisch 

centrum 

AFDELING MATHEMATISCHE BESLISKUNDE 

IN SAMENWERKING MET 
BW 27 /73 

HET INTERUNIVERSITAIR INSTITUUT BEDRIJFSKUNDE 
DELFT/ROTTERDAM 

A.H.G. RINNOOY KAN 
THE MACHINE SCHEDULING PROBLEM 
r 

~ 
MC 

AUGUST 

2e boerhaavestraat 49 amsterdam 

BiBI.IOTHEEK MAfHEMATISCH CSf\!TR-UM 
A.MSTERDM,l 



Punted a:t :the Ma:thema.:ti..cal Cen;tJc.e, 49, 2e BoeJLhaa.vu:tJr.a.at, Am6:teJLdam. 

The Ma:thema.:ti..cal Cen;tJc.e, 6ou.nded :the 11-:th 06 Feb1tu.aJc.y 1946, -l6 a. non
plto 6Lt ..i.n6.ti:tr.Ltlo n a,im,i.ng a:t :the pll.omo:tlo n o 6 pUILe ma:thema.:ti..C-6 a.nd ..l:t6 
a.ppU.c.a.:ti..onJ.. 1:t -l6 .6pon601ted by :the Ne:theJri.a.nd6 GoveJLnment :th/tough :the 
Ne:th<Vli.a.nd6 OJtga.n..i.za.:ti..on 601t :the Adva.nc.ement 06 PU/Le Ruea.1tc.h (Z.W.O), 
by :the Mun..i.c...i.pa.U:ty 06 Am6:teJLdam, by :the Un..i.vell..6Lty 06 Am6:tell.dam, by 
:the F1tee Un..i.vwUy a:t Am6:teJLdam, a.nd by ..i.ndU.6:tluU. 

AMS (MOS) subject classification scheme (1970): 90B35 



BW 27 /73 

ERRATA 

Page 

Page 

Page 

Page 

Page 

Page 

Page 

Page 

Page 

Page 

32 I last 

33, 2nd 

39 I 12th 

39 I 13th 

70, 2nd 

81, 10th 

81, last 

89 I 3rd 

118, l 
119, J 

line for "T II read "-r" 

line for II> 11 read II~ 11 

line for 11 f(l,l) ·- 1 7 II read "f(O,l) = 14 11 

line for "f(l,2) = 2 0 II read 11 f(0,2) = 17" 

line for "increasing" read "decreasing" 

line for "o. II read "o II 

. l 'i t-1 k-1 

line for "s (t)" 
k read 11 CT (t) II 

k 

line add: "Suppose the precedence constraints 

can be renresented by an inverted tree. 11 

for 11 6 11 read "*" 

Page 127, 5th line for "to" read "t". 

Bi&JUOTH!!f!J!. \wlATHENATISCH CEN f!HJ,/'1 

AMSTE~DAl"'I --





Abstract 

This report reviews existing theory on the 
deterministic machine scheduling problem. 
The problem is formulated, the restrictions that 
are usually assumed in literature, are examined 
and several optimality criteria are compared and 
discussed. Known methods to attack the problem 
are described and exemplified. Certain situations 
receive special attention, in particular those 
where there are one, two or three machines, two 
jobs or a number of parallel identical machines. 
The report concludes with chapters on the general 
flow shop and job shop problem and on scheduling 
problems in economic reality. An extensive 
bibliography is included. 
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Foreword 
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a week course on general problems of optimal sequencing, given 
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I have tried to give a comprehensive survey of existing theory, 

that would be interesting both to relative laymen and more 

experienced mathematicians. The former category will perhaps 

want to skip some of the mathematical proofs; the latter 

category might be interested in a more mathematical version of 

this report that will appear in due course. Still, I feel the 

present mixed approach is fairly well suited to a problem that 

has such obvious real-life implications. I hope that any reader 

will at least understand why I think this seemingly easy problem 

so challenging and fascinating to study. 

If the report accomplishes this and perhaps even functions as 

a basis for a continuing interest, I will be very happy. 

Naturally, I would welcome any criticism or additional remark 

that readers would want to make. 

Thanks are finally due to David Bree for reading the manuscript, 

to Jan Karel Lenstra for stimulating conversations, to Elly van 

Buuren for the typing and to Happy for surviving it all. 

Alexander Rinnooy Kan. 
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1. Introduction 

This report aims to give a review of what has become known as 

the machine scheduling problem. This name covers a large class 

of various combinatorial and stochastic problems, all centered 

around the crucial question of the optimal sequence. We may as 

well state right at the beginning that we will deal exclusively 

with non-stochastic situations; this eliminates all theory on 

queues, waiting-lines etc. etc .• However, even within this 

smaller class, there is variation enough. This by itself leads 

to one of the major problems of scheduling research: there are 

so many sides to the problem, so many variations of it and so 

many ways to attack it, that the existing theory consists mostly 

of a great number of individual contributions lacking any 

interdependence or coherence. There simply is not a general 

theory where all these contributions could be fitted into. 

A first step in the right direction, however, might be made by 

gaining some insight in what has been done so far, in order to 

discover gaps, common traits and overlaps. This report is meant 

to be a modest contribution towards that goal. 

Another aspect of the lack of a common language and theory 

is the confusing vocabulary and notation, found in scheduling 

literature. We shall give many definitions and notations in 

chapter 2. However, we point out straight away that we shall 

freely use the words "scheduling" and "sequencing" to designate 

the same activity whereby the processing order of a number of 

jobs by a number of machines is determined. Sometimes a 

difference is made between the two in that sequencing is 

supposed to give only the ordering itself, while scheduling 

explicitly gives starting times and completion times of all 

machine operations (i.e. Ashour 2], Elmaghraby [29]). 

We assume, however, that once the processing order has been 

determined, the jobs will be finished in as short a time as 

possible, and therefore we do not need to distinguish between 

the two concepts. 
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Our interest in scheduling problems is mainly theoretical, 

which does not imply, of course, that we do not look for 

efficient ways to solve them - all combinatorial problems, 

being finite, are theoretically solvable by complete enumeration! 

This means one has to judge the quality of algorithms not (only) 

by looking at their mathematical beauty and elegance, but by 

looking at their computational performance. Although much 

obviously depends on the individual programmer and the computer 

used, we will try to give an impression of the results wherever 

this seems appropriate. 

This report is organized along the following lines. In chapter 2 

we formulate the problem, give notations and definitions of 

basic concepts and examine the many restrictions that are 

usually implicitly assumed in literature. Next, in chapter 3, 

we examine all known methods that have been used so far to 

solve the machine scheduling problem*). The reader of this 

chapter will notice that some methods (e.g. algebraic methods, 

integer programming methods) are dealt with in far greater 

detail than other ones (e.g. branch-and-bound methods, 

combinatorial methods}. This is due to the fact that in the 

following chapters we do not refer any more to the former ones, 

while the latter ones are, used so frequently that examples of 

their application can be found throughout the whole report. 

In chapter 4 we deal with a few special cases where either the 

number of machines or the nµmber of jobs is small, and an 

interesting theory has been developed. We do not avoid giving 

proofs, but do not give unduly lengthy or complex ones. 

*} The only known method that we do not treat, is the general 
non-linear programming approach, advocated by Fisher 
(Lagrangian multipliers, [ 31]} and Nepomiastchy (penalty 
functions, [ 78 J}. It is too early to judge the usefulness 
of their approach. 



Usually, they are not especially instructive and constitute 

mainly of checking if the proposed theorem holds true under 

all conceivable circumstances. The main purpose that could be 

served by publication of all these proofs, is to impress once 

more upon the reader the inadequacy of present combinatorial

analytical techniques for all but the simplest structured 

problems. 

Chapter 5 then deals with the general problems; the best we 

can do here is to present a few elimination methods and a few 

numerical methods whereby an optimum might be found within a 

reasonable time. 

Then, finally, in chapter 6 we take a look at the economic 

realisticness of the scheduling problem and suggest a few 

possible future developments. 

We finish by giving a fairly large bibliography. Though it is 

not complete (as no bibliography ever is), we hope to have 

included all literature that is relevant at this moment. 

3 
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2. Formulation, definitions and criteria 

2.1. Problem formulation 

.The general formulation of the machine scheduling problem that 

we shall use here, is: 

"Given n jobs that have to pass through m machines in a 

prescribed order under certain restrictive assumptions, what 

is then according to some criterium the optimal order in which 

each machine handles the jobs?" 

We shall have to say more about the implications of this 

formulation in chapter 6. However, it should be clear that the 

problem was inspired by a typical real-life situation as it 

exists for instance in so-called job shops. There indeed each 

customer's order must be routed through the necessary machinery; 

materials, tools and labour must be allocated, processing and 

set-up times have to be estimated and a so-called due date is 

agreed upon by which the job(s) should be finished. Obviously 

the management of such an organisation is a complicated task, 

especially where so many different and related decisions have 

to be made continuously. The sequencing decision itself is 

preceded by planning activity and followed by control activity, 

both of them involving economic and technological judgments 

that strongly influence the sequencing decision itself. 

The same complexity is characteristic of many other real-life 

situations where "machine scheduling problems" arise, albeit 

in a different context: the scheduling of classes to classrooms, 

classes to professors, hospital patients to test equipment, jobs 

to computers, cities to salesmen, dinners to cooks, homework to 

pupils etc. etc .. As to the effects of a good scheduling decision 

Mellor [ 66] quotes a list of no less than 27 goals that can be 

attained by good scheduling, with among them items as diverse 

as day-to-day stability of work force and anticipation of price 

changes! 
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Apart from this kind of complexity, many "local" circumstances, 

particular to a real-life situation, and perhaps cropping up 

while a number of jobs is already on its way, might cause a 

change in previously made decisions: a machine has broken down, 

a machine operator has become ill, an important client has 

placed an order which should get priority, a due date is being 

changed, etc. etc •. 

Obviously no theoretical analysis can take all these factors 

into account. The machine scheduling problem does not deal at 

all with questions of "what to produce?" and "how to produce?", 

but only with situations where decisions on these aspects have 

been previously made and will not be subject to change any more. 

Does economic reality justify this simplification? Is it ever 

really possible to separate the sequencing decision in this 

degree from oth~r decisions? Pounds [80] reports that management 

is often not even aware that a sequencing problem exists; there 

are so many decisions to be made that the simple order in which 

each machine handles the jobs is not perceived as an influencable 

and relevant variable any more! 

Still, the abstraction involved in the machine scheduling 

problem-formulation, can be defended in various ways; Elmaghraby 

[29] points out that sequencing decisions are likely to get 

more and more important as the computer takes over many routine 

decisions and as improved operations research techniques perfect 

other ones. Remembering also that it is only through study of 

components of a system, that we can gain understanding of the 

whole, it is not surprising to find that the abstract machine 

scheduling problem crops up in management science literature as 

early as the 1920's. The well-known concept of the Gantt chart, 

while no substitute for decision-making itself, at least presents 

available information about jobs and machines in a clear way and 

was one of the great innovations of the scientific management 

era. 



6 

The modern development of scheduling theory, however, where one 

tries to find an optimal sequence according to a well-defined 

criterium, has its starting point as late as 1954, when 

Johnson's classical paper on the two machine flow-shop (54] 

· was published. Since then many different operations research 

techniques, most of which are mentioned in chapter 3, have been 

tried out on this problem with various degrees of success. 

Quite early the distinction between a deterministic and a 

stochastic approach to the scheduling problem was made; as was 

mentioned in chapter 1 we shall deal exclusively with the 

former situation. 

In this second chapter we introduce the various notations to 

be used throughout this report. More specifically we pay 

attention (in 2.2.) to the rather heavy restrictions, that are 

usually assumed in existing literature, and to the various 

criteria whereby one can judge the qualities of a schedule (see 

2.3.). First of all, however, we give basic definitions and 

notations, and a classification of scheduling situations. 

In all this we adapt ourselves mainly to the conventions of 

Conway, Maxwell and Muller [24] and of Said Ashour [ 2]. 

Let us first talk, then, of jobs, machines and operations. 

A job (task, commodity, production lot, job lot) is obviously 

a product, produced by certain machines. There are n jobs to 

be considered*); they are designated by J 1 , ••• , Jn or by job 1, 

job 2, ... , job n. 

A machine (processor, resource, facility) is capable of 

performing one specific production process. There are m machines, 

designated M1 , ..• , Mm or machine 1, ••• , machine m. 

*) In general, we use capitals for solution-dependent variables 
and lower cast for initially given ones. The only exception 
is the use of capitals for J 1 , ••• , Jn and for M1 , ••. , Mm. 
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A job Jk and a machine Mt together uniquely determine an 

operation to be performed by Mt on Jk and designated as (Jk,Mt) 

or simply as (k,i). The set of all operations is the Cartesian 

product 4j x J(where / = {J 1 , ••. , Jn} and,//= {M1 , ••• , Mm}. 

Operati!ns are the basic elements in the machine scheduling 

problem. With each operation (k,t) is associated a real number 

Pkt' the processing time, indicating the amount of time it will 

take machine t to complete work on job k, and including set-up 

time only in so far as these times are independent of the 

particular order in which machine t handles the jobs. If Pkt= 0, 

this indicates that job k needs not to be attended to by machine t. 

Now an essential characteristic of the machine scheduling problem 

is that the order in which the jobs pass the machines is strictly 

prescribed by, say, technological considerations. That is to say: 

each subset 

(k = 1, ••• , n) 

is strictly ordered by an ordering relation<<: 

where (i 1 , •.• , im) 

We say in the above 

(Jk,M. ) , etc., and 
].2 

whenever ~here is a 

them: 

is some given permitation of (1, ••• , m). 

case that (Jk,M. ) directly precedes 
].1 

we say that (Jk,Mi) precedes {Jk,Mi) 
p q 

chain of directly-precedes relations between 

We can present the information about the route through the 

machines that each job k has to follow, in several ways. One 

possibility is combining all operations into an m x n matrix 
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called the job sequencing matrix S (Ashour [ 2 }) • For instance, 

suppose one has 3 jobs on 2 machines whereby job 1 has to pass 

through M1 and M2 (in that order), job 2 through M2 and M1 and 

job 3 through M1 and M2 , then S would look like this: 

s = 

(Jl,Ml) 

(J 2 ,M2) 

(J3,Ml) 

or just simply: 

s = 

(1, 1) 

( 2, 2) 

(3,1) 

(J 1 'M2) 

(J2,Ml) 

(J3,M2) 

The rows of S convey all information on the routes of job 1, 

2 and 3. 

Another, very convenient way to present this information is 

in the form of a graph; usually two dummy operations are added 

to mark beginning and end of the whole process. Each node 

represents an operation, and a directed arc connects two nodes 

if the corresponding operations have a "directly-precedes" 

relationship, the direction of the arc corresponding to the 

direction of the job route. Furthermore, all operations 

performed on the same machine, i.e. the set 

{(J1 ,Mi), .•• , (Jn,Mt)}, are usually connected by double 

directed arcs, whose significance will become apparent later on. 

These arcs are called disjunctive arcs and a graph of this type 

is usually called a disjunctive graph (Roy [86]). 

In our example the graph would look like this: 
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We will return to disjunctive graphs in 5.4 .. 

Now there are several significantly different types of machine 

ordering per job. The simplest situation seems to exist when 

each job passes the machines in the same order (which we can, 

without loss of generality, assume to be (1, •.• , m)). In this 

situation we speak of a flow shop; we designate it by the 

letter F. 

In a flow shop each job passes the machines in the same 

order, but that does not imply that each machine also handles 

the jobs in the same order. In fact, it is very likely that 

in some optimal sequence one job will "overtake" the other on 

some machine. If in a flow shop this "passing" is not permitted, 

we have a significantly easier problem; we designate this 

si tuatio_n by the letter P. 

If at least two jobs pass the machines in a different order 

(as in our previous example), we are in the most general 

situation. We then speak of a (general) job shop and use the 

letter G. In a job shop, each job has its particular route 

through the machines and these routes may all be different. 
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We have now laid the basis for a classification of machine 

scheduling problems, adapted from the one given by Conway, 

Maxwell and Miller [ 24]. The classification looks like this: 

where: 

A 

B 

Cl 

c2 

= 
= 
= 
= 

number of jobs (n in the general case); 

number of machines (min the general case); 

type of machine ordering per job (F, P or G); 

any other relevant characteristics of the scheduling 

situation; for this, see the next paragraph (2.2.); 

D = the optimality criterium (for this, see 2.3.); 

E = the particular solution method employed (for this, 

see chapter 3) . 

E may be not present and is in fact mainly introduced here for 

use in the bibliography. 

The example we have considered previously, would be classified 

as: 3l2IGID, where Dis the optimality criterium. 

Our discussion so far permits a clearer formulation of the 

scheduling problem.\ The order of the jobs through the machines 

being given by technological requirements, the scheduling 

problem boils down to finding an ordering of the jobs on each 

machine, which is compatible with the technological requirements 

and which leads to an optimal schedule according to one of the 

criteria in 2.3 •. 

The requirement of compatibility is indeed non-trivial. For 

suppose, in our previous example, we propose the solution that 

job 2 precedes job 1 on machine 1 and job 1 precedes job 2 on 

machine 2. We then have a contradiction: 



(J:2 ,M2) << 

(J:2 ,Ml) << 

(J l ,Ml) << 

(J l ,M2) << 

implying 

(J2,Ml) 

(Jl,Ml) 

(Jl,M2) 

(J2,M2) 

(technological requirement) 

(from above) 

(technological requirement) 

(from above) 

so that (J 2 ,M2 ) would precede itself! 

We conclude that we shall have to find efficient ways to 

eliminate these so-called infeasible sequences, and note in 

passing that above-mentioned incompatibility corresponds to 

a cycle in the disjunctive graph, where disjunctive arcs have 

been changed to normal directed ones in accordance with the 

proposed solution. 
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Before we take a look at the many ways in which a sequence 

might be optimal, we look at the severe underlying restrictions 

that have so far almost universally been assumed in scheduling 

literature. 

2. 2. Restrictive assumptions 

In most of the existing literature on the machine scheduling 

problem, many restrictions are assumed to be valid. This, of 

course, increases the artificiality of the problem formulation 

into no unsignificant degree. As we shall deal with criticism 

on these aspects of the formulation in a later chapter (i.e. 

chapter 6), we only repeat here the well-known defenses of the 

large degree of abstraction involved: namely, that this is 

unavoidable, and not essential, that it makes the problem more 

general and that it may well be relaxed in a more advanced state 
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of knowledc_;re. Certainly it cannot be denied that even the 

highly stylized version of the scheduling problem is difficult 

enough to s:olve and that degree of applicability is not the 

only criterium by which to judge the value of mathematical 

•analysis.Also the phenomenon of a developing branch of 

mathematics, being able to deal with more and more complicated 

situations, is well known from the past. However, the fact that 

so very few real life applications of scheduling theory are 

known, and the fact that, of the known applications, most employ 

heuristic (i.e. purposely suboptimal) methods ought to*) worry 

mathematicious engaged in scheduling research, and merits the 

closer look that we shall take at this problem later on. 

Many of the restrictions mentioned hereunder are automatically 

assumed in all existing literature; however, some articles 

distinguish themselves by dropping a few of them. The notation, 

introduced in 2.1., does permit an indication of this. 

Thereby we extend the notation of Conway, Maxwell and Miller [24]. 

We shall mention any restriction that is not assumed, designating 

it by its classification from the list below. A few examples 

of the extended notation will be given at the end of 2.2. and 

3. l. . 

As to the list of all restrictive assumptions, there is an 

interesting duality between jobs and machines that we have tried 

to stress by the order of the items. 

(Jl) The set/ of jobs is known and fixed. 

(Ml) The set,Jtof machines is known and fixed. 

(J2) All jobs are available at the same time ( zero) . 

*) We realize that this is a subjective judgment. 



13 

(M2) All machines are available at the same time (zero). 

(J3) All jobs remain available during an unlimited 

period (i.e. no due-dates). 

(M3) All machines remain available during an unlimited 

period (no labour-shortage, no break-down). 

(J4) Each job is in one of three states: waiting for 

the next machine, being operated by a machine or 

having passed its last machine. 

(M4) Each machine is in one of three states: waiting 

for the next job, operating on a job or having 

finished its last job. 

(JS) All jobs are different. 

(MS) All machines are different. 

(J6) All jobs are equally important. 

(M6) All machines are equally important*). 

As to the interaction of jobs and machines, it is usually 

assumed that: 

(J7) Each job passes all the machines assigned to it. 

(M7) Each machine processes all the jobs assigned to it. 

(JB) Each job is processed by one machine at a time 

(i.e. no lap-phasing, no assembly). 

(MB) Each machine processes one job at a time. 

*) I.e., no one can be missed or replaced by another one. 
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(JMl) All processing times are known and fixed (i.e. 

sequence independent). 

(JM2) Each operation once started must be completed 

without interruption (no pre-emption, no job

splitting). 

The asymmetry between jobs and machines is then due to: 

(JM3) The processing order of each job by all machines 

is known and fixed. 

(JM4) The processing order by each machine of all jobs 

is unknown and has to be fixed. 

Many of these assumptions have been mentioned previously. 

Obviously some of the assumptions have further reaching 

theoretical consequences than others. Simple assumptions like 

(J2) and (M2) can usually be dropped pretty easily. But 

assumptions like (Jl) and (Ml) are fundamental to a large part 

of scheduling theory: they distinguish the static (deterministic) 

problem approach from the dynamic (stochastic) one. As we shall 

deal exclusively with the former problem, these assumptions will 

not be dropped anywhere in. this report. A good introduction to 

the entirely different theory of the dynamic case can be found 

in Conway, Maxwell and Miller [24], chapter 7 - 10. 

It remains now to give a few examples of the extended notation. 

(i) A problem whereby n jobs are to be scheduled on 

one machine with sequence dependant set-up costs 

(assumption (JMl) is therefore not valid) will 

be designated as nlll (JMl) ID where D indicates 

some optimality criterium, e.g. minimum total 

set-up costs. 
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(ii) An-job, m-machine job shop problem, where job

splitting is allowed (see assumption (JM2)), will 

be designated as nlm1G,(JM2) ID, where D again is 

some optimality criterium. 

We now turn to an investigation of optimality criteria. 

2.3. QE_:timality criteria 

When discussing optimality criteria, it is useful to classify 

them in a certain way. Although our theoretical interpretation 

of the scheduling problem is very restricted, so that we cannot 

introduce any criteria that suggest the interdependence of the 

scheduling decision and other ones regarding the production 

process, there still is a surprising variety of criteria to 

choose from. There are many ways to classify them. 

We can distinguish between job-based criteria and machine- or 

shop-based criteria; we can distinguish between criteria based 

on completion-times and criteria based on due-dates (Gere [36]), 

or between criteria based on individual jobs and criteria based 

on the complete sequence (Elmaghraby [29] ); we can also 

classify criteria acco~ding to whether they are time-based or 

cost-based, weighted or not-weighted (weights being attached 

to each job according to its importance, which implies dropping 

assumption (J6)) and single or multiple (Ashour [ 2]). 

Now of these classifications is entirely satisfactory. However, 

for reasons of clarity, we have split the criteria up in five 

groups: 

(1) criteria based on completion-dates and flow-times; 

(2) criteria based on due-dates; 

(3) criteria based on inventory cost and the concept of 

utilization; 
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(4) criteria based on change-over times; 

(5) multiple criteria. 

We shall have more to say about the realisticness of these 

criteria in chapter 6. However, for the present this will 

suffice. 

2.3.1. Criteria_based_on_flow-times_and_comEletion-dates 

We first define the relevant concepts. As usual we haven jobs 

J 1 , .•. , Jn' m machines M1 , ... , Mm, and nm operations 

{(Jk,Mt)} with processing times pk . 
t 

Now, let: 

rk def release date of Jk (the earliest date that 

processing could start, which is equal to zero if assumption 

(J2) is not dropped); 

m 
wk def r Wkt (total waiting time for Jk); 

t=l 

m 
r pkt (total processing time of Jk); 

t=l 

def Ck= completion-date of Jk (the date on which the last 

operation is finished); 

Fk def flow-time of Jk (the time Jk spends in the shop). 

There are a few elementary relations between these concepts: 

Ck = rk + Wk + pk ( 1) 

Fk = Wk + pk (2) 

Ck = rk + Fk (3) 



We can now define a number of frequently used criteria, based 

on these definitions: 
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( l) minimize the maximum completion-date C = max {Ck}; max k 

( 2) minimize the maximum flow-time F = max {Fk} max k 
(this criterium is by far the most frequently used one); 

( 3) minimize the maximum waiting-time w = max {Wk}; max 
k 

( 4) minimize the completion-date c l }: Ck; average = n 

( 5) minimize the flow-time F l }: Fk; average = n 

( 6) minimize the waiting-time w = l }: Wk. average n 

Now, (4), (5) and (6) are really special cases of: 

(7) minimize the weighted sum of completion-dates 

rakck' where ak indicates the relative importance of Jk (dropping 

assumption (J6)); 

(8) minimize the weighted sum of flow-times LakFk; 

(9) minimize the weighted sum of waiting-times Lakwk. 

However, we have from (2) and (3): 

so, Lakpk and Lakrk being sequence-independent constants, (7), 

(8) and (9) are equivalent criteria, as are (4), (5) and (6). 
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However, the Cmax and Fmax criterium need not be identical, 
unless of course rk = 0 for all k, in which case Ck= Fk. 

Also, the Fmax-criterium does not need to be equivalent to the 
• F-cri terium. 

Example: suppose we have a 2l3IG1Fmax problem with matrix S: 

S = (< 1, 1) 

( 2, 1) 

(1,2) 

( 2, 3) 

and processing times Pkt: 

= 1 

(1, 3)\ 
(2 ,2)/ 

= 2 

Using the well-known concept of a Gantt-chart to depict possible 

sequences, we find two optimal sequences where Fmax = 8: 

and 

2 1 

1 2, 
I en 

I 

2 1 
C7 C7 

2 1 

2 1 
□□ 

2 
t:::::1 

1 
r:::J 



However, in the first sequence F = ~(8+7) 
- 1 1 second one F = 2 (8+5) = 62 . 

= 7l and for the 
2 
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Equivalent properties of many optimality criteria led to the 

concept of a regular measure (Conway, Maxwell and Miller [24] ). 

This is a function of the completion-dates ~(c 1 , .•• , Cn) that 

is monotone in each variable: 

one k. 

Cmax' Fmax' Wmax' C, F, W, Eakck, EakFk and Eakwk are all 

regular measures. 

Usually we shall assume that rk = 0 for all k, in accordance 

with assumption (J2), and that therefore Fk =Ck.Any departure 

from this convention will be clear from the context. 

2.3.2. Criteria_based_on_due-dates 

We drop assumption (J3) and assume due-dates dk have been set 

for each job Jk. We can now define: 

Here we have the elementary relation. 
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Again, we can define a number of optimality criteria: 

(10) minimize L = max {Lk}; max k 

(11) minimize T = max {Tk}; max k 

(12) maximize E = max {Ek}; max 
k 

(13) minimize L 1 r Lk; = -n 

(14) minimize T 1 r Tk; = -n 

(15) maximize E 1 r Ek; = n 

Now (13), (14) and (15) are again special cases of (16), (17) 

and (18) respectively. 

Furthermore, we find by definition: 

so that, Eakdk being a sequence-independent constant, (13) is 

equivalent to (4), (5) and (6) and (16) is equivalent to (7), 

( 8) and (9) • 

No such easy formulas exist for tardiness and earliness. 

Still, especially the former is a very realistic criterium; 

often the only concern of management is to finish a job on time 

or failing that, as soon as possible after the due-date. There 

is no extra premium in that situation on being finished well 

ahead of the due-date. 
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2.3.3. Criteria_based_on_inventory_cost_and_utilization 

We may judge the quality of a schedule by looking more closely 

at what happens in the shop during the whole production process. 

Important measures to be considered are then: 

time t; 

def Nf(t) number of jobs finished at time t; 

Nw(t) def number of jobs waiting to be processed at time t; 

def N (t) number of jobs actually being processed at p 

Af(t) def work finished, i.e. sum of the processing times 

of all operations finished at time t; 

A (t) def work remaining, i.e. sum of the processing 
w 

times of all operations that still have to be performed at 

time t; 

A (t) def work in progress, i.e. sum of the processing p 
times of all operations performed at time t. 

By definition: 

Now, if we consider all averages to be taken over the period 

(0, F ) , we see that: max' 

(1) Np+ Nw gives an indication of average in-process 

inventory costs: 

(2) Nf gives an indication of average inventory costs 

for finished products; 
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( 3) AP should be high, and depends heavi.ly 

on the average length of Pkt" 

By looking at the illustration below, where the jobs are 

·started and finished in order (1, ..• , n), we see directly 

that in this case the following relation holds: 

I 
I 

' • 
3 

2 

1 

-->• time 

N (t)+N (t) 
p • w 

F n-1 F max 

It is not difficult to prove that the same type of relation 

holds it rk f o for all k and if the jobs are not completed 

(4) 

in arrival order (see Conway, Maxwell and Miller (24], page 

15-20). (In fact, all these relations are special cases of the 

fundamental equation of dynamic scheduling theory: 

N + N = AF p w 

where A is the mean rate of j.ob arrival. This equation holds 

true under very general circumstances). 



We return again to (1). It is trivial to prove in the static 

case: 

N p 

so we conclude: 

N = w 

and 

= 
Fmax 

(N + N) = p r 

n W 
F max 

n (F - F ) 
max 

F max 

( 3) 

( 4) 

F = n - n. F max 

As to Af, A and A, it is not so easy to derive comparably 
r p ) 

simple formulas for Af and Aw*. We can easily, however, 
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construct the graph of A (t) for an example Gantt chart below. p 

Ml 

Mr, ~-

M3 

A p 

l 

1 2 

F7 D 

1 

2 1 

I D 

--+) time 

2 

Fl 
max 

F max 

*) In fact, Af can be written as a complicated weighted sum 
of the Wki' but this does not seem to lead anywhere. 
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It is easy to verify from this drawing that 
2 

1: Pkt 
A = k,i (5) 

P Fmax 

·so that any sequence minimizing F maximizes A. max p 

There are two further measures here that require attention. 

However, if we define idle time I 1 on machine i to be the time 

that the machine is not used between O and Fmax*), it appears 

that the sum of idle times is equal to 

m F 
max 

so that minimization of Fmax ensures minimal (weighted) idle 

times. 

A more important measure is that of utilization, which reflects 

the necessity of intensive use of available machinery because 

of fixed costs caused by depreciation allowance etc .• 

Utilization is usually defined as 

1: Pkt 
U = _k..._,_i __ 

m Fmax 

which implies again that maximum mean utilization is equivalent 

to minimum Fmax· 

Combining this with (4), we get: 

< 1: Pkn>. (N + N) p(N + N) 
U= ki Jt., p w =--P __ w_ 

m n F F 

where pis average processing time; this equation again plays 

a fundamental role in dynamic theory. 

*) This definition is not used by Ashour [ 2], which leads 
to an error on page 51. 
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2.3.4. Criteria_based_on_change-over_times 

For the sake of completeness we have added criteria based on 

change-over costs to own list. This criterium implies assumption 

(JMl) is partly dropped. In fact, only one criterium has been 

extensively studied, namely the minimization of total change

over times in the nil situation, where these times c .. - when 
1) 

changing from job i to job j -, are sequence-dependent. This 

problem is equivalent to the well-known travelling-salesman 

problem; we shall return to the subject in 4.2.4 .• One could 

view a nlmlF problem, where to object is to minimize total 

sequence-dependent change-over costs, as an extended travelling

salesman problem, where each "city" gets ·visited in the same 

sequence by all the (more and more experienced) salesmen! 

The other situation of interest is the situation wherein we 

have to satisfy a given continuous demand for several products, 

produced by one machine. The object then becomes to minimize 

the number of change-overs in a certain time-interval (Glassey 

[41]). We will return to this problem in 4.2.4 •. 

2.3.5. MultiEle_criteria 

In actual situations it happens frequently that we have to take 

into account not one, but several criteria at the time. This 

leads to general problems of decision-making with multiple 

objectives. We have to combine all the objectives into one 

measure whereby one can judge alternative outcomes. Several 

general methods have been developed so far (see the review by 

Roy [87]). One could, for instance, order all possible outcomes 

lexico-graphically, i.e. completely order the objectives, choose 

the outcome which scores highest on the first objective, break 

ties by means of the second objective etc.; or one could attach 

weights ak to each objective Ok and combine them into a linear 

function rakOk; alternatively one could get goals for each 
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objective and try to minimize the (weighted) sum of the 

differences between goal and actual value of each objective 

function, etc. etc.*). There is no doubt that multiple objective 

decision-making is a frequently occurring problem, especially 

in strongly areas like scheduling where decisions are influenced 

by many factors. However, there are doubts about the applicability 

of the afore-mentioned mathematical methods, and in any case 

little scheduling research has been conducted along these lines. 

In fact, only two studies are known, one by Smith [93] and one 

by Florian et al. [17], where F respectively Fmax is minimized 

under the side condition that T = o. We will return to these max 
studies in 4.2. too. 

We conclude this section by giving a short review of all 

criteria mentioned so far. We have split them up in equivalent 

groups, equivalence meaning that the same sequence(s) is (are) 

optimal for all criteria in the group. 

The groups are: 

( 1) 

(2) 

(3) 

(4) 

(5) 

w max 

C, F, W, L 

*) Ashour [ 2] gives a worked-out example of several 
techniques. 



(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

( 13) 

(14) 

*) 
Tmax 

E max 

if 

E 

If we look at this list, it is not so surprising that most 

work has been done so far on groups (2), (4) and (5). 
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A comparison of all these criteria would be interesting; the 

only studies we know of are by Gupta [45], and by Ashour [ 2) 

(for just one example). We will return to the former study in 

chapter 6. 

*) Actually, the sequence minimizing Lmax also minimizes Tmax 

(but not necessarily vice versa): if 

L (s') ~ L (s) max .. max 

for all sequences s, then: 

max (O,Lmax(s')) = Tmax(s') ~ max (O,Lmax(s)) = Tmax(s) 

for alls. 
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3. Methods of solution 

3.1. Introduction 

·The machine scheduling problem is a typically combinatorial 

optimization problem where the optimum is to be found among a 

large, but finite number of possible solutions. 

Most methods to attach this kind of problem typically try to 

reduce the set FS of all feasible schedules to a smaller set 

POS of potentially optimal schedules and look for the optimum 

within this smaller set. No general efficient method has so 

far been developed, the discreteness and the resulting 

"discontinuity" of the optimality criterium function leading 

to very difficult problems. 

The machine scheduling problem belongs to a group of problems 

that center around the concept of an "optimal sequence". In 

his book [70], devoted to these problems, Milller-Merbach 

mentions four general solution methods for these problems: 

(1) complete (explicit) enumeration; 

(2) tree searching algorithms; 

(3) heuristic methods; 

(4) special algorithms. 

Now (2), according to Milller-Merbach, consists of the following 

methods: 

(2a) dynamic programming; 

(2b) branch-and-bound procedures; 

(2c) implicit (bounded) enumeration, 

and (3) can also be further split up: 

(3a) non-iterative methods; 

(3b) iterative methods, 



(3a) and (3b) usually being used simultaneously. (4) consists 

of a few special algorithms that have been developed with 

analytical methods. 

29 

We shall not pay specific attention to (2c), by which Muller

Merbach means any technique by which a (heuristically found) 

solution is being gradually improved. Only a few applications of 

this method are known in machine scheduling; anyhow, the 

methodological distinction between (2c) and (2b} is not at all 

clear. We shall in what follows pay attention then to (1), (2a), 

(2b}, (3) and (4), where (4) shall be interpreted as to include 

all combinatorial-analytical theory available on the machine 

scheduling problem. Furthermore, we shall remark on the 

application of integer and linear programming techniques to 

the machine scheduling problem and we shall study two methods 

that have been specifically developed within the machine 

scheduling context, namely the algebraic methods of Giffler [ 37] 

and Rial [ 83 J and the application of sampling techniques by 

Heller [ 49] and other researchers. 

Mainly for use in the bibliography abbreviations for each 

solution method are pr~posed in the heading of the section 

describing it; i.e. CE= complete enumeration, etc .• 

nlmlGIF ICE would then indicate a complete enumeration max 
solution to the nlmlGIFmax problem. 

3.2. Complete enumeration (CE) 

We can be short on the subject of complete enumeration. In the 

nlmlG problem there are (n!)m possible schedules, a number 

that soon reaches astronomic proportions. For instance, 

(5!) 5 ~ 3.10 10 , which implies that if a computer would evaluate 

100.000 schedules a second, it would still take 3.10 5 seconds 

or approximately 1 year of computing time to evaluate all of 

them. 
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In the nlmlF problem, there are for theoretical reasons in some 
cases (depending on the criterium) "only" (n!)m- 2 schedules to 

enumerate (m ~ 3), whereas in the nlmlP problem, the order of 

the jobs on each machine is identical and therefore only n! 

.different schedules have to be evaluated. However, this number 

also soon outgrows any computer-feasible size. 

It may be noted, however, that of the (n!)m different schedules 

of the general job shop problem, many will be infeasible 

because of incompatible job- and machine-orderings. Supposing 

we have an efficient algorithm to eliminate these infeasible 

schedules, could we then enumerate the remaining ones? In 

general the answer is no, since the number of feasible schedules 

nF is bounded by can be quite high as well. In an nlmlG problem, 

where each job passes all machines, the situation closest 

resembling the nlmlF problem (where all (n!)m sequences are 

feasible) is the one in which all jobs pass all machines in the 

same order (1, ..• , n) except for one job which passes machine 

(t+l) before machine t. This leads to (n-1) unfeasible schedules: 

a very small reduction indeed! 

3.3. Integer and linear programming (IP) 

There have been several attempts to solve the machine scheduling 

problem by formulating it as an integer programming problem, 

which in the most general form looks like this: 

minimize c 1x + c 2Y 

subject to: 

X ~ 0 

Y ~ O, integer. 
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For a general survey of integer programming, see Beale [ 12], 

Balinski [ 11 ] or Geoffrion [ 35 ] . 

The oldest attempts to solve the machine scheduling problem 

along these lines are by Bowman [ 16] and Wagner [ 102]. 

Bowman uses O - 1 variables X. 'k where X. 'k = 1 indicates that 
lJ lJ 

job i is processed on machine j in period k. 

This leads to restraints of the type: 

T 

}:; X. 'k = o .. lJ - lJ (i = 1, ... , n; j = 1, ... , m) 
k=l · 

where Tis the scheduling period. If job splitting is not 

allowed, constraints of the type: 

T 

p. . ( X . . k - X. . k+ 1) + }:; X . . o ~ P .. 
lJ lJ. lJ, !=k+ 2 lJ~ -i7 

(i = 1, • • • I n; j = 1, •.• , m; 

k = 1, ... , T) 

have to be added, so as to prevent a !-variable to be followed 

by a a-variable and a 1-variable in that order. 

As each machine may only handle one job at the time, we have 

constraints: 

n 
L X. 'k ~ 1 

i==l lJ 
(j = 1, ..• , m; k = 1, ..• , T) 

The prescribed machine ordering for each job is reflected by 

constraints of the type: 

( 1) 

( 2) 

(3) 
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(k = 1 , .•• , -r} 

for every given direct-precedence relation (i,j 1 } << (i,j 2}. 

Bowman suggests an optimality criterium function of the form: 

n n 
l.i:lxijit + 4-i!lxiji,t+l + ••• 

n 
+ 4t'-t I: x . . 

i=l l.J i -r 

where ji is the last machine job i has to pass through and 
m 

t = max 
i 

I: p ..• 
j=l l.J 

(4) 

The number of variables equals nm-r, and the number of constraints 

equals m[n(2-r+l} + -r] for the general problem. Apart from the 

curious optimality criterium, it is clear that the number of 

0 - 1 variables is excessively large and that this formulation 

could hardly be called practical. 

The reason to mention this approach here is that a similar 

formulation by Von Lanzenauer and Himes [ 48] forms the only 

possibly successful linear programming approach to the problem. 

We again have constraints (1) and (3), but job splitting is 

prevented here by introducing variables Yijk' where 

if xijk - xij,k+l = 1 

otherwise 

and demanding: 

yijk ~ xijk - xij,k+l 

T 
I: y. 'k = 1 

k=l l.J 
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Direct-precedence relations (i,j 1 ) (i,j 2 ) are reflected by 

t t+l 
r y .. k - r y iJ' 2k > 0 

k=l l.Jl k=l 
(t= 1, ... , -r) 

Now we need to make sure that job i is processed on one machine 

at a time: 

m 

r X. 'k ' 1 j=l l.J 
(i = 1, ... , n; k = 1, ... , -r) 

We can reduce all summations by restricting them to feasible 

time periods. We can now use Bowman's criterium again. The 

essential point to notice now is that, by introducing Yijk' 

we have succeeded in making all coefficients equal to +l or -1. 

We would therefore not be very surprised if a linear programming 

algorithm applied to this problem, would produce an integer 

solution, just as happens in the case of a transportation problem. 

However, computing experience with this algorithm is small, 

and an integer solution cannot be guaranteed. The latter fact 

reduces this algorithm effectively to a heuristic (suboptimal) 

one. 

Wagner's approach is quite different and in fact only suitable 

for the nlmlP problem. We give a formulation for the nl3IP 

problem, where "only" n! sequences have to be considered. 

The permutation is determined by O - 1 variables X .. where 
l.J 

X .. = 1 indicates job i comes in position j, with 
l.J 

n 
L X .. = 1 

i=l l.J 

n 
r X .. = 1 

j=l l.J 

( j = 1, ... , n) 

(i= 1, •.• , n) 

To ensure that jobs are processed by one machine at the time 

in the right order, and that one machine only processes one 

job at the time, variables Sit and Uii are introduced where 

Sit= idle time on machine i between the i th job and 

the (i+l) th job; 

(5) 

( 6) 
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Uit = waiting time of the i th job between machine 1 and 
machine ( 1+ 1) 

and constraints of the following type (see the drawing): 

kth job 
8k2 

(k+l) th job 

M2 I t 

(k-1) th job k th job 
8k3 

(k+l) th jQb 

M3 n ' ,-uk2--f 

or 

kth;ob 
I 

(k-1) th job (k+l) th job 

n n 
8k2 + i:lpi2xi,k+l + uk+l,2 = uk2 + i:lpi3xik + 8k3 

(k = 1, ••• , n-1) 

n 

i:lpilxi,k+l + uk+l,2 

(k = 1, ••• , n-1) 

Wagner chooses to minimize 

(7) 

(8) 
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n 
which is equal to F - r p. 3 . The number of constraints is 

max i=l 1 

(4n - 3). He tries to solve the problem by using an all-integer 

dual algorithm, created by Gomory. In chapter 14 of the book 

by Muth and Thompson [96], however, he has to report that he 

has "not yet found an integer programming method that can be 

relied upon to solve most machine sequencing problems rapidly". 

A much better formulation is given by Manne [64]. He solves 

the nlll IFmax problem by using variables Tk to indicate the 
starting time of job k.(Manne restricts himself to integer Tk, 

but they may as well be real). Writing p 11 , .•. , Pnl as 

p 1 , •.• , pn' the fact that job j either takes place before or 

after job k, in indicated by: 

or Tk - T. ➔ p. 
J J 

This is converted into one inequality by using O - 1 variables 

Yjk and a constant C which should be larger than all possible 

values of T. (j = 1, ... , n). 
J 

Now the restrictions: 

(9) 

(10) 

(C + p.) (1 - Y.k) + (Tk - T.) ~ p. 
J J J J 

are together equivalent to (9): if Yjk = 0, (10) becomes 

Tj - Tk ➔ pk, and (11) is trivially true; if Yjk = 1 we get 

Tk - Tj ~ pj. 

Other precedence relations (assumption (JG) being droppee), 

(11) 

such as job j precedes job k, are given by trivial inequalities: 

(12) 
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etc. etc •• Due-dates can also be incorporated: 

( 13) 

·Putting 

(k = 1, ••• , n) 

we can then minimize T. 

Manne gives no computing results, and only indicates vaguely 

that this approach could be generalized to the nlmlGIFmax problem. 

However, this is trivial: taking Tki as the starting time of 

operation (Jk,Mi) we have 

or 

for all pairs j,k*). The prescribed machine order for each 

job is given by 

for every directly-precedes relation (k,m) << (k,i). 

Again we can introduce due-dates: 

(k = 1, ••• , n) 

(14) 

(15) 

(16) 

where jk is the last machine for job k (dropping assumption (J3)) 

and we can also easily drop assumptions (J2), (M2) and (M3): 

*) This can easily be generalized to the situation where a 
job does not necessarily pass through all the machines. 

( 1 7) 
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(k = 1, .•• , n) ( 18) 

(k = 1, ••• , n) (19) 

where ( 18) and (19) indicate the limited availability of machine 

i and ik is the first machine of job k. Sequence dependent set

up times cjki (when job k follows job j on machine i) can be 

easily introduced in (14) , so that assumption (JMl) can also 

be dropped. 

The inequalities under (14) can again be combined into one 

inequality by introducing the O - 1 variable Yjkt and a large 

constant C and demanding 

We can then minimize T where 

(k = 1, ••• , n) 

and have a mixed-integer programming problem. 

(20) 

(21) 

This formulation is given by Balas [ 7], Gupta [ 47] and 

Raimond [ 81]. Balas solve the problem by his more generally 

applicable filtermethod and Raimond uses a direct-search method; 

however, both methods effectively boil down to a branch-and

bound method, which in the case of Balas is introduced in 

another article by him (Balas [ 8]). 

We think one may safely conclude by now that the elegant 

formulation of scheduling (and so many other) problems by means 

of O - 1 variables insufficiently takes into account the special 

structure of the scheduling situation. Therefore it is highly 
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unlikely that a general integer programming method will ever 

provide the most efficient way to solve scheduling problems. 

3.4. Dynamic programming (DP) 

There is no need to describe in detail here the familiar method 

of dynamic programming, due to Bellman. Good examples can be 

found in Beckmann [ 13] and Milller-Merbach [ 70]. Applications 

of this technique to general sequencing problems are quite 

numerous, but to the machine scheduling problem they are 

comparatively rare. We shall give an example, due to Lawler 

and Moore [ 59], which demonstrates the usefulness of the 

approach for a series of nil problems. Suppose jobs J 1 , ••• , Jn, 

to be performed in this order, can be handled in two different 

ways. In the first way Jk requires gk units of time, and a loss 

of yk(t) is incurred upon completion of Jk at time t; in the 

second way the time required is Sk units and the loss crk(t). 
We want to minimize the total loss. 

Now let 

f(k,t) = minimum total loss for first k jobs, job k 

being finished no later than t. 

By a typical dynamic programming argument, we see: 

· (k = 1, ••• , n; t ~ 0) 

We put: 

f(0,t) = 0 (t ~ 0) 

f (k,t) = oo (k = 0, ... , n; t < 0) 

(19) 



and solve our problem by calculating f(n,T) where Tis 

sufficiently large (e.g., T = E max (gk,sk)). 
k 

A small example will clarify this method. Suppose we have two 

jobs J 1 ,J2 ; g 1 = 2, g 2 = 1, s 1 = 1, s 2 = 2; yk(t) = 2t, 

crk(t) = 3t. Taking T = 2 + 2 = 4, we find: 

f(2,2) = min 

f(2,l) = 00 

4 + f(l,1) =~ 

6 + f(l,O) = 00 

f(2,3) = min 6 + f(l,2) = 9 

9 + f(l,l) = 12 

8 + f(l,2) =@ 

f(2,4) = min 8 + f(l,3) = min 14 + f(l,l) = 17 

17 + f(l,2) = 20 

12 + f(l,O) 

12 + f(l,l) = min 14 + f(0,-1) 

15 + f(O,O) 
12 + f(l,2) = min 16 + f(O,O) = 16 

18 + f(O,l) = 18 

from which we see: f(2,4) = min (7,11,15) = 7, reached by 

producing J 1 in the second way and J 2 in the first way; J 1 is 

ready at t = 1, J 2 is ready at t = 2 and the costs are 

1 X 1 + 3 X 2 = 7. 
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= 00 

= 00 

=® 
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We apply this to a nil problem. Suppose n jobs have processing 

times pk and a common deadlined, and suppose we have loss 

functions 

(t ~ d) 

(t > d) 

n 
We want to determine a sequence so that E ck(t) is minimized. 

k=l 
This boils down to partitioning the jobs in two classes: those 

that will be completed on or before d and those that will be 

tardy. The :first group will be sequenced according to the ratio's 

pk/ak (the :job with the smallest ratio first - see 4.2.1.), 

the second c;roup follows in arbitrary order. 

We can solve this problem by ordering the jobs by their pk/ak 

ratio, putting 

s = 0 k 

and applying (19). 

t 
Now suppose ak is given and a deadline dk is given for every 

job. We put Sk = akdk and choose d so that akd ❖ Sk (k = l, .•• ,n). 

Then the sequence minimizing E ck(t) also minimizes E c'k(t) 
k where 

so it maximizes E c"k(t) where 



c" (t) 
k 

This is true because the graphs underneath immediately show 

that c"k(t) = -c'k(t) + Sk. 
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ck(t) 

---- c'k(t) 

-•-·-·-· c" (t) k 

----------

·-·-·-·-·-·-·-
d 

We see that, by choosing Sk and din this way, we have 

effectively maximized EakEk' the weighted sum of earlinesses, 

so that we have solved the nlll IEakEk problem! Notice that 

EakEk is not a regular measure. 

We shall return to the formulation of Lawler and Moore in 4.2., 

when we consider the nlll IEakTk problem. 
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3.5. Branch-and-bound methods (BB) 

One of the most promising techniques for solving optimization 

problems is the technique called "branch-and-bound". Originally 

.developed by Land and Doig in the context of integer programming, 

it is being applied to a growing number of problems such as 

non-linear programming, the quadratic assignment problem and 

the travelling salesman problem, where it was used in the 

classic paper by Little, Murty, Sweeney and Karel [62]. 

A fairly recent survey is given by Lawler and Wood [58]. 

A general description of a branch-and-bound algorithm, shall 

be given now. In general, the set of all possible solutions 

to the minimization problem is being split up stepwise in 

disjunct subsets. For each subset a lower "bound" is calculated: 

the value of the objective function for each solution in the 

subset will be larger than or at least equal to this lower 

bound. We then choose a subset from where we can "branch"; 

this could be the one with the presently lowest lower bound, 

but an other way to choose is possible and will be mentioned 

later on. "Branching" now implies further splitting up the 

subset in disjunct parts. As soon as one of these subsets 

contains only one element,.we have a complete solution for 

which we can calculate the value V of the objective function. 

We can from then onwards disregard all subsets with a lower 

bound greater than V; no improvement can be found in them. 

We continue the branching and bounding, continuously comparing 

lower bounds, with the present best complete solution, until we 

have a complete solution whose value is smaller than or at 

least equal to all remaining lower bounds. This solution is 

the desired optimum one. 

We see then that a branch-and-bound algorithm is determined by 

three prescriptions: 



(1) the bounding prescription, i.e. how to calculate 

a lower bound; 

(2) the branching prescription, i.e. how to split up 

a subset of solutions; 

(3) the searching prescription, i.e. how to choose a 

new branching point. 
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Now (1) obviously is very important and the quality of any 

branch-and-bound algorithm is mainly determined by the sharpness 

of the bounds. 

Rules with regards to (2) are often incomplete in the sense 

that they do not uniquely determine how to split up the subset 

under consideration. Various heuristic rules may then be 

employed to arrive at the definite splitting. 

Finally, (3) is sometimes not explicitly given in literature, 

and is mainly an administrative matter. Basically one can 

distinguish two different approaches: 

(3a) branch from the subset with the present lowest 

bound ("frontier search"); 

(3b) branch from the most recently created subset 

("newest active node">*). 

Method (3b) usually leads to more branching operations than 

(3a), but requires little computer storage (of the pushdown

stack type), whereas (3a) demands large space for the storage 

of intermediate data. 

*) One could combine the two by branching from that subset 
among the most recently created ones, that has the lowest 
bound. 
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Branch-and-bound methods have been very successful in solving 

sequencing problems in general and some machine scheduling 

problems in particular. Various examples will be dealt with 

in other sections; especially in the njmjG problem branch-and

bound methods have been used extensively. However, a recent 

article by Bratley, Florian and Robillard [34] indicates that 

already a l0ll0IG problem poses great problems and can probably 

not be solved solely by branch-and-bound methods. 

Nevertheless, branch-and-bound methods have heuristic value 

as well; if one is willing to be satisfied with a solution 

within, say, 10% of the optimum, and a complete solution with 

value Vis known, all subsets with lower bounds greater than 

llV/10; this should speed up calculations considerably. 

We purposely refrain from going any specific example at this 

point as we have done in other sections. As mentioned before, 

applications of branch-and-bound methods are so numerous 

throughout this report that they will sufficiently illustrate 

the power of this method. 

3.6. Combinatorial-analytical methods (CA} 

By combinatorial-analytical methods we mean all theoretically 

derived results whereby either the set FS of feasible solutions 

is effectively reduced to a much smaller set POS of potentially 

optimal ones, or a constructional method to find the optimum 

is explicitly given. 

In the first case, results usually have the form: "if a sequence 

has property P, this sentence can never be optimal", "there 

exists an optimal sequence with property P" or "any optimal 

sequence has property P". The third formulation is much stronger 

than the second one: propositions of the second type are not 



necessarily "additive", by which is meant that, if we have 

a number of these propositions referring to properties 

P 1 , ... , Pn, this does not imply that there is one optimal 

sequence which has all of these properties. 
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In the se~cond case, the problem is, of course, solved: we have 

a constructional method that enables us to find an optimal 

sequence .. Results like this are, however, comparatively rare 

in machine scheduling theory and they are generally confined 

to very simple situations, such as the nj2jFjFmax problem, 

solved by Johnson's classic paper [54] in 1954. 

Many examples of these results will be given throughout this 

report, so again there is no need to go into details here. 

Nevertheless, it would be nice if one could give a few 

generally applicable results here. The theory of combinatorial 

optimization, however, has hardly been developed so far and 

the only interesting theorem was given by Smith [93] in 1956: 

Theorem 3.6.A: a sufficient condition that f(i) ~ f(TT) for 

all TT, where f is a real function defined on permutations TT 

of (1, .... , n) is that: 

(1) there exists a function g, defined on ordered 

pairs (k,1) such that, if 

TT = ( i l , ... , ik, ik+ l , ... , in) and 

TT' = ( i 1 , ... , ik+ 1 , ik, ... , in) , then 

f(TT) ~ f(TT') if g(ik,ik+l) ~ g(ik+l'ik) i 

(2) TT is such that k precedes 1 if g(k,1) ~ g(1,k). 

Proof: in any TT+ i, we can interchange the pair (ik,i1 ), where 

i 1 immediately precedes ik in TT, but follows ik in TT. By (2), 
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g(ik,ii} < g(ii,ik}, so by (1) the interchange does not 

increase f(~}. 

The situation is even simpler when g is function of one 

-variable only, k preceding i, if g(k} < g(i}. In this case, 

g is necessarily transitive; in the general case, if 

g(k,i} < g(i,k} and g(i,m} < g(m,i}, it does not necessarily 

follow that g(k,m} < g(m,k}. So one has to check if a sequence 

(i 1 , •.• , in} where k precedes i if g(k,i} < g(i,k} can be 

constructed at all. 

No general constructional method for g is given, but in general 

one interchanges elements ik and ik+l and tries to write the 

resulting change in the value off as a function of these two 

elements only. A more abstract formulation of this idea is 

given by Elmaghraby [29]. 

Examples of this method will be given in chapters 4 and 5; 

by the nature of theorem 3.6.A. applications are restricted to 

those cases where the value of the optimality criterium is 

determined by one permutation only. 

As announced, we shall not give any specific examples here. 

It is interesting to point out, however, that the usefulness 

of theorem 3.6.A. is due to the fact that it permits one to 

find an optimum by only checking the effect of interchanging 

pairs of elements. The theorem guarantees that our local optimum 

(in the sen~e of Nicholson [79] }, is also global. 
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3.7. Algebraic methods (A) 

There have been only a few attempts to solve scheduling problems 

by algebraic methods. By the latter we mean those methods that 

concentrate on structural properties of the set of all operations, 

and on the relations between them. Here we shall pay attention 

to the work of Giffler ([37], [ 38]) on schedule algebras and 

the work of Rial ([83]) and Driscoll and Suyemoto ([26]) on 

relation nets. The lack of any further research in this 

direction explains why we shall see no need to return to these 

methods any more after this section. 

We realize that Giffler's approach is aimed at situations 

lacking the characteristic difficulty of machine scheduling 

problems: in his schedule algebra theory, it is assumed that 

a complete ordering of jobs is (implicitly or explicitly) given, 

in which case the schedule graph is equal to a PERT-CPN type 

of network. Also we realize that Rial's approach is aimed at 

far more general problems than the machine scheduling problem. 

However, we think it not unlikely that algebraic methods may 

turn out be powerful aids in solving this problem and therefore 

describe the two approaches in somewhat more detail. 

3.7.1. Schedule_algebras 

In schedule algebra theory, we generally try to solve the 

well-known problem: given n strictly-ordered activities and 

the starting times of all unpreceded ones, what is the earliest 

starting time of each activity? 

We assemble all relevant information in an x n-matrix S, with 

s . . 
l. J 

{
{t .. } 

= l.J 

0 

if i << j 

otherwise, 
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where {t .. } is the set of minimum intervals between the start 
lJ 

of activity i and the start of activity j, arising from various 

technological and other considerations*). If t .. has "zero 
lJ 

magnitude", we shall denote this by l, to avoid confusion with 

s .. = o, which indicates that i does not directly preceed j. 
lJ 

We shall now study the structure of all matrices of this type 

whose essential characteristic is that its elements are sets 

of real numbers (including l), or O (zero). We can define two 

relevant ways to add and multiply these matrices. For the first 

way define C =A$ B where A and Bare both (n x m)-matrices 

by defining c .. = a .. $ bij by the following procedure: 
lJ J. J 

( 1) collect all entries of the sets a .. and b .. ; 
J. J 1] 

( 2) replace by zero all combinations with the same 

magnitude, but different signs; 

(3) if all entries are now zero, surpress all but one; 

if not, surpress all zero's. 

Multiplication is then defined as follows: D =AG B where A 
. ( ) . d ( ) . h . . th t is a n x m -matrix an Ba m x p -matrix, as as i-J en ry 

d. . = ( a 1. 1 0 b 1 . ) e . . . e (a. 0 b . ) ; 
J.J 1 · 1m mJ 

to define a 1k 0 bkj' we take all pairs of elements (aik'Bkj) 

from both sets, form 

laikl+IBkjl ....... if they have the same 
sign 

aik (~ Bkj = -laikl-lBkj I ...... if they have different 
signs 

0 ................. if one or both are zero 

*) We use the term "activities" instead of "operations". 



and add all these products, according to the above definition 

of EB. 
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Under this addition,@, the (n x m)-matrices form an additive 

group with the matrix that is identically zero as neutral 

element. 'The (n x n)-matrices form a non-commutative ring with 

identity matrix I, that has {l} on the diagonal and zero 

elsewhere. As with real matrices, inverses according to 

multiplication are unique (if they exist). 

For the second way to define addition and multiplication, we 

remark that, whereas the above operations shall turn out to 

produce the time-length of all possible paths between two 

activities, usually we are only interested in the maximum length 

of these paths. So we restrict outselves to situations where 

all matrices have entries that are either i, a positive real 

number or zero and define E =A* B by 

e. . = max {a .. ,b .. } , 
1] 1] 1] 

treating Oas negative infinity; and F =Ai B by 

The reason that we did not immediately introduce these 

definitions, is that the set of all these matrices (where 

now we just as well replace the set a .. , that is the i-j th 
1] 

element, by max a .. ) has much less structure under these 
1J 

definitions; they do not even form a group any more. 

Returnin~J now to the previously defined matrix S, that in fact 

gives the length of all "one-level chains", i << j, we see that 

S 0 S = s 2 effectively gives the length of all two-level chains 

i << k << j, the i-j th entry being 
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in so far as tik and tkj are not zero. Analogously, the set 

that is the i-j th element of Sw gives the lengths of all 

possible w-level chains. Obvious Sw will be identically zero 

if w > A for some A. Defining 0 as follows: 

e := I EB S EB s2 ... EB s"-

eij gives the lengths of all chains from i to j. 

It is now easy to prove that 

e = {I EB (-I G S)) -l 

{22) 

( 2 3) 

where -I has -l on the diagonal and zero elsewhere. To do so, we 

multiply both sides of (23) by (I EB (-I 6 S)), getting: 

e EB (-I G s G) e) = I 

or 

e == I EB (S G) e) 
which follows directly from (22), because S>..+l 0 e is 

identically zero. Elsewhere [ 38], Giffler gives efficient 

methods to determine the inverse of a schedule matrix. 

Now, if we are only interested in the maximum length of all 

chains from i to j, we compute: 

~=I* S * (S # S) * (S # S # S) * ... * (S # # S) 

--->..---

the i-j th entry of p giving the desired information. 



Given a (1 x n) vector T, where 

the earliest starting time of activity j, 
if j is unpreceded 

otherwise 

we compute 

which gives the earliest possible starting time for all n 

activities. 

Writings+ Sas s• 2 , etc., we have 

T = T + (I* S * s• 2 * ... * s•A) 

= (Ti I) * (T + S) * ((Ti S) + S) * 

( (T + s• 2 ) + S) * * ( (T + s• A- l) + S) 

which gives rise to the recursive formula: 

where: 

T = T 
0 

k = 1, 2, 3, 4, ... 

(TA= TA+r'r = 1, 2, ... , because A* A= A for all A). 

Example: suppose we have 
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0 1 2 3 

0 0 0 3 
s = 

0 2 0 2 

0 0 0 0 

which corresponds to the following graph of activities: 

3 
We find: 

0 4 0 4 

s2 
0 0 0 0 

= 0 0 5 0 

0 0 0 0 

0 0 0 7 

s3 
0 0 0 0 

= 
0 0 0 0 

0 0 0 0 

0 0 0 0 

s4 
0 0 0 0 

= 0 0 0 0 

0 0 0 0 

l 4 2 7 

0 l 0 3 
0 = 

0 2 l 5 

0 0 8 l 
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If T = ( 3 0 0 0) , we find: 

Tl = T * (T =II= S) 

= (3 4 5 6) 

T2 = Tl * (T 1 :II: S) 

= (3 7 5 7) 

T3 = T2 * (T2 :II: S) 

= (3 7 5 10) 

T4 = T3 * (T 3 :II: S) 

= (3 7 5 10) 

so T = (3 7 5 10) • 

The method of schedule algebras can be extended to the situation 

where the directly-precedes relations are given implicitly 

by some priority rule (such as First On, First Off, etc.). 

In its present form, it can, however, not contribute directly 

towards the solution of the machine scheduling problem, because 

the fundamental relation: "i precedes j or j precedes i" cannot 

be expressed*). For an approach, where these (and many other) 

relations are readily available, we turn to so-called relation 

algebras. 

3.7.2. Relation_algebras 

The basic idea of relation algebra, as presented somewhat 

forbiddingly by Rial [83], and Driscoll and Suyemoto [26], is 

*) Schedule algebras can, of course, be used as part of a 
general algorithm to solve a nlmlG problem, (see, for 
instance, Ashour and Parker [ ] ). 
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the following. Suppose we have a set of n activities with all 

kinds of time-relations between them, either very vague (i.e., 

X starts before Y) or very precise (Y begins exactly when X 

stops, X starts n time-units after Y). Especially in large 

projects these relations may well lead to logical contradictions. 

We want to discover these contradictions (if they exists) and 

find out how they can be dissolved. 

First then, we have to classify all possible relations. Now 

each activity Xis characterized by its starting time t and 
X 

finishing time T. Likewise, Y is characterized by ty and T. 
X y 

There are five possible relations between t, and t and T: 
X y y 

t < t, t = t , t < t < T, t = T, t > T; the same 
X y X y y X y X y X y 

relations exists between Tx, and ty and Ty. Of the 25 resulting 

combinations, 12 turn out to be infeasible, which leaves 13 

fundamental relations. They are illustrated by the scheme 

below*): 

*) Our notation differs from Rial's. 



t <t 
X y 

t =t 
X y 

t <t <T 
y X y 

t =T 
X y 

t >T 
X y 

T < t X y 

X I i 

I y □ 

Xa5Y 

TX = t 

I X I I 
I 

t:::, y 

xa.6Y 

t y 

I 
< T < T 

y X 

X I i 

y c::::::, 

X p 
Yb 

X D 

y·-------

xa7Y 

y 

I 
T = T X y 

I 
x-: I l 

c1 y 

X r7 . ' 
y t::i 

xD 

y----

xaay 

T > T 
X 

x-: I • 
y □ 

X I I 
• 

y t::1 

X c::J 

y t:::] 

X p 
y..d 

y 

X D 

y.c::::l 

xa9y 

I xa0Y 

xa1Y 

Xa2Y 

xa 3Y 

Xa4Y 

u, 
u, 
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Each feasible combination is illustrated by two time scales 

with the positions of X and Y. As to notations, Xaijy has to 

be read as: (XaiY) A (XajY), A standing for logical conjunction. 

In order to discover logical unconsistencies, we introduce the 

concept of implication: if it follows from (XSY) 

then (Xo 1z) v ... v (XonZ), the relation o1 v o2 
said to be the implication (or the product) of 8 

" (YyZ) , that 

V • • • V O is 
n 

and y; v is 

the sign for logical disjunction. By example, if Xa17Y and 

Xa 0Z, then X(a5 v a 6 v a 7 )z, as will be obvious from the 

picture below. 

X --~,---------

y 

z 

• I 

' ' I 
I 

' I I 

"' We can extend these relations by defining XBY to mean YSX 
A -(i.e., a 05 = a 49 ) and by defining xax to mean that XSY is not 

the case. All implications and conjunctions have extensively 

been tabularized by Driscoll and Suyemoto. 

Now, if there is any logical inconsistency in the network of 

relations, it will necessarily arise out of some loop 

x 1 a 1x 2 a 2x 3 ... 8n_lxnanx1 • To discover this, we transforc each 

of these loops step by step by means of implications into a 

relation,.of the type x 1y 1Xiy2x 1 , which is identical to 

X1 (y1 A y 2 )x2 . We then check in a table of conjunctions if 

this conjunction is false (i.e.: no pair (X 1 ,x2 ) could possibly 

have this relation). If so, we have an inconsistency. 



Example: suppose we have the following cycle: 

x1a 08x2 and x2a 27x3 
because x1a 7x3 means 

T = t (< T ). 
x3 xl xl 

imply x1a 7x 3 . Now X1 (a 7 A ~ 6 )x 3 is false, 
A 

t < T < T and x1a 6x3 means 
x3 xl x3 

An obviously indispensable result which we need here, is: 

Theorem 3.7.A: x1s1x2 ... Bn-lXnBnXl and 

XkBkXk+l ... Bn_lXnBnXlBlX2 ... Bk-lXk have the same thruth 
value fork= 2, ... , n. 

Proof: trivial for n = 2,3; from there by induction. 

Given the network of relations and the tables, the search for 

inconsistencies, described above, can easily be carried out 
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by a computer. Rial announces a program in preparation; no 

results have been presented since then. Driscoll and Suyemoto 

present a number of heuristic rules whereby a logical conflict 

might be solved. 

Rial has extended his approach to so-called metrized relations, 

where not only is given that, for instance, t < t, but where 
X y 

we know that t = t + i. The notation is easily extended, to y X 

cover these relations, the above example being written as 

xa0 (i)Y, and, for instance, xa27 (i,j)Y denoting the following 

situation: 
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X 
...... i ..... , 1+-j--+ 

t I I I 
I t I I 
I I 

I l I I 
I I t I 

I I 

y _J 

In the case of metrized relations we can again study the 

implications of two metrized relations f\ (i) and s2 (j). 

However, what is more important is that metrized relation place 

a number of restrictions (in the form of linear equations) on 

the parameters i, j, ... and the durations d = Tx - t of the 
X X 

activities. For instance, in the above example, we have 

i + d + j = d 
X y 

which must be true if the relation Xa27 (i,j)Y is true. 

In this way,, a number of necessarily valid equations can be 

derived from a true metrized relation network. Let us illustrate 

what we can do with them by a final example. 

Suppose we have the following network (one can think of T as 

a common time base). 

y 

T 

The network can be shown to be true 

in a logical sense. We take all cycles 

and derive equations from them 

(tables exist for this procedure). 

i + dx +JI,= dT 

d + JI, = j + d 
X y 



dy =dz+ k 

m +dz+ k = dT 

xa0 (j)Ya17 (k)Za2 (m)Ta27 (i,1)X gives no new information. 

So we have: 

d 
X 

d y 

1 0 0 1 0 0 1 0 d z 

1 -1 0 0 -1 0 1 0 i 

• = 
0 1 -1 0 0 -1 0 0 j 

0 0 1 0 0 1 0 1 k 

1 

m 

(dT is assumed constant). 
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Now if we want to know the effect of a small change in the 

variables (especially the influences these changes have on 

each other), we know that the augmented variables must satisfy 

the same equations, and get by subtracting: 

6d 
X 

6d y 

1 0 0 1 0 0 1 0 6dz :, 1 -1 0 0 -1 0 1 0 61 

• = 

:) 0 1 -1 0 0 -1 0 0 6j 

0 0 1 0 0 1 0 1 6k 

61 

6m 
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By elementary row transformations we find that the matrix of 

coefficients is equivalent to 

1 0 0 1 0 0 1 0 

0 -1 0 -1 -1 0 0 0 

0 0 -1 ... 1 -1 -1 0 0 

0 0 0 -1 -1 0 0 1 

which implies that we can choose Llj, ilk, Lli and Llm, and then 

solve for Lld, Lld, Lld and Lli. The "conditional conflict" 
X y Z 

(as Rial calls it) has been adverted. 

It cannot be denied that the examples given are extremely 

artificial. Nevertheless, the algebraic methods at least fully 

employ the structural properties of the scheduling problem, 

however, inelegant they may seem. There is room for improvement 

here, and subsequent developments may well justify the attention 

paid to the methods here. 

3.8. Sampling techniques (ST) 

In this section we enter the realm of heuristic methods, by 

which we shall generally mean methods that cannot strictly 

guarantee the finding of an optimum solution. 

By far the most important heuristic methods are those that use 

more or less sophisticated priority rules. Designing these 

rules and comparing their performance by extensive simulation 

has kept many researchers happy and busy. We shall present the 

main results in the next section, but here we want to pay 

attention to a curious feature of the machine scheduling-.problem, 

that has been exploited by Heller [ 49] and others. 

The background of their methods is that the number of distinct 

maximum flow times Na is relatively small, especially in the 
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nlmlF or nlmlP situation. For a 1ols situation, the number of 

possible sequences is 6.29 x 10 32 , whereas Nd is 9.38 x 1011 in 

the flow-shop situation and 1.13 x 10 15 in the job shop 

situation*). In an nlmlP situation, the maximum flow time is 

a sum of (n + m - 1) processing times, which gives an immediate 

upper bound on Nd of {nn! m - 1). This indicates that it might 

be profitable to study the distribution of the different times 

over the population of all possible schedules. Heller has 

conducted some experiments in this direction, and has concluded 

(and derived theoretically) that this distribution is 

asymptotically normal. 

The practical use of Heller's work is not at all clear. One is, 

of course, mainly interested in what happens round the lower 

tail of the normal distribution, whP-re the fit is worst. 

Moreover, if one wants to simulate a great number of different 

solutions, there are more efficient populations to sample 

from than the population of all feasible schedules. There is 

an application, cited enthusiastically by Elmaghraby [29], 

which boils down to fitting a normal distribution to the results 

gained so far and calculating therefrom the probability of 

finding a better schedule than the present best one in the next 

simulation. Surely this process rests on very weak theoretical 

grounds; not surprisingly, practical applications have not 

been reported so far. 

3.9. Heuristic methods (H) 

By now it will have become apparent that an optimum solution 

to a scheduling problem is generally not so easy to find. 

Taking into account as well that it is already difficult enough 

*) Reported by Ashour [ ] • 
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to isolate a scheduling problem from a host of surrounding 

complex problems, it is altogether not surprising that only 

a few practical applications of pure scheduling theory are 

known. What happens in most cases is that, given a particular 

scheduling problem, one tries to develop a method that will 

generally produce "good" sequences, although it cannot guarantee 

to find an optimum one. These "suboptimal" methods we shall 

call heuristic. We shall deal with them here and for the rest 

of the report stick to methods that really guarantee optimal 

solutions. 

Research into heuristic methods has mainly concentrated on 

testing different kinds of so-called priority rules. Generally, 

the technique of testing any heuristic method is to use that 

heuristic method to generate one (or more) feasible schedule(s) 

for a given problem. Then one evaluates the quality of the 

(best) schedule, and repeats the whole experiment with either 

the same data and a different method (so as to compare methods) 

or differen~ data and the same method (so as to get an 

impression of the quality of the method in general). 

Now a schedule is completely determined if the starting-times 

of all operations are known. If the schedule is generated in 

such a way, that a decision taken with regard to the starting

time of any particular operation can never be revoked, the 

procedure is called a single-pass one. The fact that almost 

all known procedures are single-pass ones is a serious limitation, 

as most human beings, operating for instance on a Gantt chart, 

continuously change previous decisions. More research on 

simulation of this adjusting behaviour is badly needed*). 

*) The only available study is by Dutton ([28] ). 
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If in a single-pass procedure decisions are taken "on the 

spot" (which means that they can be taken in the order in which 

they are implemented), we speak of a dispatching procedure. 

Again, most known methods belong to this class. 

We now introduce the important concept of the set S0 of 

scheduleable operations. At any time this is the set of all 

operations whose predecessors have all been scheduled. It 

therefore consists of exactly n operations, one for each job. 

Scheduling one of these operations implies moving it to the 

set S of the (m) operations ~n progress. S can be split up: p 0 

= s 1 U U ... 
0 

where s1 contains all operations to be scheduled at machine 1. 
0 

Now, if c1 is the finishing-time of the present operation 

machine ji and sk! is the potential starting-time of (k,1) 

then the earliest possible start and finish-times of (k,1) 

are given by max (C1 ,sk1 ), resp. max (c 1 ,sk1 ) + Pkt" 

If we choose as the next operation to be scheduled any one with 

minimal earliest possible starting-time, we get a so-called 

non-delay schedule; similarly, if we choose any one that starts 

before the minimal earliest possible finishing-time, we get a 

so-called active schedule. 

In general, an active schedule is one where it is not possible 

to decrease the starting-time of any operation without increasing 

the starting-time of another one (Conway, Maxwell and Miller 

[24], page 111). Obviously, any optimal schedule must be active. 

A non-delay schedule is an active schedule where at no time 

a machine stands idle on which a scheduleable operation could 

have been processed. An optimal schedule, however, is not 
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necessarily non-delay. Take, for example, the optimal sequence 

for a 2l3IF1Fmax problem where p21 = p 23 = O, that is 
illustrated below and that has a delay on M2 : 

1 

Ml 

1 2 
M2 I Cd • 

1 

M3 

By randomly breaking ties, we can generate a number of active 
and non-delay schedules and compare their performance*). 

This has been done by Bakhru and Rao (reported in [24]) and 

leads to the general conclusion that non-delay schedules 

behave better in general. However, things get more realistic 

if ties are not broken randomly, but by application of some 

priority rule, or if - alternatively - an operation is selected 

from S0 by this priority rule and the starting-time is then so 

determined as to produce an active or non-delay schedule. 

Many of these priority rules have been developed and tested 

(Day and Hottenstein [25], Gere [36] ). To name but a few, 

one can grant highest priority to the operation (k,1) where 

(1) Jk has the earliest due-date; 

(2) Jk has either hig~est or lowest slack-time (i.e. 

difference between time remaining before the due

date and sum of remaining processing times); 

*) This is similar to the approach by Giffler and Thompson [39 ] . 
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(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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Jk has lowest slack-time per remaining operation; 

(k,t) arrived first in St (FCFS: first come, first 
0 

served, or FIFO: first in, first out); 

Jk has lowest shop arrival time rk; 

pkt is minimal (SPT: shortest processing time, or 

SOT: shortest operation time); 

Jk has either minimal or maximal total remaining 

processing time; 

Jk has minimal total processing time; 

Jk has either minimal or maximal number of 

remaining operations; 

(10) (k,t) has minimal set-up time; 

(11) (k,t) is chosen in a completely random manner. 

Other priority rules can be found in the literature mentioned 

above; Day and Hottenstein [25] give many references. The 

performance of most of these rules has been extensively 

investigated. We cite Conway, Maxwell and Miller [24], who 

report a study by Jeremiah, Lalchandani and Schrage, which 

proved among other things that priority rules work best in 

combination with non-delay schedules, that SPT scheduling and 

random scheduling (sic) are about equally superior on active 

schedules, and that the "maximum remaining work load" criterium 

performs reasonably well on the whole. However, there is no 

obviously "best" rule. The latter remark coincides reasonably 

well with the results of Gere [36]. He finds that rules based 
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on jobs slack are slightly better than SPT scheduling, which 

is in turn slightly superior to the equally bad random and 
FCFS-method. 

~ext, however, Gere moves on to add some additional heuristic 

rules, two of which turn out to be very effective: an "alternate 

operation" rule, whereby job Jl is chosen instead of the 

originally picked job k, if the choice of k threatens to cause 

overdue delivery of job Jl, and a "look ahead" rule, which 

forces the chosen job k to wait if a more critical job is on 

its way. He conjectures that all previously tested procedures 

will work about equally well when bolstered by these two 

additional rules, but does not present any definite evidence. 

His conclusion is nevertheless that the choice of additional 

heuristics is far more important than the choice of a priority 

rule itself. One might therefore just as well choose the 

easiest one available (SPT). All together, these heuristic 

methods are (not surprisingly) superior to Heller's sampling 

approach, reported in 3.8. 

A more sophisticated development, also reported in [24], are 

methods whereby one varies between using one priority rule and 

the completely random method by assigning non-equal pr~babilities 

to each operation in S0 , the job with the highest priority 

getting the highest probability. Again, the results are not 

consistently better than either of the two extremes, but a 

surprising outcome of some experiments (by Nugent) is that, 

with some procedures, there is a certain degree of randomness 

that is clearly superior to both complete randomness and 

complete determinacy. The reasons for this amply demonstrated 

fact are not clear. 

Concluding this section we feel that in general heuristic 

methods have not been sufficiently explored and have been 
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interpreted too narrowly. More work should be done on heuristic 

methods that are tailor-made for a particular problem (e.g., 

Burstall [20]), and more attention should be devoted to 

simulating the methods of a good human scheduler. It is not 

unlikely that, given the present poor state of applicable 

scheduling theory, good heuristic methods will continue to be 

of utmost practical importance. 

3.10. Conclusion 

In this chapter we reviewed existing methods to attach the 

machine scheduling. Most of them typically try to eliminate 

sequences that are obviously non-optimal. (A method like 

complete enumeration which does not do this, may be rejected 

straight away). This elimination is performed in various ways: 

branch-and-bound methods try to evaluate the quality of a 

partly filled schedule as early as possible, dynamic programming 

always chooses the best of equivalent partly filled schedules 

to proceed with, combinatorial-analytical techniques rely on 

careful judgment of the effect of certain interchanges in a 

sequence. These methods are in fact the best we have at the 

moment. As stated we do not believe integer programming will 

ever produce an optima~ solution method to the scheduling 
problem, nor do we have much faith in Heller's sampling method. 

Algebraic and heuristic methods deserve more attention, the 

latter ones probably dominating in real-life situations for 

many years to come. 



68 

4. Some special cases 

4.1. Introduction 

In this chapter the techniques described in chapter 3, shall 

be applied to a few special and (comparatively) simple machine 

scheduling problems. Most prominent among them is the nil 

problem, on which a lot of work has been done. Still, even 

here many problems remain to be solved. We devote special 

subsections to situations where there are additional precedence 
constraints among the jobs. Furthermore, we pay attention to the 

situation where instead of one machine we have m identical 

machines to perform the jobs on. 

The two-machines and three-machines problem also deserve some 

special attention; Johnson's work on the nl2IFIF problem max 
in 1954 aroused new interest in machine scheduling problems 

in general. Finally we pay attention to the 21m situation, 

mainly because of the interesting graphical method designed 

to solve problems there. 

4.2. The one-machine problem (njl) 

Most theoretical work on machine scheduling problems pertains 

to the nil situation. We shall try to give a review of known 

results, classifying them by the various optimality criteria 

in a way analogous to 2.3 •. 

There are a few remarks to be made bef0rehand. Firstly, it is 

trivial to prove that in solving a nlll l~Cc 1 , ••• , en) problem, 

where ~(c1 , ••• , c) is a regular measure of performance; one n . 
does not have to consider any schedule with job splitting or 

idle time. In both cases the schedule could be improved in an 

obvious way. 

Secondly, it 

and W. are min 
considered. 

is clear that well-known criteria like F C max' max 
now independent of sequence and do not have to be 
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In view of the first remark we only have to consider then! 

different permutation schedules. As to notations, we denote 
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by ik or jk the job number that in a given permutation occupies 

the k th place. For example, i 8 = 2 means job 2 is in the eighth 

position. Furthermore, we can write pk for pkl and Wk for Wkl 

(k = 1, ••• , n). 

4.2.1. Criteria_based_on_comEletion-dates_and_flow-times 

Having assumed that rk = 0 for all k, important criteria to 

consider here are 

the former one being equivalent to Wand L, the latter one to 

Ea.kWk and Ea.kLk. 

The nlll IF problem is easily solved and the solution has been 

known for a long time. Denoting a sequence by i 1 , i 2 , ... , 

we find 

i I n 

Theorem 4.2.1.A: the nlll If problem is solved by the sequence 

i 1 , ... , in with 

Pt ~ p. ~ . .. $ pi . 1 12 n 
k 1 n 

Proof: F. = E p. ' so f = E (n - i + l)p. i 
:1k j=l lj n j=l 

1. 
J 

this sum is minimized by arranging the P[i] in order of 

increasing magnitude. A graphical "proof" is also given in 

Conway, Maxwell and Miller [24]. 

This way of sequencing is called: shortest-processing-time 

sequencing (SPT). It also minimizes W, L (and C) , Wmax, Cmin 

and! EF: (a.> o). To prove the latter one notes that is 
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p. > p. in some sequence, one can interchange these two 
1 k 1 k+l 

jobs, thereby holding F~ constant and increasing 
1 k+l 

The nlll IEcx.kFk problem is hardly more difficult to solve. 

Theorem 4.2.B: the nlll IEcx.kFk problem is solved by the sequence 

i 1 , ... , in with 

Proof (Smith [93]): given a sequence i 1 , ... , in, and 

interchanging ik and ik+l' the old sequence will better than 

or as good as the new one if 

k k+l k-1 k+l 
ex.. E p. + ex.. E p. < ex,. E p. + p. + ex,. E p. 

1 k j=l 1 j 1 k+l j=l 1 j 1 k+l j=l 1 j 1 k+l 1 k j=l 1 j 

or 

We have found a function g(k) as described in theorem 3.6.A.; 

the proof is now immediate. 

4.2.1.1. Precedence constraints 

We now turn to the more complicated situation where there are 

precedence constraints among the jobs. (dropping assumption (J6)). 

We can represent these constraints by a directed graph, nodes 

representinq jobs and a directed arc linking Jk with Jk' implying 

that Jk should precede Jk'" 

*) We really use here (as below) theorem 3.6.A .. 
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Let us, however, first treat the simple case, where has been 

split up in groups Gi of ni jobs, where each group has to be 
executed consecutively in a given order*). We then have, if 

Jk E Gi: 

Fk = F - c Gi k 

where FG. is the flow time of Gi and ck is a constant, equal to 

the sum 5f the processing times of the jobs following Jk in Gi. 

Then: 

EakFk = E(E ak)FG. - Eakck 
Gi 1 

and from theorem 4.2.B. we see that the optimal sequence of the 

groups is given by ordering them according to increasing 

(E pk)/(E ak) ratio. This solves this particular nlll (J6) IEakFk 
Gi Gi 

problem, and therefore also the nlll (J6) IF problem, where we 

order according to the (E pk)/n. ratio. 
G. 1 

1 

Returning to the more general problem, we find that the only 

known algorithm is restricted to the case where the directed 

graph representing the precedence constraints is a forest, i.e. 

a collection of trees, ·each with a root node, from one of which 

runs a path to every other node in the graph. 

5 

8 

15 16 17 

*) If the order is not given, we first order Gi by previous 
theorems. 
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An example is shown above; for the first job there are only 

two candidates, the jobs 1 and 2. When one of them is scheduled, 

we delete the node and all the branches leading from it from 

the tree and get a new set of trees with roots to choose the 

_next job from. 

The nlll (J6) lrakFk problem in this solution is now solved by 

Horn's algorithm ([50]). To describe it, we introduce the 

notion of a successor set Sk to node Jk; this set has the 
following properties: 

( 1) Jk E Sk; 

(2) if J. E Sk 
J 

and j =f= k, then Jk precedes Jj; 

( 3) if J. E Sk and J . precedes J., then either Ji E Sk J l. J 
or J. also precedes Jk. 

l. 

Now the algorithm runs as follows. For each root Jk we calculate 

For each root Jk we calculate 

yk = min (E pk)/(E ak) 
Sk 

where the minimum is taken. over all successor sets. Schedule 

the root job with minimal yk, remove it and repeat with the new 

set of roots. 

The proof of correctness of this algorithm is extremely 

complicated. What one does here basically, however, is to find 

out whether the ordering according to increasing pk/ak ratio 

conflicts with the precedence constraints•>. If this happens, 

one has to group jobs together, assigning them processing time 
•, 

r pk and weight r ak, in accordance with the result mentioned 
above. 

*) For a more general result on this situation, see Gapp, 
Mankekar and Mitten [ 105]. 
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An inter,esting feature of Horn's method is that it can be also 

used for situations where the precedence constraints have the 

form of upside down trees. One just turns the trees upside 

down again, reverses all arrow and replaces ak by -ak! 

We conclude this section by remarking that no go9d algorithm is 

known for the situation in which there are more general 

precedence constraints among the jobs. 

4.2.2. Criteria_based_on_due-dates 

We have seen already that the nlll IL problem is solved by 

theorem 4.2.1.A. (order by increasing pk's) and that the 

nlll IIakLk problem is solved by theorem 4.2.1.B. (order by 

increasing pk/ak ratio's). 

The nlll ILmax and nlll ITmax problems, are solved by the following 

theorem, due to Jackson (reported in (24]): 

Theorem 4.2.2.A: the nlll ILmax problem and the nlll ITmax problem 

are solved by the sequence i 1 , ... , in where 

d. 
l n 

dk being the due-date of Jk. 

Proof: suppose di > d. . Interchanging the two jobs leaves 
k 1 k+l 

everything unchanged except for the lateness of the k th and 

(k+l) th job, the lateness of the (k+l) th job in the first 

sequence dominating all the others. The second sequence can 

therefore not be worse with regards to L , nor with regards to max 
T = max (0,L ) . 

max max 
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Analogous to theorem 4.2.2.A., one can prove (Conway, Maxwell 

and Miller [24]): 

Theorem 4.2.2.C: the nlll ILmin problem and the nlll ITmin problem 
are solved by the sequence i 1 , . . . ' i , where n 

Having solved the nlll ltakEk problem in 3.4. by means of 

dynamic programming and noticing that Emax can be maximized 

by arguments similar to theorem 4.2.2.B., we can now turn to 

the more complicated nlll IT and nlll ltakTk problems. 

There are a few situations in which these problems are trivial. 

If the jobs are all late when scheduled by increasing pk's, 

then in this case the SPT sequence also solves the nlll IT 

problem. Also, if only one job is late when we schedule by 

increasing due-dates, this sequence solves the nl1I IT problem 

in this particular case. However, for a long time these were 

the only results known. 

The first serious work on this problem has been done by Lawler 

[57], an early article by McNaughton [65] in fact only solving 

the trivial case that d1 = ... = dn = 0. 

Lawler has tried out various methods on the more general problem 

of minimizing Eck(t), where ck(t) is a monotone non-decreasing 

cost function. In the first place, he has given a dynamic 

programming formulation. 

If Jc N = {l, ••• , n}, define C(J) to be the minimal total 

cost of performing J, i.f none of these jobs is started before 

d(J) = E pk. Then: 
k$J 

min 
J {

C (J) = 

C(¢) = 0 



These two equations define a dynamic programming approach, 

whereby the minimum cost C(N) can be determined. The number 

of calculations is of the order 2n and grows therefore very 

rapidly. 
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Next, if: all the jobs have the same processing time p, Lawler 

shows that we have a linear programming problem of the assignment 

type: 

minimize 

n 
subject to r x .. = 1 

j=l lJ 

n 
r x .. = 1 

i=l lJ 

x., ~ 0 
lJ 

( i = 1 ) ( ) I •••t Il ••••••••••••••• * 

( j = 1 , . . . , n) • • • • • • • • • • • • • • • ( **} 

(i = 1, ... , n; j = 1, ..• , n) 

Here xij = 1 means that job i finishes at time jp. 

Finally., Lawler extends this method to the case of different 

processing times. However, job splitting can not be prevented 

then. Adding constraints to do so leads to a mixed integer 

programming formulation. 

Lawler and Moore extend their dynamic programming approach, 

already presented in 3.4., to the nil! lrakTk problem where all 

deadlines are identical. 

More interesting, however, is the theoretical work done by 

Emmons [ 30 1 on the nil! IT problem. Defining¾ and Bk to be 

the jobs that have been. shown to come after Jk, respectively 

before ,Jk in some optimal schedule and ordering the jobs so that 

j < k implies pj ~ pk, he proves: 
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Theorem 4.2.2.C: (i) if j < k and d. ~ max (Ip, + pk,dk), 
J B l. 

then j comes before kin some optimal schedule1" 

(ii) if d 1 ~ max (pk,dk) for all k > 1, 

then J 1 comes first in an optimal schedule; 

(iii) if max (p ,d) ~ dk for all k < n, n n 
then Jn is Last in an optimal schedule; 

(iv) if SPT scheduling is identical with 

earliest due-date scheduling, then these schedules are optimal; 

(v) the SPT schedule is optimal if 
k+l 

dk +pk~ I pk fork= 1, ... , n-1. 
i=l 

Proof: (i) • (ii), (i) • (iii): take B = ¢ k 
(i), (ii) • (iv): trivial 

(ii) =~ (v) : d 1 < p 2 , so J 1 is first. Removing it and 

subtracting p 1 from all dk, J 2 must be first in the new job 

set, etc .. 

So we only have to prove (i), which is possible by carefully 

considering the effect of interchanging Jk and Jj (see 

Emmons [ 30 ] ) • 

The next theorem tells when a longer job may precede a shorter 

one. 

Theorem 4.2.2.D: (i) if j < k, d. > max (Ip. + pk,dk) and 
J B l. 

d ~ th k d . . k · 1 . + p. > ~. p., en prece es Jin some optima sequence; 
J J ifl\k l. 

(ii) 
n 

if dk = max dJ. and dk +pk> Ip., 
t=l 1 

then Jk is last in an optimal schedule; 

(iii) the earliest due-date schedule is optimal 

if Lk < pk for all k. 

Proof: (i) • (ii), together with theorem 4.2.2.C. (i). 

(ii)• (iii): if dk = max dj, and Jk is last, then: 
n 

L = Ip. - dk < pk implies we can use (ii), drop Jk and 
k i=l 1 

repeat. 
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(i) is proved again by looking at the effect of putting 

Jk directly in front of Jj. 

Emmons gives a branch-and-bound algorithm based on reducing 

the search for an optimum as much as possible by means of the 

two theorems above and branching when it cannot be determined 

if one job proceeds another or not. He gives no details, no 

computer results and no bounding prescription. However, we 

shall illustrate the use of his theorems by a small example. 

Suppose: 

rl = 1 P2 = 3 P3 = 4 P4 = 9 P5 = 15 

dl = 11 d2 = 6 d3 = 14 d4 = 10 d5 = 9 

Now we find: 

(1) J 5 is last, because max (p5 ,d5 ) = 18 ~ dk for 

k = 1, 2, 3, 4 (theorem 4.2.2.C. (iii)). We remove J 5 , getting: 

p' = 1 1 

d' = 11 
1 

p' = 3 
2 

d' = 6 2, 

o' = 4 ,_ 3 

d' = 14 
3 

p' = 9 
4 

d' = 10 
4 

(2) Theorem 4.2.2.C.(iii) cannot be applied again: 

max (9,10) = 10 < 11,17. 

However, max {d'} = d' = 14 > p' + p' + p' = 13 so now we put j 3 1 2 4 ' 
J 3 last because of theorem 4.2.2.D. (ii). We get: 

p" = 1 
1 

d" = 11 
1 

p" = 3 2 

d" = 6 2 

p" = 9 ' 
3 

d" = 10 3 

(3) We cannot reapply theorem 4.2.2.C. (iii) (10 < 11), 

nor can we reapply theorem 4.2.2.D. (ii) (11 < 12). Now look at 

J 1 • If d 1 < max (d2,p2) or di~ max (d3,p3), then J 1 would 

precede J 2 or J 3 by theorem 4.2.2.C. (i). However, this is not 

the case. We see next that J 2 precedes J 3 : 6 ~ max (9,10). 

So J 3 e A2 , and J 1 and J 2 are candidates for the first place. 
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( 4) Now d" > max (p~ d") and d" + p" ~ p" + p" So 1 2' 2 1 1 ' 1 2· ' 
by theorem 4.2.2.D.(i), J 2 precedes J 1 . We remove J 2 , putting 

it first and subtract p2 = 3 from d1 and d 3; we get: 

p" I = 1 
1 

d"' = 8 
1 

p"' = 9 
2 

d"' = 7 
2 

(5) By theorem 4.2.2.C. (i), J 1 precedes J 2 , because 

dj'.' = 8 ~ 9 = max (p2• ,d21 ). 

So the optimal order is: J 2 - J 1 - J 4 - J 3 - J 5 , 

I I 

with average tardiness T 1 = S (0 + 0 + 3 + 3 + 23) = 29/5. 

In this case, branching has not been necessary. It is difficult 

to judge Effill'_ons' algorithm, because the branch-and-bound 

details are so insufficiently specified. 

I 

Finally and most recently, a branch-and-bound-solution to the 

nlll IEakTk problem has been suggested by Shwimer [91], inspired 

by work of Elmaghraby. 

This branch-and-bound algorithm constructs an optimal sequence 

in the inverse order. The first subsets are formed by taking 

successively J 1 , ... , Jn as the last job, ordering the other 

jobs by increasing due-dates and keeping the best schedule. 

However, here as during the whole algorithm the following 

elimination theorem is used: 

Theorem 4.2.2.E: if aj ~ ak, dj ~ dk and pj ~ pk' then one 

only has to consider schedules where Jj precedes Jk. 

Proof: this is a direct extension of theorem 4.2.2.C. (i) and 

is proved in a likewise complicated check of all possibilities 

when Jk and ,J j are interchanged. 



At any l13vel, we branch by means of the set S of jobs not yet 

scheduled. If S consists of only one job, we can construct a 

complete solution; if dk = max d. ~ t pJ., then place Jk last 
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S J jES 
of all jobs in Sand branch from S - {Jk}*); otherwise, create 

subsets by successively placing each job Jk last among all 

jobs in !3. 

A lower bound LB is then given by the following expression: 

LlB = C + a.k max ( ( t pi) - dk,0) + 
s 

min {a.. max ( ( t p.) - p - d. , 0) + 
S-{Jk} J s 1 . k J 

(min a.. ) . T (S - {Jk,Jj})} 
S-{Jk,Jj} i 

max 

where C ·-·- cost incurred so far (see below) , and the whole 

lower bound is based on the idea of scheduling just before Jk 
that job Jj which adds the smallest possible amount to ta.kTk, 

and then finding the minimal T of the remaining jobs by max 
scheduling them according to due-date (theorem 4.2.2.B.), 

multiplying this by the smallest remaining weight a.i. 

The costs C incurred so far are stored with any subset and 

calculab3d by adding a.k max ((t pi) - dk,0) to the previously 
s 

incurred cost. The algorithm is of the "newest active node" 

type, thi= subsets being stored away, however, in order of 

decreasing lower bounds. Computer experience is quite good, 

a 30 I 1 I I :!::a.kTk problem being solved in about 4 seconds on an 

IBM 360/155. Still, sharper bounds and more extensive theoretical 

elimination may well speed up things considerably. 

Generally we may conclude that the non-linearity of Tk causes 

serious theoretical complications in the nil! IT and nlll lta.kTk 

*) This uses in fact a weaker form of theorem 4.2.2.D. (ii). 
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problems, and that the situation with regards to solutions is 

still far from satisfactory. 

4.2.2.1. Precedence constraints 

Suppose now there are precedence constraints among the jobs. 

The nil! (J6) lTmax problem can be dealt with by a theorem of 
Lawler and Moore [59]. However, Lawler has since then given a 

quicker and more general method for these and other problems [60]. 
Suppose a monotone non-decreasing function ck(t) is given, 
describing the loss incurred if Jk finishes at time t. 

Theorem 4.2.2.B: let S be the subset of jobs not required to 
n 

precede any others, and T = r pk. If K is such that 
k=l 

then there exists a sequence minimizing the maximum loss, where 

JK is last. 

Proof: if JK is not last, putting it last can never increase 

the maximum loss. 

This theorem solves our problem: for nlll (J6) IL , take max 
ck(t) = t - dk: for nlll (J6) ITmax' take ck(t) = max (t - ¾,O). 

In view of _the complicatedness of the nlll IT and nlll lrakTk 
problems, it is not surprising that no work has been done on 

these problems if there are precedence constraints among the 

jobs as well. 
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4.2.2.2. Number of tardy jobs 

We end this section by considering a slightly different problem: 

minimizing the number of tardy jobs. Moore [69] gave an 

algorithm to solve this problem, which was simplified by 

Hodgson to read as follows: 

(1) sequence the jobs according to increasing due-dates, 

giving a sequence i 1 , • • • I 
i . 
n' 

(2) if all jobs are on time, we have finished; 

(3) if J. is the first late job, remove J. , where 
lk li 

p. = max (p1. , 
1 i 1 

... , p. ) , to be processed later. Repeat (2) 
1 i-l 

and (3) on the remaining sequence, until no remaining jobs are 

late anymore. 

Moore's proof of the correctness of the algorithm,was fairly 

difficult and has been simplified later by Sturm [97]. 

We can also ai:,ply the functional equation of 3.4. here, ordering 

the jobs according to due-date and specifying: 

t ~ d. 
J 

t > d. 
J 

= 0 

*) Or a.k, if the weighted number of tardy jobs is to be 

minimized. 
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For the sake of completeness, we just remark that, in the 

nil case, Fmax being a constant, the mean number of jobs in 

the shop is directly propertional to F, and is therefore 
minimized by SPT scheduling. 

As announced already in 2.3.4., we shall treat two cases of 

interest here. The most well known one is surely the nil problem, 

whereby it takes c .. time units if job j is followed by job i. 
l.J 

Minimizing total change-over time is then equivalent to finding 

the sequence i 1 , ••. , in that minimizes 

n-1 
r c .. 

k=l 1 k 1 k+l 

This problem will be readily recognized as the famous Travelling 

Salesman Problem, where a salesman has to visit n cities with 

distances c .. and wants to minimize the distance he travels. 
l.J 

Bellmore and Nemhauser [ 14], amongst others, give a survey 

of known solution methods;, no generally efficient algorithm 

is known, but certain branch-and-bound algorithms can solve 

problems up to 80 cities. A special case, originating as a 
A. 

J 
machine scheduling problem, where cij = ~- f(x)dx if Aj ~ Bi 

l. Bi 
and c .. = l 

l. J A. 
g(x)dx if Bi> Aj, with <¾,Bk) given constants 

J 
and f(x) + g(x) 

Goinory [ 40 1 • 

~ o for all x, has been solved by Gilmore and 

In the second place we want to draw attention to a problem, 

that strictly speaking does not fall within our definition 

of the machine scheduling problem. The problem, considered 
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by Glass,ey [ 41 ] , consists of finding the minimum number of 

change-overs needed to have produced dk(t) units of product k 

by time t (t = 1, •.• , T) where the machine produces one unit 

of product per time unit. The problem not quite belonging in 

our class, we shall not pay much attention to it here, but only 

formulat,e the elegant result, obtained by graph-theoretical 

and dynamic programming arguments. Denoting (d1 (T), ... , dn(T)) 

asp*, we generally construct the set p! by including all 
o i i 1 i-l i-1 * 

elements (x1 , ... , xn) where for some (x1 , ... , xn ) E pi-l 

i i-1 i i-1 
and for some k: x 1 = x 1 , ... , xk-l = xk-l, 

i i-1 i i-1 i i-1 
xk+l = xk+l' ... , xn = xn and xk = xk - y, where y is 

i-1 maximal in the sense that xk - y - 1 would be smaller than: 

d [ T - (d (T) - xi-l) -
k 1 1 

(the level of demand at that time). 

In this sense (x~, 
i-1 i-1 

( xl , ... , xn ) 

• • • I xi) is one of the best predecessors of n 

Proceeding like this and eliminating obviously non-optimal 

points in p~, the optimum value is the minimal i for which 
. 1 * (0, 0, •.. , 0) E pi, as can be easily understood. 

4.2.5. MultiEle_criteria 

We shall not delve into general methods for combining various 

criteria (see Ashour [ 2 for examples), but shall only treat 

two problems, where some criterium is minimized, subject to 

the condition that no job may be finished after its due-date. 
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The oldest of the two, solved by Smith [93], is the 

nlll lrakFk,Tmax = 0 problem. 

Theorem 4.2.5.A: if there is a sequence whereby Tmax = o*>, 
·then JK is in last position in the solution to the 

nlll lrakFk,Tmax = 0 problem if: 

n 
(1) dk ~ E pk (i.e., TK = 0); 

k=l 

(2) PK I aK ~ PL / aL for all L 

(i.e., JK has the greatest pK / aK ratio 

could be last) • 

n 

n 
with dL ~ E pk 

k=l 
of all jobs that 

Proof: if dL < E pk' then putting JL last will make TL> o. 
n k=l 

If dL ~ E pk, then putting it last would increase EakFk 
k=l 

(theorem 4.2.1.B.). (Having put JK last, we repeat the procedure 

for the other (n-1) jobs). 

Bratley, Florian and Robillard [17] solve two problems: the 

nlll (16) IFmax'Tmax = 0 and nlll IFmax'Tmax = O. 

The first one, where job splitting is allowed, is fairly simple. 

Let xij be a O - 1 variable, xij = 1 indicating that job j is 
processed at time i. Then we have: 

n 
E x .. 

j=l 1J 

d. 
J 

E x .. 
i=r. 1J 

J 

~ 1 

= p. 
J 

(j = 1, ..• , n) 

(at most one 
job at a time) 

•> If sequencing according to increasing dk does not accomplish 
this, no sequence will (theorem 4.2.2.B.)! 



= 

= X = 0 max {dj}, j 
(j = 1, ... , n). 

A feasible solution can be found by a labelling algorithm 

similar to that for the assignment problem. By checking if 
n 
r x .. = 1 for all i, one can find out if there is any point 

j=l 1J 
in looking for a better solution. 

The second problem, where job splitting is not allowed, is 

solved by a branch-and-bound algorithm. 
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We createi initial subsets by putting either J 1 , J 2 , .•. or Jn 

first in the sequence. No direct bound is calculated; we branch 

from every subset, and split them up by placing successively 

all jobs that are still unscheduled, in the next position. 

There are, however, several exclusion mechanisms: 

Lemma 4.2:.5.A.: if we schedule a job in a particular position 

and it is: then late, we may disregard the entire subset. 

Lemma 4. 2:. 5. B.: if we schedule J., where r. is larger than the 
J J 

sum of processing times of all scheduled jobs, the sequence 

is so far optimal and we need not consider reordering the jobs 

scheduled so far. 

Lemma 4.2:.5.C.: if we have a feasible solution where: (i) some 

jobs JK starts at rK; (ii) all the following jobs are processed 

without delay; (iii) all their rj's are larger than rK, then 

this solution is optimal. 

Lemma 4.2:.5.D.: if a feasible solution with F =tis not max 
optimal, we may set all dj's equal to (t-1). 

Computer experience with this algorithm is good: 66% of a set 

of 100 job problems is solved within 18 seconds (100 ! ~ 10 158 ) 

by a CDC 6400 computer. 
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4.2.6. MultiEle_identical_Earallel_machines 

To end this section on the one-machine problem, we pay attention 

to the situation logically belonging here, where a job can be 

processed on any of m identical machines. Simultaneous processing 

is impossible. The machines are identical in the sense that pk 

is independemt of the machine on which Jk is processed. 

Here, preemption may very well speed up things considerably, so 

every time we have to consider whether it will be allowed or not. 

It is easy to see that 

F = max max 

(McNaughton [65]), if preemption is allowed. If not, the optimal 

schedule may be difficult to find; no satisfactory solution exist 

for this problem. Baker ([ 5]) reports a heuristic procedure 

that behaves fairly well. 

Fortunately,. for the F and EakFk criteria, McNaughton [65] has 

proved that there exists an optimal schedule without splits. 

The nlm I IF problem is now trivially solved: if one machine R, 
p 

the job sequence is JR, ' • • • I JR, ' then 
1 n R. 

m n R. 
F 1 E E (n R. k + 1) p R, = -n. R.=l k=l k 

Applying the: results used in theorem 4. 2. l .A., we see that we 

can order all jobs by increasing pk and schedule the first 

m jobs first on M1 , ... , Mm, the next m jobs second on 

M1 , ... , Mm, etc .. 



87 

No such satisfactory solution exists for the nlmpl IEakFk*) 

problem, however. Clearly, on each machine jobs have to be 

ordered by increasing pk/ak ratio, but it is not at all obvious 

how to divide the jobs over the machines. Apart from two 

heuristic methods reported by Baker ([ 5]) and a generalisation 

of Lawler's LP method (reported in 4.2.2.), leading to a 

transportation problem if all processing times are equal, the 

best we can do is to use dynamic programming (Rothkopf [85]). 

First, we order the jobs according to decreasing pk/ak 
ratio's, so that it is no restriction to assume that all 

machines will process any subset of them in the inverse order. 

We then define ~(t1 , .•• , tm) to be the minimal cost of 

processing J 1 , ••• , Jk if m1 is not available before t 1 • Then: 

where we start by evaluating c1 (t1 , ••• , tm) for all combinations 

(t1 , ••• , tm) for which t 1 < t!+l (i = 1, ••• , m-1) and 

No computing results are given, but the procedure is most likely 

very time-consuming. 

Where the tardiness criteria cause already so many difficulties 

in the one-machine case, it is hardly surprising that form 

parallel machines there are very few results indeed. Job splitting 

may very well be profitable here, as demonstrated by the T 
optimal schedule below. 

*) Mp is to be read: m parallel machines. 

**) Rothkopf treats a slightly more general case than we do. 
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1 2 
I 

2 3 
I I 

M2 ,1------1------
d1 = d = d 2 3 

Again we can use Lawler's transportation problem-formulation if 

all pk are equal. If this is not the case, we are left with 

Root's algorithm [ 84 ] that solves the n I mp I IT problem where all 
deadlines are equal and job-splitting is not allowed. Root attacks 

attacks this problem by theoretical arguments. His proofs are 

again very'involved; basically his method boils down to the 

following. Ordering the jobs first by increasing processing

times, Root proves that there is an optimal sequence whereby 

J 1 , ••• , Jq are all started before the common due-dated, and 

Jq+l' ••• , Jn are processed by scheduling Jq+l' •.• , Jq+l+m 

next on M1 , ••• , Mm, followed by Jq+l+m+l' ••• , Jq+l+2m on 
M1 , .•• , Mm, until every job has been scheduled. The only 

problem then is to determine q, and the schedule J 1 , ••• , Jq. 

As to q, the only result given is that the number of feasible 

values for q is smaller than m. For every feasible value of q, 

we have to find the schedu~e for J 1 , ••• , Jq that minimizes 
m 
r Tt, where Tt is the tardiness of the (maximally one) 

i=l 
job that finishes late on Mi. No algorithm is given for this 

procedure either. The lack of these details make it very 

difficult to judge the computational value of Root's work. 

We conclude that algorithms for the nlm0 1 ltakFk and the 

nlmpl lrakTk problems are very much need~d and are likely 

to be fairly complicated. 
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4.2.6.1. Precedence constraints 

The only problem with precedence constraints that has been 

satisfactorily attacked, is the nlmpl (J6} IFmax one, where job 

splitting is not allowed and pk= 1 for all k. We then have Hu's 

algorithm [51]: label all jobs without successors 1; then label 

the other jobs ak where 

ak = 1 + max {ajlJk directly-precedes Jj by the precedence 

constraints}. 

Now, if there are less than m scheduleable jobs, schedule them; 

otherwise schedule them jobs with largest ak. Repeat until all 

jobs are scheduled. Again we find here that the correctness of 

this ~?tuitively obvious algorithm is very hard to prove. 

Treating Jk with processing time pk as a series of pk jobs with 

processing time 1, we can apply this algorithm to the more general 

case too. A limited kind of preemption can then not be avoided. 

If we allow preemption in general, only the case where m = 2 has 

been solved by Muntz and Coffman [23] (reported by Baker [ 5]}. 

Their algorithm boils down to splitting] into independent 

(non-interfering} subsets, ordering these first and then 

combining them; it is fairly complicated and we shall not repeat 

it here, as no generalisation for larger m seems possible anyhow. 

The general problem, either with or without preemption, remains 

unsolved. Also no other criteria have been investigated here. 

With regards to the nlm problems therefore, a lot of work p 
remains to be done. The difficulty here consists chiefly of 

assigning the jobs to a machine; at present, no generally 

satisfactory rule for this procedure exists. 

4.3. The two-machines problem (n!2} 

We start this section by proving two theorems (Conway, Maxwell 

and Miller [24]} that will drastically reduce the number of 

potentially optimal solutions to some future problems. 
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Theorem 4.3.A: in solving nlm!Fl~(c1 , .•• , en) problems, where 

~ is any regular measure, we only have to consider schedules 

on which th,e same job order is prescribed on the first two 

machines. 

Proof: trivial. 

Theorem 4.3.B: in solving nlmlFIF problems, we only have to max 
consider schedules with the same job order on M1 and M2 , and 

the same job order on Mm-land Mm. 

Proof: interchanging jobs on Mm will not increase Fmax· 

(Theorem 4.3.B.) is not true for any regular measure; look at 

the F-optimal schedule below!). 

2 1 

Ml r=Jt 

2 1 

M2 t-1 0 

1 2 
DI 

Several applications of these theorems will be given below. 

This is the problem solved in the often-mentioned paper by 

Johnson ] . Because of theorem 4.3.A., we may restrict 

ourselves to schedules prescribing the same order on M1 and M2 . 

A Gan.tt chart could look as follows: 

P11 P21 P31 P41 
II II d 

F 
max 
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Theorem 4.3.1.A: the nj2jFjF problem is solved by the sequence max 
... , i , where 

n 

< mi'n (p p ) 
l. I' . 2 • 
k+l 1 k 

n 
Proof: it is trivial that we must minimize r X. over all 

. 1 l J= j 
sequences (i 1 , • • • I i ) n (where X. is idle 

l, 
time on M2 between 

J 

the processing of J. and J. ) , and that 
l. l l. 

n 
r X. = max 

j=l lj 

= max 

def 
where Kk = 

J- J 

n n-1 n-1 n-2 
( r p. 1 - r p. 2 , r p. - r p. 2 , 
j=l lj j=l lj j=l ijl j=l lj 

(K . 
n' 

k k-1 
r p. I - r p. 2· 

j=l lj j=l lj 

• • • I 

Now, inb:rchanging ik and ik+l' changes Kk into Kk, Kk+l into 

Kk+l and leaves the other Kk's unaffected. 

The old sequence will be better if 

Now, max (Kk, Kk+l) is given by (*), and: 

max 

max 

k+l 

(Kk' Kk+l) = 

k-1 k-1 
( . r Pi· . 1 + p. 1 - r p. 
J=l J 1 k+l j=l 1 j 2 

k+l 
r p. -

. l 1.l J= J 

k-1 

k-1 
r P· 2 - P· ) = 

j=l lj lk+l2 

:E p. 1 -, 1 l, 
J== J 

r p. 2 , 1 l, 
J= J 

+ max 
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So, treatin9 max (Kk' Kk+l) likewise, (**) will be true if: 

max ( -p . 1 , -p . 2 ) 
1 k+l 1 k 

< max 

leading easily to: 

min < min 

An example shows that theorem 4.3.1.A. is intuitively plausible. 

-- 4 = 3 = 6 = 2 

p == 5 12 = 5 = 4 = 1 

The steps are: 

(1) p 42 is minimal, so J 4 comes last; 

cross off J 4**); 

(2) now p 21 is minimal, J 2 comes first and can be 

removed; 

(3) p 11 is minimal now; J 1 comes before J 3 . 

Solution: 

2 1 3 4 

M2 1----------•-----•----•:J-. ___ _ 
F = 9 max 

*) Of course, we do apply theorem 3.6.A. here; formally we 
would have to prove that this function g defines a transitive 
relation. 

**) Ties between pk and P.11, are resolved in favour of Jk. 
1 2 
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A graphical interpretation of the algorithm is given in Conway, 

Maxwell and Miller [24]. 

No comparably easy solution is known for the nl2IFIF problem, 

although theorem 4.3.A. still is applicable. It is easy to see 

that Ji should precede Ji if both p. 1 ~ pi 1 and p. 2 ~ p. 2 • 
k t 1 k t 1 k 1 t 

However, this does not order the jobs. Ignall and Schrage [52] 

offer a "newest-active-node" branch-and-bound algorithm. 

Branching is done by next scheduling any job that is not yet 

scheduled. The bound is given by adding the flow times of jobs 

already completed to max (S,T), where Sand Tare the sum of 

remaining flow times under the respective assumptions that 

p. 1 ~ p. 2 and p. 2 ~ p. 1 for all unscheduled jobs. The 
ik ik ik ik 

computer results are quite discouraging; if n = 9, a difficult 

problem took 4 minutes on a CDC 1604. The number of computations 

grows exponentially with n. However, no better algorithms are 

known. 

The nl2IGIF problem was solved in an ingenious way by max 
Jackson [53], and surprisingly enough, approximately seven 

years later in a less ingenious way by Szwarc [99]. Jackson's 

solution is simply to divide all the jobs in four groups: 

Gi contains the jobs that are only processed on Mi 

(i=l,2); 

G .. contains the jobs that are processed first on M~, 
1J .... 

then on M . ( i = 1 , j = 2 ; i = 2 , j = 1 ) • 
J 

Now, sequence the jobs in G12 and G21 according to Johnson's 

method, and choose the following order: 
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on M1 : jobs from Gl2 followed by 

jobs from Gl followed by 

jobs from G21; 
on M2 : jobs from G21 followed by 

jobs from G2 followed by 

jobs,from Gl2° 

This order is clearly optimal. 

Mitten (68], Johnson (55], Szwarc [99] and Nabeshima (74] 

have considered nl2IFIF problems wherein some time lags max 
between operations on M1 and M2 have been prescribed. 

In Mitten's paper, constants tk (k = 1, ••• , n) are given. 

The operation (Jk,M2 ) may start tk time-units after (Jk,M1 ) has 

started (if M2 is free then); however, it must not be finished 

sooner than tk time-units after the finishing time of (Jk,M1 ). 

Overlapping is therefore allowed. 

Denoting starting-times of (Jk ,M1 ) (k = 1, •.• , n; t = 1, 2) 

by tkt' and restricting ou+selves to "passing not permitted", 

we see: 

tk2 = max (tk-1,2 + pk-1,2' tkl + tk, tkl + pkl + tk - pk2). 

n 
Just as in 4.3.1., we have to minimize I: x. 

k=l 1 k 
the total i~le time 

on M23 over all sequences il, • • • I i . n 

Now define: yk = tk - min (pkl'pk2 ). Following Johnson (55 1, 
we may interpret yk as the (possibly negative and possibly 
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overlapping) processing times on Jk by an intermediate machine. 

So the nl2IP,(20) IFmax problem is equivalent to a nl3IF1Fmax 
problem, which, because of theorems 4.3.A. and 4.3.B. is again 

equivalent to a nl3IP1Fmax problem. However, it is a very 

special nl3IP1Fmax problem. In a general nl3IF1Fmax problem 
we would find for a given sequence i 1 , .•• , in: 

U V n *) 
max ( E pi l + E yk + E pi 2) 

l~u~v~n k=l k k=u k=v k 

In this case, however, the yk may overlap (there are "no 

bottlenecks") and so we have here: 

u n 
F = max max { E o. 1 + y + E pi 2 } 

l~u~n k=l. 1 k . u k=u k 

which implies that we can treat this a special case of the 

nl2IF1Fmax case solved by Johnson with processing times: 

(for details on this, see 4.3.). 

Sequencing J 1 , ••• , Jn according to Johnson's method, using ~he 

processing times above, leads to the optimal sequence. By 

interpreting the problem in this way, we have avoided Mitten's 

long and complicated proof, that leads, of course, to the same 

algorithm. 

Szwarc [99] and Nabeshima [74] consider slightly other forms 

of this problem. Szwarc.only introduces start-lags~ - pkl so 

that, in the notation used above: 

tkl = t + p k-1,1 k-1,1 

*) See 4.4. 
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Szwarc proves that the optimal order is identical on both 

machines and can be found by splitting the jobs in two subsets 

Sand S' where: 

Jobs in S precede jobs in S'. S itself is ordered by increasing 

values of max (pkl' ~) and S' is ordered by decreasing values 

of max (pk2 ,~ - zk). Szwarc's proof is very involved. However, 

we may again regard max(~ - pkl' 0) as the processing time 
of Jk on a non-bottleneck intermediate machine. Therefore, we 

can apply Johnson's algorithm again, putting: 

Nabeshima deals with the situation that (Jk,M1) is split in 

two consecutive parts with processing times p1kl and p 2kl" 
Moreover, (J1 ,M2) may not be started before tkl + tk, and may 

not be finished before tkl + p 1kl + ~-

So we have here 

1 2 
= tk-1,1 + p k-1,1 + p k-1,2 

Again avoiding Nabeshima's complicated proof, we note that this 

is equivalent to a special nl3IF1Fmax problem, where yk (the 



processing time on the non-bottleneck intermediate machine) 

is given by: 

max 

1 2 2 
where pkl = p kl+ p kl and m'k = ~ - pkl 

If we drop the assumption that the two machines process the 

jobs in the same order, things get much more complicated. 

Johnson [ 55] gives a method by which one can reduce the set 

of feasible solutions to potentially optimal ones only. 

However, a good algorithm remains to be found. 

We finish this section of miscellaneous nl2 problems by 

mentioning the work of Sahney [88 1 on a nl2l (M3) IF problem, 

where jobs J 1 , ••• , JK have to be processed by M1 only, 
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JK+l' ..• , Jn have to be processed by M2 , and there is a time 

~ij needed to move the one available machine operator from 

machine i to machine j (i,j = 1,2; if j). A few theorems are 

obvious then: ordering the jobs by increasing pk's on each 

machine, we can at any point where J 1 , ... ,Ji-land 

JK+l' ..• , JK+l+(j-l) have been processed so far, stick to M1 
if pi< PK+l+j and switch to M2 if pi> PK+l+j + ~12 + ~21 • 
Sahney derives a few more complicated theorems and suggests 

a branch-and-bound procedure to choose between the remaining 

feasible solutions. 

We shall not go into details here any further, but wish to 

point out that Sahney's work is one of the few theoretical 

approaches that explicitly considers labour as a limiting 

factor. 
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4.4. The three-machines problem {n!3) 

Theoretical results for the case that m = 3 center around the 

nl3IF1Fmax problem. Here again we can apply theorem 4.3.B. and 

.conclude that the job order on each machine will be identical 

in an optimal sequence. 

A Gantt chart of any sequence i 1 , ••• , in will look as follows 

{the meaning of X. and Y. here are obvious). 
1 k 1 k 

Now, we want to minimize 

We have: 

n 
E Y. over all sequences i 1 , 

j=l l.j 

n n n-1 n-1 

. . . ' 

Y. = max { E p. 2 + EX. - E p. 3 - E Y. , o) 
1 n j=l 1 j j=l 1 j j=l 1 j j=l 1 j 

so: 

n n n n-1 n-1 
E Y. = max { E p. 2 + E X. - .E Pi.3' E y ) 

j=l l. . . 1 l.. j=l l. . j=l ij J J= J J J=l J 

n n n-1 n-1 

i . n 

n-1 
= max { E p. 2 + E X. - E p. 3, E p. 2 + E X. 

. 1 l. . j=l l. . j=l l.j ·-1 l.j j=l l. . 
J= J J J- ' J 

n-2 
- E p. 3, • • • • I p. + X. ) 

j=l l.j 1.1 1.1 

= max {Hv + K } 
1,u,v,n u 

V v-1 u u-1 
where H = E p. 2 - .E Pi.3' K = E p. 1 - E p. 2 

V u . 1 l. . j=l l.j j=l l.j J=l J J= J 



n 
Adding E p. 3 to both sides, we find: 

j=l ij 

n n U V n 
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F = max E p. 3 + E Y. 
j=l ij j=l ij 

= max { E p. l + _E Pi. 2 + _E Pi. 3 } 
l~u~v~n j=l 1 j J=U J J=V J 

a formulation we encountered in 4.3.4 .. 

Exchanging ik and ik+l' we find that only Hk' Hk+l' Kk and Kk+l 

are changed into Hk' Hk+l' Kk' Kk+l" The old sequence will be 
better than the new one if 

max {K } ) 
u 

Hk' + max {K1 , K K'}) .•• , k-1' k 

We can draw no general conclusions now. However, if 

which is the case when 

min {pk1 } 
k 

then (*) reduces to: 

leading easily to: 



Comparison with theorem 4.3.1.A. shows, that in this case the 

nl3IF1Fmax problem is a special case of the nl2IF1Fmax problem 
with processing times: 

so that Johnson's algorithm produces the optimal sequence. 

Szwarc [99] tries to develop a comparable method, applicable 

to more general cases. However, his proofs are incorrect, 

as shown by Arthanari and Mukhopadhyay [ 1]. These authors 

also give solutions to two more special 

In this 

so: 

where 

(1) 

case, 

max 
l~u~v 

n 
r Y. 

j=l ij 

max {pkl} ~ min 
k k 

we have: 

{K} = Kl = p. 1 u 11 

V v-1 
I = r p. 2 - r p. 

V j=l ij j=2 ij3 

{pk2} 

cases: 

For i 1 = 1, ... , n, we can find min { max {Iv}} by Johnson's 
2~v~n 

algorithm, and thereby solve this problem. 

(2) max 
k 

~ min 
k 
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In this case, max {H} = H; this problem is then again solved 
V V n 

by solving n nl2IF1Fmax problems. 

Apart from the integer programming formulation by Wagner [ 102], 

given in 3.3., there have been several attempts to solve the 

nl3IFIF problem by branch-and-bound methods. Ignall and max 
Schrage [ 52] use a "frontier search" algorithm, where branching 

is done by successively scheduling next all the jobs that are 

yet unscheduled. A lower bound LB is calculated as follows. 

Let T1 , T2 , T3 be finishing times of the set ~s of scheduled 

jobs on M1 , M2 , M3 , "::Ts= J- ~s· 

Tl + I: pkl + min {pk2 + pk3} 
~s ~ s 

LB = max T2 + I: pk2 + min {pk3} 
"J ~s s 

T3 + I: pk3 
-::Ts 

This lower bound is not very sophisticated and computing results 

are not very impressive, although computation time is reduced 

by applying a simple dominance criterium whereby some nodes can 

be eliminated directly. 

A similar method has been developed by Lomnicki [63] and 

subsequently been extended by Brown and Lomnicki [19] to cover 

the nlmlPIF problem. Their bound is the following one. max 
Suppose J. , ••. , J. have been scheduled so far, and J. is 

11 ik ik 
finished· on M1 at Tki" Then define: 

n m 
gn = Tkn + I: p. n + min { I: Pi· r} 
~ ~ j=k+l" 1 j~ k+l~j~n r=R,+l j 

Then g = min {g1 } gives a lower bound at every node. Lower 
l,E::R,~m 

bounds for the first n nodes can be developed likewise. The 

bounds are identical to those of Ignall and Schrage if m = 3. 

MATHEMATISCH 
AMSTER DA" 
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A few other branch-and-bound methods for the nlmlPIF problem, max 
that could be applied here, are mentioned by Bakshi and Arora 

[ 6]; we will not go into them here any more. 

4.5. The two-jobs problem (2!m) 

The highly artificial 2lmlFIF and 2lmlGIF problems are max max 
being considered here, because there are two interesting 

approaches to it that might find wider application. We shall 

follow in this section the convention by which Mt means that 

(J 1 , MR,) < (J2 , MR,) and MR, means that (J2 , MR,) < (J1 , M1 ). 

In the first place, we note that infeasible sequence here is 

characterized by containing MR.Mt'' while in the technological 

machine ordering we find: 

(l,t') (l,t) 

Furthermore, it is easy here to distinguish sequences that can 

never be optimal. We have the following rule (developed.by 

Akers and Friedman): 

if the following orders are prescribed: 
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then disregard any sequence containing M1M1 ,M1 ". 

From this rule more specific rules (e_ight in all) may be derived 

by interchanging J 1 and J 2 , and by disregarding M1 , M1 " or 

both. In this (non-numerical) way, one can delimit the search 

for an optimum to a smaller set of feasible sequences. 

Hardgrave and Nemhauser have developed a graphical technique 

to solve the 2lmlG1Fmax problem. We shall illustrate this 

technique by a 2l4IG1Fmax example. Suppose the technologically 
prescribed machine orderings are 

Processing times are: 

= 5 = 7 = 4 

We can depict this information in the diagram below, taking one 

axe for·each job. 
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(2, 4) 

( 2, 3) 

(2, 2) 
, , , 

N 8 ..p;;...,_/--.,..-;•· ~ 
( 2 , 1 ) < _ -' :::>; 

... ~-,·' .,/,,,_.,..,,.,..,.,.,,, 
✓- --·- -

N (1,1) 7 

, 

/. ,, 
./ . 

, -'i ,., .. 

,, , , 

(1, 3) 

N3 Nl destination 

( 1, 2) (1, 4) 

The lines represent a feasible schedule: they run from (0,0) 

to (Ep1 Ep2 ), and avoids the hatched areas (because that 
k, R. 

would imply a machine ran on two jobs simultaneously). Fmax is 

equal to the sum of vertical (horizontal) segments plus 

Epkl ( Epk2) • 

In principle, one would have to draw all 2m lines and decide 

which one has the smallest sum of vertical segments. However, 

one can avoid some schedules by drawing two from the origin 

and two from the destination that favour consistently job 1 or 

job 2. The dotted lime for instance favours job 1 consistently. 

All potentially optimal schedules then have to lie in the area, 

formed by the intersection of these four schedules. This ·area 

has been shaded in the drawing. We see then that the schedule 

marked by·-· is optimal with Fmax = 26. 
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Szwarc [99] evaluates the lengths of all paths in the shaded 

area by dynamic programming. He considers the origin, the 

destination and the north-west and south-east corner of each 

rectangle as nodes Nj (j = 1, ... , J). Nodes are ordered 

lexicographically by decreasing (x, y) coordinates. Define the 

(vertical) distance between N. and N. (where i > j): 
1 J 

Now, 

d ( N . , N . ) = max ( ( y . - y . ) + ( X • - X . ) , 0 ) • 
1 J J 1 J 1 

define TI(N.) to be the set of N. (j > 
1 J 

to N. that does not contain any other 
1 

= {N4 , N5 , N6 }) and define 

min ( d (Ni, N.) + f (N.) ) . 
TI(Ni) J J 

i) with a feasible 

N. (e.g., 
J 

Taking f(N 1 ) = o (N 1 is the destination), f(NJ) will give the 

minimum value of F max 

Szwar~ suggests that it may sometimes be possible to solve a 

nlmlGIF problem by first solving (n2 ) 2lmlGIF problems max max 
and combining the solutions. This method obviously cannot 

guarantee a feasible solution. 
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5. The qeneral flow shop and job shop problem 

5 .1. Introduction 

If we now turn finally to the general nlmlp, nlm!F and nlm!G 

problems, the lack of theoretical and practical results becomes 

particularly obvious. To start with, the only criterium considered 

here is a minimizing F . In the nlmlPIF problem, where we max max 
only have to consider n! permutation schedules, there are a 

few theoretical results that reduce the search for the optimum 

solution. With regards to the nlmlFIF problem the common max 
machine order for all jobs does not give much extra information 

at all, except for theorems 4.3.A. and 4.3.B •. So one might as 

well study the nlmlGIFmax problem, which still remains the most 

difficult of them all. Practically no theoretical progress has 

been made here, but some sophisticated branch-and-bound methods 

have been developed. However, it looks as though even they 

cannot solve problems of any appreciable size. If one considers 

moreover the seeming unrealisticness of the nlm1GIF problem · max 
in general, things look bleak indeed. It is pretty obvious that 

present combinatorial methods are not powerful enough to solve 

these very large problems; the combinatorial proofs encountered 

so far in simpler problems are already very complicated. 

Altogether it is not at all surprising, as mentioned before, 

that known applications of scheduling theory have mostly been 

heuristic ones. Below, we shall review the work done so far 

(as far as this has not been mentioned earlier in chapters 3 

and 4), and.hopefully await better times. 

5.2. The nlmlPIFmax problem 

The restriction that "passing is not permitted" reduces the 

search for an optimum ton! sequences only. The restriction 

itself is not very realistic; however, nlmlPIFmax solutions 
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have some heuristic value as well if one regards them as 

approximations to given nlmlFIFmax problems. As we shall see 
below, an optimal solution to the latter problem may well be 

one where "passing" is necessary, but a reasonable solution is 

better than no solution at all. 

Having already mentioned Wagner's integer programming approach 

[102] and the branch-and-bound method of Brown and Lomnicki [19], 

we want to pay attention now to theoretical results obtained 

by Szwarc [ 100]. These methods allow a sizeable reduction of 

the search for an optimal nlmlPIFmax solution. 

By definition, there are only n! different schedules to consider, 

each one characterized by a permutation of (1, ••• , n). This is 

the situation in which combinatorial-analytical methods might 

indeed be used profitably. The general method to use is familiar 

by now: eliminate as many sequences as possible and search 

sensibly among the remaining ones. 

What we want to do essentially in the nlmlPIFmax situation is 
to find some criterium which, if it holds, allows one to 

eliminate a set of sequences that can never be optimal (or, 

weaker: to eliminate a ~et of sequences so that the remaining 

set contains at least one optimal solution). 

All criteria mentioned in Szwarc's article have the same form: 

if a certain condition C(a, Ja' Jb) holds with regard to a 

given sequence of jobs a and jobs Ja and Jb' then we can eliminate 

all sequences beginning with aJb. 

Of course, we have to check if there is at least one optimal 

sequence remaining after the elimination. A way to do this is 

given by the following criterium. 
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Suppose TI' and TI" are sequences satisfying: TI' n TI"=¢, 

(TI' u TI") n (crJaJb) = ¢, TI' u TI" u (crJaJb) = {J1 , ... , Jn}'~) • 

Then if C(cr, Ja, Jb) implies: 

(where t(TI,1) is the finishing date of a given sequence TI on M1), 

then we can be since that there is an optimal sequence not 

starting with crJb (because we would not increase F by moving max 
Ja between cr and Jb). 

Now Szwarc mentions five of these elimination criteria, four 

of which were known already. First he defines: 

The five criteria now read: eliminate all sequences beginning 

with crJb if: 

(1) t(crJaJb, 1) ~ t(crJbJa, 1) 
(due to Dudek and Teuton [27]); 

( 2) 

t(crJa, 1-1) ~ t(crJb, 1-1) 

(due to Smith and Dudek [95]); 

( 3) /J.1 ~ Pa1 
(due to Bag,ga and Chakravarti [ 4 ] ) ; 

( 4) 

(due to Szwarc) ; 

(5 ) /J.1-1 ~ Pal 
(due to Smith and Dudek [94]). 

( 1 = 2 , ..• , m) 

( 1 = 2 , ••. , m) 

( 1 = 2 , ••• , m) 

( 1 = 2 , . , • , m) 

( 1 = 2, ... , m) 

*) In this context we regard sequences as sets by forgetting 
about precedence relations. 
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First, we want to check that Szwarc's criterium is really a 

valid one. To get the flavour of the type of reasoning needed 

here, we shall follow the proof that Szwarc's criterium (4) 

is valid in the sense that if it holds, (*) must also be true. 

We need two fairly general lemma's: 

Lemma 5.2.A.: if (4) holds, then, for any sequence TT such that 

an TT=¢, Ja $ TT, Jb $ TT: 

Proof: induction on 1 and p (the number of elements in TT). 

Trivial for 1 = 1 and p = 1. 

Now: 1 - 1 ~ 1 (p = 1, TT= JS) 

t(crJ JbJ , 1) - t(crJbJ , 1) = a s s 

max (t(crJ JbJ , 1-1), t(crJ Jb, 1)) + p n 
a s a sN 

max (t(crJ JbJ, 1-1) - t(crJbJ , 1-1), a s s 

(the two last steps being justified by the induction step and 

( 4) ) • 

*) max (A,B) - max (C,D) ~ max (A-C,B-D). 
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We can now repeat the proof for any p, if we assume the case 

p - 1 has been proved. 

Lemma 5.2.B.: let E and E' be different permutations of the 

same set of jobs, and TT any permutataon, such that En TT=¢. 

Then: 

t(E,~~) < t(E' ,£) => t(ETT,£) < t(E 1 TT 1 £) 

Proof: the proof is by induction and based again on 

t ( EJ , £) = max ( t ( EJ , £-1) , t ( E, £) ) + p n s s SN 

Now, we can prove that (4) implies (*): if (4) holds, then by 

lemma 5 . 2 . A. : 

Lemma 5.2.B. (with E = crJaJbTT', E' = crJb1r'Ja' TT= TT 11
, £ = m) 

now gives (*) immediately. 

So we know (4) is a valid criterium. What about the other ones? 

(1) is known to be false; Karush [56] already provided a 

counter example. Szwarc himself has given in an earlier article 

a counter example to (3). He now gives a counter example· 

to show that application of criterium (5) at le~st does not 

imply (*). So we are left with (2) and (4). By a complicated 

proof similar to the one above Szwarc now shows that (2) implies 

(4); therefore (2) also is a valid criterium. Nevertheless (4) 
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is a stronger one, because any sequence eliminated by (2) could 

have been eliminated by (4), but not vice versa! 

We now give a small example to illustrate the use of Szwarc's 

criterium. 

Suppose n = 3 and m = 3. Let: 

P11 = 1 P12 = 2 P13 = 3 

P21 = 2 P22 = 1 P23 = 2 

P31 = 1 P32 = 3 P33 = 3 

(1) Taking a = ¢ in ( 4) , we see that we have: 

6 1 =Pal~ 62 ~ .•. ~ 6i and because 6i ~ Pai= Pal~ Pai 
(i = 2, ••• , m). So in the example J 1 and J 3 could play the 

role of Ja. First, take Ja = J 1 , Jb = J 2 (a is still¢). 

We have to check: 

Draw up two Gantt charts 

1 2 
pc:, 

1 2 
I I 

1 
J 

2 
lc:J 

2 p 61 

2 
D 62 

2 

63 

= 1 

= 1 

= 3 
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Both inequalities hold. J 2 cannot be first. 

Now take Ja = J 1 and Jb = J 3 • 

1 3 3 po p 

1 3 3 
n i 

1 3 3 

• i 

ti 1 = 1 

ti2 = 2 

ti3 = 2 

Again the inequalities hold. So J 3 cannot be first too, and J 1 
must be first. 

Now we try to eliminate jobs from the last position, by filling 

up a schedule back to front. For job Ja it then has to be true 

that Pam~ Pak (k = 1, ••• , m-1). There is no job satisfying 

those constraints. 

(2) We know J 1 must be first. So we take cr = J 1 • We try 

J 3 first as Ja' and J 2 as Jb. 

1 3 2 1 2 
p:7C7 pc::7 til = 1 

1 3 2 1 2 
d ID g 

• ti2 = 3 

1 3 2 1 2 
H IC:J I ti3 = 3 
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Again we find: 81 ~ 82 ~ p 32 = 3 and 82 ~ 83 ~ p 33 = 3. So we 

can eliminate a sequence, starting with (1,2), which leaves 

only (1,3,2) as the optimal sequence with Fmax = 11. 

The unfortunate thing is that Szwarc neither gives an algorithm 

based on this criterium nor any computing experience with it. 

Claiming he does this "intentionally", one wonders about the 

goal he is trying to attain here. Still, it should not be too 

difficult to devise a branch-and-bound method to search the 

best among the remaining sequences. Moreover, Szwarc himself 

hints that it may be possible to find even sharper elimination 

criteria. 

Having already mentioned the existence of several branch-and

bound methods to solve the nlmlPIFmax problem (see Bakshi and 
Arora [ 6]), our discussion would have to end here, were it 

not that under very special circumstances a nlmlFIF problem max 
degenerates into a nlmlPIF problem. We are referring to the max 
case in which no intermediate storage is allowed (this implies 

(J4) is no longer valid), so that all operations have to be 

processed directly after each other. 

This problem has been-attacked by Wismer [ 103) and by Reddi 

and Ramamoorthy [82] practically simultaneously. Although 

Wismer is rather vague on this point, his method also depends 

on the fact that each machine processes all jobs in the same 

order. (A sequence like the one below would not be allowed, 

1 2 
i 

2 1 
c:::d I 

2 1 



114 

although all operations are performed without delay). Reddy and 

Ramamoorthy deal with a F and therefore P situation straight from 

the beginning. 

Now, it is obvious that the minimum time between initiation of 

Jk and the initiation of J 1 is a function c of k and t only. 

It is not difficult to .derive an exact formulation for this 

minimum time, but the easiest way to conceive of this function 

is to picture Gantt charts for Jk and J 1 , and, fixing the one 

for Jk, to move the one for J 1 as far to the left as possible 

until two operations "touch" each other. 

Jk Jt 

I 
I Jk Jt 
I 

I ' I 1 
I Jk • Jt 
' 

I 

c (k, t) 

If we introduce a job J 0 with 

c(O, k) = 0 (k = 1, • • • I m) 

m 
c(k, 0) = r pk. (k = 1, • • • I m) 

j=l J 

we see that the minimization of Fmax is equal to the minimization 

of 

m 
r c(i., i.+1) + c(i, i 0 ) 

j=O J J .. m 
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over all permutations (i0 , ••• , im) of (0, ••• , m). This is 

easily recognized as another example of the Travelling Salesman 

Problem. 

Examples of a process where intermediate storage would indeed 

not be allowable can be found by looking at steel mills or at 

computers processing a set of jobs. 

5.3. The n!m!F!Fmax problem 

We now turn to the general flow shop problem. Generally speaking 

all (n!)m possible sequences are feasible (i.e. compatible with 

the given machine ordering per job) in this situation, as is 

easy to prove. However, theorem 4.3.B. permits elimination of 

those sequences with different orderings on the first and second, 

or (m-1) th and mth machine, leaving (n!)m- 2 to be evaluated 

- a considerable number. 

One might hope that the optimal sequence was one whereby jobs 

did not pass each other. However, the example below for n = 4 

shows that this is not the case; the depicted sequence is optimal 

with respect to F max 

2 1 
Ml I ■ i 

2 1 
M 

2 I 0 

1 2 

M3 I D 

1 2 

M4 I • n 
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It might be interesting to find out what percentage of random 

nlm!FjFmax problems has a "non-passing" optimal solution. 

No more specific theory for the general flow shop problem exists. 

Apart from the special cases treated in chapter 4, it is just 

as difficult as the general job shop problem to which we turn 

now. 

5.4. The nlmlGIFmax problem 

There is little doubt that we have now arrived at the most 

formidable problem of them all. As Conway, Maxwell and Miller 

[24] put it discouragingly: "Many proficient people have 

considered this problem, and all have come away essentially 

empty-handed. Since this frustration is not reported in the 

literature, the problem continues to attrack investigations, 

who just cannot believe that a problem so simply structured 

can be so difficult, until they have tried it." 

Throughout the report, methods to attach this problem have been 

mentioned. We have noted the failure so far of integer programming 

methods and the lack of any combinatorial-analytical results. 

Also we have introduced the concepts of active and non-delay 

schedules; though we can easily generate all active schedules 

(e.g. by the algorithm of Giffler and Thompson [ 39]), this 

class is still too large to be completely enumerated within 

reasonable time. There are mainly two things left to do. We 

shall take a look at methods to find infeasible solutions, 

and we shall review attempts to solve this problem by branch

and-bound methods. Throughout this section we rely rather 

heavily on the disjunctive-graph model formulated in 2.1 •• 
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5.4.1. Elimination_of_infeasible_seguences 

Unlike the flow shop problem, some solutions to the nlmlG 

problem may be infeasible. Already (in 2.1.) we have seen that 

these infeasible solutions correspond to cycles in a directed 

graph. 

To detect these we can use a simple algorithm, like the one 

developed by Marimont (reported in [ 6]). 

First we number all operations from 1 to nm, starting with 

those of J 1 , etc.*). (We stick to this convention throughout 

this section.) Then we construct a (nm x nm)-matrix of which 

the i-j th entry is 1 if operation i directly precedes operation 

j (by technological reasons or by the proposed solution), and 0 

otherwise. Any operation with an empty row or column can be 

scheduled and removed. If all operations can be removed, the 

solution is feasible. 

Example: Suppose we have a 2l2IGIF problem, corresponding - max 
**) to the following disjunctive graph : 

*) All methods in this section are also applicable if any job 
Jk does not pass all machines or passes some machines twice. 

**) See the footnote above. 
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One proposed solution might be: 

0 

* 

4 5 

The matrix is: 

0 1 2 3 4 5 6 

0 0 1 0 0 1 0 0 

1 0 0 1 0 0 1 0 

2 0 0 0 1 0 0 0 

3 0 0 0 0 0 0 1 

4 0 0 1 0 0 1 0 

5 0 0 0 1 0 0 1 

6 0 0 0 0 0 0 0 

The solution is obviously feasible. 

Baskshi and Arora ([ 6]) and Ashour ([ 2]) mention another 

trivial technique to eliminate infeasible solutions, developed 

by Nelson. We draw up a tree by starting with operation 0, and 

branching to every node that directly follows the present one. 

This process does not terminate if the solution is infeasible. 
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For our example, the tree would look like below. 

This method is slightly more interesting than the previo~s one, 

because, if we assign length p. to branch {i-j), the longest 
1 

branch in this tree will be equal to Fmax {this is again 

equivalent to saying that Fmax is equal to the length of the 

longest {the so-called critical) path in the graph). 

Now this implies that, if the tree corresponding to some solution, 

is contained in the tree corresponding to another one, the 

latter solution can never be optimal. 

For instance, suppose ~e have the following solution, where 

one disjunctive arc has been changed to another direction: 

1 2 3 

0 * 

The corresponding tree is: 
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and by comparing it to our former tree, we see that this solution 

can never be optimal. 

Now, here we have a non-numerical technique to detect potentially 

optimal sequences. What is far more important, however, is the 

following. We have now seen that, if in a disjunctive graph we 

assign a direction to the disjunctive arcs in accordance with 

some proposed solution, the maximum flow time of this solution 

is equal to the longest {critical) path in the created directed 

graph. {Any infeasible solution will lead to loops.) 

This insight has lead to the best of the branch-and-bound 

methods, that we shall now deal with. 

5.4.2. Branch-and-bound_methods 

In order to facilitate discussions, we first restate more 

formally the disjunctive graph model. 

The disjunctive graph G, corresponding to a given nlmlGIFmax 

problem, is completely characterized by three sets,>,/', e andi:J 

J'f'is the set of nodes of G, each node corresponding to an 

operation. We index these nodes by first taking the n 1 operations 

of J 1*) and number them in the given machine order 1, •.. , n 1 • 

*) We may drop the assumption that n 1 = n, etc .. 
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Likewise, the n 2 operations of J 2 are numbered n 1+1, ••• , n 2 , 

etc •. Also included in cJ/' are two dummy operations O and*, 

whose meaning will be clear later on. We call the set of the 

first operations of J 1 , ••• , Jn a, and the set of the last 

operations 8. Furthermore we designate by µ 1 all the operations 

that are performed on machine M1 (t = 1, ••• , m). 

{! is the set of all conjunctive arcs. These are ordinary 

directed arcs that connect node k to node (k+l) (k = 1, ••• , n 1-1, 

n 2 , ••• , n 2-1, n 3 , ••••.•• , nn-1), signifying that k directly 

precedes (k+l) for technological reasons. Furthermore there are 

n conjunctive arcs from Oto the nodes in a, and n conjunctive 

arcs from 8 to*· To any of these arcs we assign a length pk' 

corresponding to the duration of the operation that the arc is 

branching from (take Po= 0). 

oelis the set of disjunctive arcs. Any disjunctive arc can be 

thought of as a pair of oppositely directed arcs, each with a 

length assigned to it according to the rule above, that connect 

all pairs of operations from different jobs in µ 1 (t = 1, .•• , m). 

Below is the former example; job 1 consists of operations 1, 2, 3 

with processing times 2, 3, 4; job 2 consists of operations 4, 5 

with processing times 1, 6. 
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Now, by "resolving a disjunctive arc" we shall mean choosing 

one directed arc and (temporarily) dropping the other. This 

corresponds to assigning precedence to one of the two operations 

on the machine under consideration. If we resolve a number of 

disjunctive arcs, forming a subset D of ti:> , we shall speak of 

a partial solution. Associated with any partial solution is a 

set N cc>/', containing the nodes all of whose disjunctive arcs 

have been settled. When evaluating any partial solution, we 

will usually disregard any non-resolved disjunctive arcs. When 

all disjunctive arcs have been resolved, we have a solution to 

the problem,. that is feasible if the now-created directed graph 

does not contain any loops. The value of Fmax for this particular 

solution then corresponds to the length of the longest path in 

this directed graph. A very efficient algorithm, devised by 

Kelley, exists for calculation of this so-called critical path 

CP. Basically it uses the formula 

max {CP(j) + p.} 
J 

{ 
CP (k) = 

CP(O) = 0 

the maximum being taken over all nodes directly-preceding node 

k, and the length of CP being given by CP(*). 

Several algorithms either implicitly or explicitly depend on 

the above model. We shall distinguish two main groups, and also 

pay attention to Balas's algorithm ([ 8]), which is mainly of 

theoretical interest. 

The first group consists of the algorithms of Greenberg, Nemeti, 

Charlton and Death, Nabeshima and Sussmann. In fact, Greenberg 

([43]) was one of the first authors to apply branch-and-bound 

techniques to the scheduling problem. Essentially, he first 

disregards all disjunctive arcs and then adds them one by one 
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in an unspecified order, branching by resolving them either in 

one or in the other direction. At each branch a lower bound is 

given by the longest path in the graph constructed so far*). 

Using a frontier search method, gradually the optimal solution 

is built up. 

Now this method obviously is not very efficient. There is just 

no need to resolve all disjunctive arcs in this way, because 

very often two operations on the same machine will not be 

competing for time at all. Only for those operations that do 

have this conflict, we need to settle the disjunctive arcs one 

way or the other. 

The above consideration has led to the practically equivalent 

algorithms of Nemeti [77 1, Charlton and Death (21 1, 
Sussmann (98] and Nabeshima [76]. Again we start by 

disregarding all disjunctive arcs. Then, by calculating the 

present earliest starting times tk of all operations by Kelley's 

algorithm, we look if there is at present any conflict between 

two operations on one machine (i.e., t. - tk < pk and tk - t. < p. 
**) J J J for j,k E µi) • If not, we have a complete solution. Otherwise, 

we select a conflict in a heuristic way (several recipes for 

this are given) and branch by resolving the corresponding 

disjunctive arc in one way or the other. Again, a lower bound 

is given by the longest path in the graph constructed· so far. 

Proceeding either by newest active node (Charlton and Death, 

Sussmann) or frontier search (Nemeti), we arrive at the optimal 

solution. 

It is interesting to notice that no infeasible solutions are 

ever generated this way, since any path existing from j to k 

or vice versa prior to the resolution of the disjunctive arc 

*) Infeasible solutions are quickly discovered by this value 
becoming infinitely large. 

**) tj is the starting date of operation j. 
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must have had a length of at least either pj or pk' in which 

case there would be no conflict. However, the argument does not 

apply any more if sequence-dependent set-up times are included 

in the pk's. Nabeshima ([76]) gives a counter-example to show 

this. 

The above bound is improved by Charlton and Death in a later 

article ([22] ). For any partial solution with corresponding 

sets D. c rJ:) and N c c>f' , they take the maximum of the longest 

path and 

max {'max {t. + p.} + E p.} 
J J jE(f)/"-N) J R, :jENnµ R, 

n µt 

Nabeshima finally has stressed the potential usefulness of this 

algorithm for other criteria; computation of the lower bounds 

is not so simple then, however. 

Although computing experience with some of the above algorithms 

is not at all bad, the lower bounds are just not very sharp. 

To see how they might be increased, we turn to the second 

group where we find the work of Brooks and White, Schrage, 

Florian, Trepan, McMahon, Bratley and Robillard. 

Brooks and White ([ 18]) in the first branch-and-bound solution 

to the scheduling problem essentially propose the following 

algorithm. For each partial solution consider the set s0 of 

scheduleable operations (i.e. the successors to N; in the first 

step of the algorithm, take s0 = a). Now find operation kin 

s0 so that 

= min 
jESO 

{t. + p.} 
J J 
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Suppose k is performed on Mi. We then have a conflict between 

operation k and all other scheduleable operations on M1*). We 

branch by successively scheduling first all operations in 

s0 n µi. For each branch a lower bound is computed in the 

following way. First we find the set~* of all machines that 

perform at least one final operation {i.e. those machines Mi 

for which µin S +~).Next we calculate the earliest finishing 

time Ti on each machine Mi e.>(.* by disregarding all unresolved 

disjunctive arcs except on Mi itself, where operations are 

scheduled according to the FIFO principle {i.e. the operations 

on Mi are performed in order of increasing earliest starting 

times tk). The maximum of the earliest finishing times Ti over 

all Mt E ~* then gives a lower bound for the particular branch 

under· consideration. 

The above formulation covers the rather vague terminology of 

Brooks and White {mainly aimed at the nlmlFIF case) and also max 
the work of Florian, Trepant and McMahon {[ 32 J ). The latter 

authors' algorithm is already superior to those of Schrage {[89]), 

who uses a similar approach with less sharp bounds, and Balas 

{[ 8 1 ), who will be treated later. However, the lower bounds 

are not yet completely satisfactory. The restriction to the set 

J(.* of machines that perform at least one final operation, has 

been made essentially because we wanted to disregard everything 

that happened to the jobs after they had passed the machines in 
~*. h ""'- Obviously this can only be justified if we stick to mac ines 

that are in the above sense "final", because otherwise the 

method would lead to worthless bounds. 

Nevertheless, we would like to extend the calculation of the 

bound to the set J"f.. 0 .:> .M..-* of all machines that still have to 

perform some unscheduled operations. What one could do then 

{Florian and Sang, [ 33 J) is treat every machine Mt E ,M,0 as a 

*) If k is the only one, just schedule k and go on. 
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"final" one, and calculate earliest finishing times Tt on each 

Mt by again disregarding all unsettled disjunctive arcs and 

FIFO-scheduling on Mt itself. Next we could calculate for each 

Mt E c.M,,0: 

where qk is the sum of the processing times of all operations 

remaining for Jk after Mt. Then, 

would give a lower bound for the branch in question. 

This is still not very satisfying, for, given Mt E .J't0 , one 

would rather use qk directly for scheduling the jobs on M1 • 

instead of just using FIFO-scheduling and adding qk afterwards. 

So, in fact, to calculate the lower bound, we have to solve a 

number of OnE:! machine problems whereby jobs are available on Mt 

at date tk*), take pk time-units to be processed and then have 

"tails" qk remaining before they are finished~ the objective is 

to minimize C , including the qk. Doing this for all machines max 
Mt E .M..0 gives us a number of values for Cmax' the maximum of 

which then provides the lower bound. 

Now, obviously the usefulness of this lower bound heavily 

depends on speedily finding the optimum sequence for all these 

one machine problems. Bratley, Florian and Robillard ([ 17]) who 

advocate this approach, have devised an implicit enumeration**) 

*) Formerly called rk! 

**) The formal difference between implicit enumeration and 
branch-and-bound is that in the former we gradually try to 
improve a. "good" starting solution (using bounds if necessary). 
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algorithm to solve this nil problem~), that looks very much like 

their algorithm in 4.2.5. 

A good initial solution is given by ordering the jobs Jk for 

this nil problem according to the following rule: start with Jk 

with minimal tk, at any time to choose of the available jobs Ji 

with ti~ t the one with largest qi, break ties by largest di; 

if no job is available again take the one with lowest tk. 

(Several samples are solved below). 

In gradually improving the starting solution, the lower bound 

becomes important. Let S be the set of scheduled jobs. We have 

a lower bound then: 

where 

and 

max 
s 

= min 
B p 

where BP is the last block in the given schedule, blocks having 

been defined previously in 4.2.5 .• It is easy to see that LB2 
can be increased by 1 if the last job scheduled is not the one 

with minimal qk over BP. 

If in the initial solution Jc is the job with Cmax = ac +be+ qc, 

then it is again easy to see that this solution is optimal if 

*) We could regard this as a nl2IF,(J2),(M8) lcmax problem by 

regarding qk as the processing time on a non-bottleneck M2 ; 

this does not seem to lead anywhere. 
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Jc comes la.st in its block and has the smallest tail of its 

block. However, if this is not the case, and if ac + b + q is 
C C 

not equal to LB for this solution, we have to find a better one 

by branching and bounding*), aided by the following trivial 

lemma's: 

Lemma 5.4.2.A.: if job k could be finished, before job tis 

available, schedule it. 

Lemma 5.4.2.B.: if at any date t, tk < t for all 

schedule the remaining jobs by decreasing qk. 

Lemma 5.4.2.c.: any solution can only be improved 

forward. 

remaing k, then 

by moving J 
C 

Lemma 5.4.2.D.: except in consequence of 5.4.2.C. it is no use 

backtracking over an unavoidable gap (see lemma 4.2.5.B.). 

To show the application of the algorithms in the second group, 

let us calculate the bounds for one problem situation. The 

disjunctive graph is given below (the lengths of the disjunctive 

arcs have not been added, but are clear from the picture). 

*) Bounds are recalculated if a gap appears in the schedule. 
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No jobs have been scheduled so far; N = {0}. So s0 = {1,4,7,11}. 

Now t 4 + p 4 = 2 is minimal over s0 , so we restrict attention to 

{1,4,7}. We have te create three branches. 

First, we compute the bounds by the first method.~•= {M2 ,M4}. 

( 1) Schedule 1 first. 

Then on M . t2 = 3 t9 = 7 tl2 = 4 2 . 

Choose order 2 - 12 - 9; T2 = 10 

On M4 
. t = 5 t6 = 6 tlO = 9 . 3 

Choose order 3 - 6 - 10; T = 13 4 

Lower bound . max (10,13) = 13. . 

(2) Schedule 4 first. 

On M2 t2 = 5 t9 = 6 tl2 = 4 

Choose order . 12 -. 2 - 9; T2 = 11 

On M4 . 
t3 = 7 . t6 = 3 tlO = 8 

Choose order . 6 - 3 - 10; T4 = 13 . 

Lower bound . max (10,13) = 13. . 

(3) Schedule 7 first. 

On M2 . . t2 = 6 t9 = 4 tl2 = 4 

Choose order . 9 - 12 - 2; T2 = 11 . 

On M4 t3 = 8 t6 = 6 tlO = 6 

Choose order 10 - 6 - 3; T4 = 14 

Lower bound max (10,14) = 14. 
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We note that calculating the lengths of the longest path in 

the three cases above would have given us lower bounds of 11, 

11 and 12 r,especti vely. 

Now we extend .K* to all .11.o = {Ml ,M2 ,M3 ,M4}. The bounds then 

become: 

( l) Schedule l first. 

Tl = 8 ql = min (6,3,5) = 3 

T2 = 10 02 = min (0,2,4) = 0 

T3 = 7 03 = min (2,4,3) = 2 

T4 = 13 04 = min (0,0,0) = 0 

Lower bound: max (11,10,9,13) = 13. 

( 2) Schedule 4 first. 

Tl = 8 Ql = 3 

T2 = 11 02 = 0 

T3 = 6 03 = 2 

T4 = 13 Q4 = 0 

Lower bound: max (11,11,8,13) = 13. 

( 3) Schedule 7 first. 

Tl = 8 C\ = 3 

T2 = 11 Q2 = 0 

T3 = 6 ci 3 = 2 

T4 = 14 Q4 = 0 

Lower bound: max (ll,11,8,14) = 14. 
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So this gives no increase here, mainly due to the small 

processing times following M3. 

Now we use the last method to calculate one new bound. 

Schedule 1 first. Then we have: 

on M1 
. . tl = 0 P1 = 3 ql = 6 

t4 = 3 P4 = 2 q4 = 3 

t7 = 3 P7 = 3 q7 = 5 

on M2 t2 = 3 P2 = 2 q2 = 4 

t = 7 Pg = 2 q9 = 2 9 

tl2 = 4 P12 = 3 ql2 = 0 

on M3 ts = 5 P5 = 1 qs = 2 

ta = 6 Pa = 1 qa = 4 

tll = 0 P11 = 4 qll = 3 

on M4 t3 = 5 P3 = 4 q3 = 0 

t6 = 6 p6 = 2 q6 = 0 

·t10 = 9 P10 = 2 qlO = 0 

So now we have to solve these four one machine problems. 

On Ml: initial solution: 1 . 0 - 3 - 9 *) . 
7 . 3 - 6 - 11 . 
4 6 - 8 - 11 

*) Starting at 0, processed at 3, finished at 9. 
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This solution is optimal by the remark preceding lemma 

5.4.2.A.; C = 11. 
max 

On M2 : initial solution: 2 : 3 - 5 - 9 

12 : 5 - 7 - 7 

9 : 7 - 9 - 11 

The same remark does not apply. 

LB 1 = max (9,11,7) = 11; LB2 = 3 + 7 + 0 = 10 • 

. So LB= max (11,10) = 11 and the solution is optimal, 

being equal to the lower bound; Cmax = 1 L 

On M3: initial solution: 11 . 0 - 4 - 7 . 
5 : 5 - 6 - 8 

8 . 6 - 7 - 11 . 
LB being 11, this solution is again 

On M4 : initial solution: 3: 5 - 9 - 9 

6 : 9 - 11 - 11 

10 : 11 - 13 - 13 

optimal; C max 

Optimal by the same remark as on M1 ; C = 13. max 

= 11. 

So the bound on this branch is not further increased and remains 

13. 

The reader may well wonder if this complicated method ever leads 

to significantly better solutions. There is, however, convincing 

evidence for this. Attacking some old problems with this algorithm, 

Bratley, Florian and Robillard found an initial solution for one 

of them that was better than the best previously known one; the 

finally best solution they found was significantly better. We 

must strike a somber note nevertheless, because optimality has 
\ 

not been proved for the two problems mentioned above (resp. 5/20 

and 10/10 ones), leading the authors to express their belief 

that "methods other than bounds must be used to further curtail 

the tree search". 
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So we see the best here is by far not good enough yet, and this 

counts even stronger for the implicit enumeration algorithm by 

Balas [ 8 ] • 

Balas' algorithm boils down to resolve the disjunctive arcs 

heuristically and then gradually improve the so found feasible 

solution by reversing one disjunctive arc at the time. It is 

easy to see that the only way to decrease the length of the 

critical path is by reversing those arcs that are in the present 

critical path C. At any stage we calculate the effect of 

reversiwg- any disjunctive arc in C, reverse the one that gives 

the greatest·effect and fix the reversed arc temporarily. Thus 

at any stage we have a fixed set of arcs F; the longest path in 

the graph formed by JI' and (! U F is obviously a lower bound and 

we can backtrack if the lower bound surpasses the present best 

solution. 

We do not pay any more attention to this algorithm, because it 

is computationally very much inferior to the algorithm of 

Bratley, Florian and Robillard treated above. Repeating the final 

remark of the latter authors, we can only stress that, despite 

recent advances, present branch-and-bound methods are not likely 

to solve satisfactorily the nlmlGIFmax scheduling problem*). 

*) We would like to point out here an interesting link between 
resource-constrained project scheduling and the nlmlGIFmax 
problem. In the former problem we can also use the 
disjunctive graph model; we only have to check then if our 
(partial) solution is resource-feasible. For details, see 
Balas [ 10], Gorenstein [ 42] and also Schrage [ 107] for a 
slightly different approach. 
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6 • Scheduling in economic realit_x 

6 .1. Present situation 

A very regrettable aspect of this final chapter is that it is 

going to be too short. Operations research is a section of 

mathematics where researchers are typically concerned about the 

applicability of their work. Many an article has appeared where 

the main accent is on the development of a mathematical model 

that can be subjected to existing mathematical techniques, 

instead of on the development of a technique itself. In view 

of the fact that one feels that decisions regarding an optimal 

sequence of activities are certainly not rare ones, the lack 

of "case studies" in scheduling is downright disappointing. As 

far ago as 1961 Sisson [92] wrote: "I have "heard" of several 

actual applications of sequencing theory to several actual cases 

during the past year, but no results have been announced. ( ... ) 

It is hoped that the use of sequencing theory in an operating 

situation will be described soon ... ". Nonetheless, the situation 

has not changed much in the meanwhile. A small number of 

heuristicall:y solved problems has been reported (e.g. Burs tall 

[20]), but Sisson's wish has hardly been fulfilled. This 

curious phenomenon deserves some more attention. 

We think there are three sides to the explanation of the apparent 

lack of applicability of machine scheduling theory. 

In the first place we can again quote Pounds [ 80 ] : "The job

shop scheduling problem is not recognized by most factory 

schedulers, because for them, in most cases, no scheduling 

problem exists. That is, there is no scheduling problem for them, 

because the organization which surrounds the schedulers reacts 

to protect them from strongly interdependent sequencing decisions 

( ... ). Computationally difficult scheduling problems do not arise, 
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because those constraints that would create them, are removed 

when they become active". If Pounds is correct here, a great deal 

has been explained already. In fact, it is fairly plausible that 

pressure on organizations to work with optimal schedules is 

fairly low, that due-dates are set with a wide safety margin 

and that all kinds of mechanisms exist that can cope with the 

unpleasant consequences of a bad schedule. Even so, one can 

still hope that, once a theo_retically derived schedule is 

carefully and successfully implemented, management will become 

more aware of the possibilities that lie ahead. Or will they? 

In trying to. answer that question, we arrive at the second 

aspect that we want to mention here. Suppose a real-life machine 

scheduling problem has been isolated and can be solved purely 

by theory. Will existing theory be of any help? There are several 

reasons to at least doubt this, and one of them can be found 

in 2.2., where all the restrictive assumptions are mentioned 

that we often find in scheduling theory. One does not need a 

great deal of business experience to see that most of these 

assumptions are patently unrea.listic. To mention but a few 

criticisms: in general jobs will not be available at the same 

time, nor will they be of equal importance (all customers are 

equal, but some are probably more equal than others). Also, in 

general jobs will just have to be ready on a fixed date; and 

machines too are likely not to be continuously available, since, 

for instance, they may very well break down. Technologically 

speaking, it is highly unrealistic that each job passes all 

machines, and each machine only once; equally unrealistic is 

the assumption that lap-phasing, assembly or job-splitting 

cannot occur. And perhaps the most improbable assumption of all 

is the determinate nature of the problem: in economic reality 

there are always risks and uncertainties that will spoil the 

beautiful theory. 
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Put like this, things look very bleak indeed. Are all these 

objections, valid as they may be, really that serious? In general, 

we are rather optimistic on this point. Several of the objections 

can be incorporated in the model: we can attach weights to the 

jobs that indicate their relative importance, we can even assume 

there are precedence constraints among them, we can set due-dates 

dk and introduce release-dates rk. The disjunctive graph model 

is more flexible than we have presented it; it can easily 

incorporate assembly operations and jobs that only pass a subset 

of the·machines or pass a machine twice or more. Also we have 

seen that job splitting sometimes even simplifies the solution. 

With regards to variation in the processing times, Conway, 

Maxwell and Miller [24] report that optimal solutions of machine 

scheduling problems are fairly insensitive to changes in Pkt· 

Most important: when a situation is theoretically under control, 

sudden emergencies such as high priority jobs or breakdowns need 

not worry us too much. 

Now it cannot be denied that for a certain type of organisation 

the assumption about a fixed set of jobs is possibly too 

unrealistic; jobs arrive continuously and our static theory can 

indeed be of little use. 

Fortunately, however, we can refer here to a growing theory on 

queues, waiting lines, etc., while concluding at the same time 

that the deterministic theory will be mainly applicable to often 

recurring routine processes. Nevertheless, artificial though the 

model may be, we do not think that it can only serve as an object 

of mathematical "Spielerei". Falling back on our first point, 

practical experience will determine if the model has to be 

adapted so strongly that present theory would be worthless; 

again, we are fairly optimistic about the outcome. It remains 

disturbing all the same that of known applications most have 

been of the heuristic kind. Perhaps a partial explanation of 

this can be found in our third aspect. 



At first sight, this third aspect of the present theory will 

seriously hinder application: we refer to the unrealistic 

optimality criteria. Not unreasonable, Sisson [ 92] 
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points out that "the ultimate desire is to optimize the objectives 

of a larger organization (e.g., profits). This requires knowing 

how the :specific situation relates to the whole, knowledge which 

we do not have. Thus, for research purposes, one optimizes a 

lesser criterion chosen in some reasonable way". We know the 

choice·most.researchers have made: F is used by far the most max 
frequently, followed at a respectable distance by F, rakFk, L , max 
T and rakTk .. 

Now, knowing what to produce, the obvious optimality criterion 

is to minimize total opportunity cost, i.e. those (controllable) 

costs that reflect our loss with regards to an ideal situation. 

Deriving an expression for opportunity costs, Gupta [ 45] has 

compared the performance of several criteria with regards to 

this new one. He arrived at the disturbing result that in fact 

F did worst of all and was only very rarely in accordance max 
with opportunity costs. However, at this point as well we are 

slightly more optimistic. We shall also derive an expression for 

the opportunity costs and indicate the relation with our present 

set of criteria (which.Gupta does not do). What are the sequence

dependent components of opportunity cost? 

(1) Operation_costs 

We only have to include those costs if we have sequence-dependent 

set-up t:imes cjkt when Jj precedes Jk at Mt. If not, total 

operations cost will simply be equal to 

where mt is the machine cost per time unit. This obviously is a 

sequence-independent constant. 
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(2) In-erocess_inventory_costs 

These costs are caused by the fact that during the production 

process, semi-finished jobs are waiting in the shop, representing 

tied up capital that could have been used profitably elsewhere. 

If return on investment is r, the raw material value of Jk is 

bk, the sequence for Jk is {Mk , ... ,~}and machine Mt adds 
1 m 

vt to the value of the product, then the total capital tied up 

in Jk during the production process is: 

L V.) • 
(k, j) J 

< (k, t) 

Suppose now, that we can find a reasonably average value Sk, so 

that costs with regards to Jk are equal to 

So total costs are 

(1) 

(3) Penalty_costs_for_late_deliveries 

Often due-dates dk will have been set, and if jobs are not 

completed by then, penalty costs are incurred. These may be of 

an administrative nature, they may be due to penalty clauses in 

the contract or simply due to loss of goodwill. 

The last factor induces us to assume a positive effect if jobs 

are completed ahead of their due-date; something that may well 
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be appreciated by the customer. If we estimate the cost per 

time unit after dk as ek and the positive effect per time unit 

before dk as fk, the total cost will be 

If ek and fk do not differ too much, we can both replace them 

by Ek' and get 

(2) 

(4) Machine idle costs ------------------
Obviously, machines standing idle cause a loss to the organization, 

since they could have performed other useful work during 

that period. If Ikt is the time Mt has to wait for Jk' In+l,i 

represents the time between the finish of last job on Mt and 

the completion date of all jobs and Pi represents the net loss 

on Mt per time-unit, we have for total costs 

(3) 

where the last summation is taken over k = 1, ..• , n+l. 

Taking (1), (2) and (3) together (and therefore assuming 

sequence-independent set-up costs) we get for total opportunity 

cost OC: 

where r, Bk, Ek and Pi are known constants. 

Now, we have: 
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E WkR. = F - E Pkt 
R, k R, 

L = k Fk - d k 

E IkR. = F - E pkR. 
k max k 

so: 

so, disregarding the last two (sequence-independent) 

d . * Q * an putting ak = r µk + Ek' a = r P.e,, we would have 
R, 

r ak*Fk + a* F max 

constants, 

to minimize 

Obviously, this criterion appears nowhere in theory. However, 

with existing methods we can probably get a reasonable 

approximation by first solving according to Fmax; next we solve 
according to 

+ • • • + • • • + 

where Jk is the.)ob that finished last in the Fmax 
optimal schedule. 

* ex F , 
n n 

So even here things are not as bleak as they looked. What, then, 

can we predict about the future of scheduling? 

6.2. Future developments 

First, and most obviously, there remains a lot of theoretical 

work to be done. Gaps in existing theory have been pointed out 
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frequently in this report; there is no need to repeat them here. 

If we look at progress made already, we may expect interesting 

new developments during the coming years. For - and this is a 

second point - mathematical interest in the scheduling problem 

seems to be growing; many articles appear, many researchers are 

interested, because basically scheduling problems are intriguing, 

challenging and fun to work at. 

There is a dangerous side to all this mathematical activity: as 

happened in•game theory, reality may move further and further 

away. So one can only hopefully repeat Sisson's wish for 

applications. to be made and reported. Surely one of the many 

areas, where the machine scheduling model seems appropriate, 

can provide a good start? 

We would nevertheless not be surprised if, for the years to 

come, good heuristic methods remain of the utmost importance. 

However, in the long run, nothing is as practical as a good 

theory. If this report can contribute at all to inspire new 

practical-theoretical work, it has more than served its purpose. 
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