
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE

IN SAMENWERKING MET
BW 27 /73

HET INTERUNIVERSITAIR INSTITUUT BEDRIJFSKUNDE
DELFT/ROTTERDAM

A.H.G. RINNOOY KAN
THE MACHINE SCHEDULING PROBLEM
r

~
MC

AUGUST

2e boerhaavestraat 49 amsterdam

BiBI.IOTHEEK MAfHEMATISCH CSf\!TR-UM
A.MSTERDM,l

Punted a:t :the Ma:thema.:ti..cal Cen;tJc.e, 49, 2e BoeJLhaa.vu:tJr.a.at, Am6:teJLdam.

The Ma:thema.:ti..cal Cen;tJc.e, 6ou.nded :the 11-:th 06 Feb1tu.aJc.y 1946, -l6 a. non
plto 6Lt ..i.n6.ti:tr.Ltlo n a,im,i.ng a:t :the pll.omo:tlo n o 6 pUILe ma:thema.:ti..C-6 a.nd ..l:t6
a.ppU.c.a.:ti..onJ.. 1:t -l6 .6pon601ted by :the Ne:theJri.a.nd6 GoveJLnment :th/tough :the
Ne:th<Vli.a.nd6 OJtga.n..i.za.:ti..on 601t :the Adva.nc.ement 06 PU/Le Ruea.1tc.h (Z.W.O),
by :the Mun..i.c...i.pa.U:ty 06 Am6:teJLdam, by :the Un..i.vell..6Lty 06 Am6:tell.dam, by
:the F1tee Un..i.vwUy a:t Am6:teJLdam, a.nd by ..i.ndU.6:tluU.

AMS (MOS) subject classification scheme (1970): 90B35

BW 27 /73

ERRATA

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

32 I last

33, 2nd

39 I 12th

39 I 13th

70, 2nd

81, 10th

81, last

89 I 3rd

118, l
119, J

line for "T II read "-r"

line for II> 11 read II~ 11

line for 11 f(l,l) ·- 1 7 II read "f(O,l) = 14 11

line for "f(l,2) = 2 0 II read 11 f(0,2) = 17"

line for "increasing" read "decreasing"

line for "o. II read "o II

. l 'i t-1 k-1

line for "s (t)"
k read 11 CT (t) II

k

line add: "Suppose the precedence constraints

can be renresented by an inverted tree. 11

for 11 6 11 read "*"

Page 127, 5th line for "to" read "t".

Bi&JUOTH!!f!J!. \wlATHENATISCH CEN f!HJ,/'1

AMSTE~DAl"'I --

Abstract

This report reviews existing theory on the
deterministic machine scheduling problem.
The problem is formulated, the restrictions that
are usually assumed in literature, are examined
and several optimality criteria are compared and
discussed. Known methods to attack the problem
are described and exemplified. Certain situations
receive special attention, in particular those
where there are one, two or three machines, two
jobs or a number of parallel identical machines.
The report concludes with chapters on the general
flow shop and job shop problem and on scheduling
problems in economic reality. An extensive
bibliography is included.

Contents

1. Introduction

2. Formulation, definitions and criteria

2.1. Problem formulation

2.2. Restrictive assumptions

2.3. Optimality criteria

2.3.1. Criteria based on flow times and

completion-dates

2.3.2. Criteria based on due-dates

2.3.3. Criteria based on inventory cost and

utilization

2.3.4. Criteria based on change-over times

2.3.5. Multiple criteria

2.3.6. Conclusions

3. Methods of solution

3.1. Introduction

3.2. Complete enumeration (CE)

3.3. Integer and linear programming (IP)

3.4. Dynamic programming (DP)

3.5. Branch-and-bound methods (BB)

3.6. Combinatorial-analytical methods (CA)

3.7. Algebraic methods (A)

3.7.1. Schedule algebras

3.7.2. Relation algebras

3.8. Sampling techniques (ST)

3.9. Heuristic methods (H)

3.10.Conclusion

4. Some special cases

4.1. Introduction

4.2. The one-machine problem (nil)

4.2.1. Criteria based on completion-dates and

flow times

~

1

4

4

11

15

16

19

21

25

25

26

28

28

29

30

38

42

44

47

47

53

60

62

67

68

68

68

69

4.2.1.1. Precedence constraints

4.2.2. Criteria based on due-dates

4.2.2.1. Precedence constraints

4.2.2.2. Number of tardy jobs

4.2.3. Criteria based on machine utilization

4.2.4. Criteria based on change-over times

4.2.5. Multiple criteria

4.2.6. Multiple identical parallel machines

4.2.6.1. Precedence constraints

4.3. The two-machines problem (nl2}

4.3.1. The nl2IFIF problem max
4.3.2. The nl2IFIF problem

4.3.3. The nl2IGIF problem max
4.3.4. Miscellaneous two-machine problems

4.4. The three-machinessproblem (nl3}

4.5. The two-jobs problem (21m}

70

73

80

81

82

82

83

86

89

89

90

93

93

94

98

102

5. The general flow shop and job shop problem 106

5.1. Introduction 106

5.2. The nlmlPIFmax ~roblem 106

5.3. The nlmlFIFmax problem 115

5.4. The nlmlGIFmax problem 116

5.4.1. Elimination of infeasible sequences 117

5.4.2. Branch-and-bound methods 120

6. Scheduling in economic reality 134

6.1. Present situation 134

6.2. Future developments 140

Bibliography 142

Foreword

This report was written to serve as reference material during

a week course on general problems of optimal sequencing, given

at the Mathematical Centre in Amsterdam in August 1973.

I have tried to give a comprehensive survey of existing theory,

that would be interesting both to relative laymen and more

experienced mathematicians. The former category will perhaps

want to skip some of the mathematical proofs; the latter

category might be interested in a more mathematical version of

this report that will appear in due course. Still, I feel the

present mixed approach is fairly well suited to a problem that

has such obvious real-life implications. I hope that any reader

will at least understand why I think this seemingly easy problem

so challenging and fascinating to study.

If the report accomplishes this and perhaps even functions as

a basis for a continuing interest, I will be very happy.

Naturally, I would welcome any criticism or additional remark

that readers would want to make.

Thanks are finally due to David Bree for reading the manuscript,

to Jan Karel Lenstra for stimulating conversations, to Elly van

Buuren for the typing and to Happy for surviving it all.

Alexander Rinnooy Kan.

1

1. Introduction

This report aims to give a review of what has become known as

the machine scheduling problem. This name covers a large class

of various combinatorial and stochastic problems, all centered

around the crucial question of the optimal sequence. We may as

well state right at the beginning that we will deal exclusively

with non-stochastic situations; this eliminates all theory on

queues, waiting-lines etc. etc .• However, even within this

smaller class, there is variation enough. This by itself leads

to one of the major problems of scheduling research: there are

so many sides to the problem, so many variations of it and so

many ways to attack it, that the existing theory consists mostly

of a great number of individual contributions lacking any

interdependence or coherence. There simply is not a general

theory where all these contributions could be fitted into.

A first step in the right direction, however, might be made by

gaining some insight in what has been done so far, in order to

discover gaps, common traits and overlaps. This report is meant

to be a modest contribution towards that goal.

Another aspect of the lack of a common language and theory

is the confusing vocabulary and notation, found in scheduling

literature. We shall give many definitions and notations in

chapter 2. However, we point out straight away that we shall

freely use the words "scheduling" and "sequencing" to designate

the same activity whereby the processing order of a number of

jobs by a number of machines is determined. Sometimes a

difference is made between the two in that sequencing is

supposed to give only the ordering itself, while scheduling

explicitly gives starting times and completion times of all

machine operations (i.e. Ashour 2], Elmaghraby [29]).

We assume, however, that once the processing order has been

determined, the jobs will be finished in as short a time as

possible, and therefore we do not need to distinguish between

the two concepts.

2

Our interest in scheduling problems is mainly theoretical,

which does not imply, of course, that we do not look for

efficient ways to solve them - all combinatorial problems,

being finite, are theoretically solvable by complete enumeration!

This means one has to judge the quality of algorithms not (only)

by looking at their mathematical beauty and elegance, but by

looking at their computational performance. Although much

obviously depends on the individual programmer and the computer

used, we will try to give an impression of the results wherever

this seems appropriate.

This report is organized along the following lines. In chapter 2

we formulate the problem, give notations and definitions of

basic concepts and examine the many restrictions that are

usually implicitly assumed in literature. Next, in chapter 3,

we examine all known methods that have been used so far to

solve the machine scheduling problem*). The reader of this

chapter will notice that some methods (e.g. algebraic methods,

integer programming methods) are dealt with in far greater

detail than other ones (e.g. branch-and-bound methods,

combinatorial methods}. This is due to the fact that in the

following chapters we do not refer any more to the former ones,

while the latter ones are, used so frequently that examples of

their application can be found throughout the whole report.

In chapter 4 we deal with a few special cases where either the

number of machines or the nµmber of jobs is small, and an

interesting theory has been developed. We do not avoid giving

proofs, but do not give unduly lengthy or complex ones.

*} The only known method that we do not treat, is the general
non-linear programming approach, advocated by Fisher
(Lagrangian multipliers, [31]} and Nepomiastchy (penalty
functions, [78 J}. It is too early to judge the usefulness
of their approach.

Usually, they are not especially instructive and constitute

mainly of checking if the proposed theorem holds true under

all conceivable circumstances. The main purpose that could be

served by publication of all these proofs, is to impress once

more upon the reader the inadequacy of present combinatorial

analytical techniques for all but the simplest structured

problems.

Chapter 5 then deals with the general problems; the best we

can do here is to present a few elimination methods and a few

numerical methods whereby an optimum might be found within a

reasonable time.

Then, finally, in chapter 6 we take a look at the economic

realisticness of the scheduling problem and suggest a few

possible future developments.

We finish by giving a fairly large bibliography. Though it is

not complete (as no bibliography ever is), we hope to have

included all literature that is relevant at this moment.

3

4

2. Formulation, definitions and criteria

2.1. Problem formulation

.The general formulation of the machine scheduling problem that

we shall use here, is:

"Given n jobs that have to pass through m machines in a

prescribed order under certain restrictive assumptions, what

is then according to some criterium the optimal order in which

each machine handles the jobs?"

We shall have to say more about the implications of this

formulation in chapter 6. However, it should be clear that the

problem was inspired by a typical real-life situation as it

exists for instance in so-called job shops. There indeed each

customer's order must be routed through the necessary machinery;

materials, tools and labour must be allocated, processing and

set-up times have to be estimated and a so-called due date is

agreed upon by which the job(s) should be finished. Obviously

the management of such an organisation is a complicated task,

especially where so many different and related decisions have

to be made continuously. The sequencing decision itself is

preceded by planning activity and followed by control activity,

both of them involving economic and technological judgments

that strongly influence the sequencing decision itself.

The same complexity is characteristic of many other real-life

situations where "machine scheduling problems" arise, albeit

in a different context: the scheduling of classes to classrooms,

classes to professors, hospital patients to test equipment, jobs

to computers, cities to salesmen, dinners to cooks, homework to

pupils etc. etc .. As to the effects of a good scheduling decision

Mellor [66] quotes a list of no less than 27 goals that can be

attained by good scheduling, with among them items as diverse

as day-to-day stability of work force and anticipation of price

changes!

5

Apart from this kind of complexity, many "local" circumstances,

particular to a real-life situation, and perhaps cropping up

while a number of jobs is already on its way, might cause a

change in previously made decisions: a machine has broken down,

a machine operator has become ill, an important client has

placed an order which should get priority, a due date is being

changed, etc. etc •.

Obviously no theoretical analysis can take all these factors

into account. The machine scheduling problem does not deal at

all with questions of "what to produce?" and "how to produce?",

but only with situations where decisions on these aspects have

been previously made and will not be subject to change any more.

Does economic reality justify this simplification? Is it ever

really possible to separate the sequencing decision in this

degree from oth~r decisions? Pounds [80] reports that management

is often not even aware that a sequencing problem exists; there

are so many decisions to be made that the simple order in which

each machine handles the jobs is not perceived as an influencable

and relevant variable any more!

Still, the abstraction involved in the machine scheduling

problem-formulation, can be defended in various ways; Elmaghraby

[29] points out that sequencing decisions are likely to get

more and more important as the computer takes over many routine

decisions and as improved operations research techniques perfect

other ones. Remembering also that it is only through study of

components of a system, that we can gain understanding of the

whole, it is not surprising to find that the abstract machine

scheduling problem crops up in management science literature as

early as the 1920's. The well-known concept of the Gantt chart,

while no substitute for decision-making itself, at least presents

available information about jobs and machines in a clear way and

was one of the great innovations of the scientific management

era.

6

The modern development of scheduling theory, however, where one

tries to find an optimal sequence according to a well-defined

criterium, has its starting point as late as 1954, when

Johnson's classical paper on the two machine flow-shop (54]

· was published. Since then many different operations research

techniques, most of which are mentioned in chapter 3, have been

tried out on this problem with various degrees of success.

Quite early the distinction between a deterministic and a

stochastic approach to the scheduling problem was made; as was

mentioned in chapter 1 we shall deal exclusively with the

former situation.

In this second chapter we introduce the various notations to

be used throughout this report. More specifically we pay

attention (in 2.2.) to the rather heavy restrictions, that are

usually assumed in existing literature, and to the various

criteria whereby one can judge the qualities of a schedule (see

2.3.). First of all, however, we give basic definitions and

notations, and a classification of scheduling situations.

In all this we adapt ourselves mainly to the conventions of

Conway, Maxwell and Muller [24] and of Said Ashour [2].

Let us first talk, then, of jobs, machines and operations.

A job (task, commodity, production lot, job lot) is obviously

a product, produced by certain machines. There are n jobs to

be considered*); they are designated by J 1 , ••• , Jn or by job 1,

job 2, ... , job n.

A machine (processor, resource, facility) is capable of

performing one specific production process. There are m machines,

designated M1 , ..• , Mm or machine 1, ••• , machine m.

*) In general, we use capitals for solution-dependent variables
and lower cast for initially given ones. The only exception
is the use of capitals for J 1 , ••• , Jn and for M1 , ••. , Mm.

7

A job Jk and a machine Mt together uniquely determine an

operation to be performed by Mt on Jk and designated as (Jk,Mt)

or simply as (k,i). The set of all operations is the Cartesian

product 4j x J(where / = {J 1 , ••. , Jn} and,//= {M1 , ••• , Mm}.

Operati!ns are the basic elements in the machine scheduling

problem. With each operation (k,t) is associated a real number

Pkt' the processing time, indicating the amount of time it will

take machine t to complete work on job k, and including set-up

time only in so far as these times are independent of the

particular order in which machine t handles the jobs. If Pkt= 0,

this indicates that job k needs not to be attended to by machine t.

Now an essential characteristic of the machine scheduling problem

is that the order in which the jobs pass the machines is strictly

prescribed by, say, technological considerations. That is to say:

each subset

(k = 1, ••• , n)

is strictly ordered by an ordering relation<<:

where (i 1 , •.• , im)

We say in the above

(Jk,M.) , etc., and
].2

whenever ~here is a

them:

is some given permitation of (1, ••• , m).

case that (Jk,M.) directly precedes
].1

we say that (Jk,Mi) precedes {Jk,Mi)
p q

chain of directly-precedes relations between

We can present the information about the route through the

machines that each job k has to follow, in several ways. One

possibility is combining all operations into an m x n matrix

8

called the job sequencing matrix S (Ashour [2 }) • For instance,

suppose one has 3 jobs on 2 machines whereby job 1 has to pass

through M1 and M2 (in that order), job 2 through M2 and M1 and

job 3 through M1 and M2 , then S would look like this:

s =

(Jl,Ml)

(J 2 ,M2)

(J3,Ml)

or just simply:

s =

(1, 1)

(2, 2)

(3,1)

(J 1 'M2)

(J2,Ml)

(J3,M2)

The rows of S convey all information on the routes of job 1,

2 and 3.

Another, very convenient way to present this information is

in the form of a graph; usually two dummy operations are added

to mark beginning and end of the whole process. Each node

represents an operation, and a directed arc connects two nodes

if the corresponding operations have a "directly-precedes"

relationship, the direction of the arc corresponding to the

direction of the job route. Furthermore, all operations

performed on the same machine, i.e. the set

{(J1 ,Mi), .•• , (Jn,Mt)}, are usually connected by double

directed arcs, whose significance will become apparent later on.

These arcs are called disjunctive arcs and a graph of this type

is usually called a disjunctive graph (Roy [86]).

In our example the graph would look like this:

9

We will return to disjunctive graphs in 5.4 ..

Now there are several significantly different types of machine

ordering per job. The simplest situation seems to exist when

each job passes the machines in the same order (which we can,

without loss of generality, assume to be (1, •.• , m)). In this

situation we speak of a flow shop; we designate it by the

letter F.

In a flow shop each job passes the machines in the same

order, but that does not imply that each machine also handles

the jobs in the same order. In fact, it is very likely that

in some optimal sequence one job will "overtake" the other on

some machine. If in a flow shop this "passing" is not permitted,

we have a significantly easier problem; we designate this

si tuatio_n by the letter P.

If at least two jobs pass the machines in a different order

(as in our previous example), we are in the most general

situation. We then speak of a (general) job shop and use the

letter G. In a job shop, each job has its particular route

through the machines and these routes may all be different.

10

We have now laid the basis for a classification of machine

scheduling problems, adapted from the one given by Conway,

Maxwell and Miller [24]. The classification looks like this:

where:

A

B

Cl

c2

=
=
=
=

number of jobs (n in the general case);

number of machines (min the general case);

type of machine ordering per job (F, P or G);

any other relevant characteristics of the scheduling

situation; for this, see the next paragraph (2.2.);

D = the optimality criterium (for this, see 2.3.);

E = the particular solution method employed (for this,

see chapter 3) .

E may be not present and is in fact mainly introduced here for

use in the bibliography.

The example we have considered previously, would be classified

as: 3l2IGID, where Dis the optimality criterium.

Our discussion so far permits a clearer formulation of the

scheduling problem.\ The order of the jobs through the machines

being given by technological requirements, the scheduling

problem boils down to finding an ordering of the jobs on each

machine, which is compatible with the technological requirements

and which leads to an optimal schedule according to one of the

criteria in 2.3 •.

The requirement of compatibility is indeed non-trivial. For

suppose, in our previous example, we propose the solution that

job 2 precedes job 1 on machine 1 and job 1 precedes job 2 on

machine 2. We then have a contradiction:

(J:2 ,M2) <<

(J:2 ,Ml) <<

(J l ,Ml) <<

(J l ,M2) <<

implying

(J2,Ml)

(Jl,Ml)

(Jl,M2)

(J2,M2)

(technological requirement)

(from above)

(technological requirement)

(from above)

so that (J 2 ,M2) would precede itself!

We conclude that we shall have to find efficient ways to

eliminate these so-called infeasible sequences, and note in

passing that above-mentioned incompatibility corresponds to

a cycle in the disjunctive graph, where disjunctive arcs have

been changed to normal directed ones in accordance with the

proposed solution.

11

Before we take a look at the many ways in which a sequence

might be optimal, we look at the severe underlying restrictions

that have so far almost universally been assumed in scheduling

literature.

2. 2. Restrictive assumptions

In most of the existing literature on the machine scheduling

problem, many restrictions are assumed to be valid. This, of

course, increases the artificiality of the problem formulation

into no unsignificant degree. As we shall deal with criticism

on these aspects of the formulation in a later chapter (i.e.

chapter 6), we only repeat here the well-known defenses of the

large degree of abstraction involved: namely, that this is

unavoidable, and not essential, that it makes the problem more

general and that it may well be relaxed in a more advanced state

12

of knowledc_;re. Certainly it cannot be denied that even the

highly stylized version of the scheduling problem is difficult

enough to s:olve and that degree of applicability is not the

only criterium by which to judge the value of mathematical

•analysis.Also the phenomenon of a developing branch of

mathematics, being able to deal with more and more complicated

situations, is well known from the past. However, the fact that

so very few real life applications of scheduling theory are

known, and the fact that, of the known applications, most employ

heuristic (i.e. purposely suboptimal) methods ought to*) worry

mathematicious engaged in scheduling research, and merits the

closer look that we shall take at this problem later on.

Many of the restrictions mentioned hereunder are automatically

assumed in all existing literature; however, some articles

distinguish themselves by dropping a few of them. The notation,

introduced in 2.1., does permit an indication of this.

Thereby we extend the notation of Conway, Maxwell and Miller [24].

We shall mention any restriction that is not assumed, designating

it by its classification from the list below. A few examples

of the extended notation will be given at the end of 2.2. and

3. l. .

As to the list of all restrictive assumptions, there is an

interesting duality between jobs and machines that we have tried

to stress by the order of the items.

(Jl) The set/ of jobs is known and fixed.

(Ml) The set,Jtof machines is known and fixed.

(J2) All jobs are available at the same time (zero) .

*) We realize that this is a subjective judgment.

13

(M2) All machines are available at the same time (zero).

(J3) All jobs remain available during an unlimited

period (i.e. no due-dates).

(M3) All machines remain available during an unlimited

period (no labour-shortage, no break-down).

(J4) Each job is in one of three states: waiting for

the next machine, being operated by a machine or

having passed its last machine.

(M4) Each machine is in one of three states: waiting

for the next job, operating on a job or having

finished its last job.

(JS) All jobs are different.

(MS) All machines are different.

(J6) All jobs are equally important.

(M6) All machines are equally important*).

As to the interaction of jobs and machines, it is usually

assumed that:

(J7) Each job passes all the machines assigned to it.

(M7) Each machine processes all the jobs assigned to it.

(JB) Each job is processed by one machine at a time

(i.e. no lap-phasing, no assembly).

(MB) Each machine processes one job at a time.

*) I.e., no one can be missed or replaced by another one.

14

(JMl) All processing times are known and fixed (i.e.

sequence independent).

(JM2) Each operation once started must be completed

without interruption (no pre-emption, no job

splitting).

The asymmetry between jobs and machines is then due to:

(JM3) The processing order of each job by all machines

is known and fixed.

(JM4) The processing order by each machine of all jobs

is unknown and has to be fixed.

Many of these assumptions have been mentioned previously.

Obviously some of the assumptions have further reaching

theoretical consequences than others. Simple assumptions like

(J2) and (M2) can usually be dropped pretty easily. But

assumptions like (Jl) and (Ml) are fundamental to a large part

of scheduling theory: they distinguish the static (deterministic)

problem approach from the dynamic (stochastic) one. As we shall

deal exclusively with the former problem, these assumptions will

not be dropped anywhere in. this report. A good introduction to

the entirely different theory of the dynamic case can be found

in Conway, Maxwell and Miller [24], chapter 7 - 10.

It remains now to give a few examples of the extended notation.

(i) A problem whereby n jobs are to be scheduled on

one machine with sequence dependant set-up costs

(assumption (JMl) is therefore not valid) will

be designated as nlll (JMl) ID where D indicates

some optimality criterium, e.g. minimum total

set-up costs.

15

(ii) An-job, m-machine job shop problem, where job

splitting is allowed (see assumption (JM2)), will

be designated as nlm1G,(JM2) ID, where D again is

some optimality criterium.

We now turn to an investigation of optimality criteria.

2.3. QE_:timality criteria

When discussing optimality criteria, it is useful to classify

them in a certain way. Although our theoretical interpretation

of the scheduling problem is very restricted, so that we cannot

introduce any criteria that suggest the interdependence of the

scheduling decision and other ones regarding the production

process, there still is a surprising variety of criteria to

choose from. There are many ways to classify them.

We can distinguish between job-based criteria and machine- or

shop-based criteria; we can distinguish between criteria based

on completion-times and criteria based on due-dates (Gere [36]),

or between criteria based on individual jobs and criteria based

on the complete sequence (Elmaghraby [29]); we can also

classify criteria acco~ding to whether they are time-based or

cost-based, weighted or not-weighted (weights being attached

to each job according to its importance, which implies dropping

assumption (J6)) and single or multiple (Ashour [2]).

Now of these classifications is entirely satisfactory. However,

for reasons of clarity, we have split the criteria up in five

groups:

(1) criteria based on completion-dates and flow-times;

(2) criteria based on due-dates;

(3) criteria based on inventory cost and the concept of

utilization;

16

(4) criteria based on change-over times;

(5) multiple criteria.

We shall have more to say about the realisticness of these

criteria in chapter 6. However, for the present this will

suffice.

2.3.1. Criteria_based_on_flow-times_and_comEletion-dates

We first define the relevant concepts. As usual we haven jobs

J 1 , .•. , Jn' m machines M1 , ... , Mm, and nm operations

{(Jk,Mt)} with processing times pk .
t

Now, let:

rk def release date of Jk (the earliest date that

processing could start, which is equal to zero if assumption

(J2) is not dropped);

m
wk def r Wkt (total waiting time for Jk);

t=l

m
r pkt (total processing time of Jk);

t=l

def Ck= completion-date of Jk (the date on which the last

operation is finished);

Fk def flow-time of Jk (the time Jk spends in the shop).

There are a few elementary relations between these concepts:

Ck = rk + Wk + pk (1)

Fk = Wk + pk (2)

Ck = rk + Fk (3)

We can now define a number of frequently used criteria, based

on these definitions:

17

(l) minimize the maximum completion-date C = max {Ck}; max k

(2) minimize the maximum flow-time F = max {Fk} max k
(this criterium is by far the most frequently used one);

(3) minimize the maximum waiting-time w = max {Wk}; max
k

(4) minimize the completion-date c l }: Ck; average = n

(5) minimize the flow-time F l }: Fk; average = n

(6) minimize the waiting-time w = l }: Wk. average n

Now, (4), (5) and (6) are really special cases of:

(7) minimize the weighted sum of completion-dates

rakck' where ak indicates the relative importance of Jk (dropping

assumption (J6));

(8) minimize the weighted sum of flow-times LakFk;

(9) minimize the weighted sum of waiting-times Lakwk.

However, we have from (2) and (3):

so, Lakpk and Lakrk being sequence-independent constants, (7),

(8) and (9) are equivalent criteria, as are (4), (5) and (6).

18

However, the Cmax and Fmax criterium need not be identical,
unless of course rk = 0 for all k, in which case Ck= Fk.

Also, the Fmax-criterium does not need to be equivalent to the
• F-cri terium.

Example: suppose we have a 2l3IG1Fmax problem with matrix S:

S = (< 1, 1)

(2, 1)

(1,2)

(2, 3)

and processing times Pkt:

= 1

(1, 3)\
(2 ,2)/

= 2

Using the well-known concept of a Gantt-chart to depict possible

sequences, we find two optimal sequences where Fmax = 8:

and

2 1

1 2,
I en

I

2 1
C7 C7

2 1

2 1
□□

2
t:::::1

1
r:::J

However, in the first sequence F = ~(8+7)
- 1 1 second one F = 2 (8+5) = 62 .

= 7l and for the
2

19

Equivalent properties of many optimality criteria led to the

concept of a regular measure (Conway, Maxwell and Miller [24]).

This is a function of the completion-dates ~(c 1 , .•• , Cn) that

is monotone in each variable:

one k.

Cmax' Fmax' Wmax' C, F, W, Eakck, EakFk and Eakwk are all

regular measures.

Usually we shall assume that rk = 0 for all k, in accordance

with assumption (J2), and that therefore Fk =Ck.Any departure

from this convention will be clear from the context.

2.3.2. Criteria_based_on_due-dates

We drop assumption (J3) and assume due-dates dk have been set

for each job Jk. We can now define:

Here we have the elementary relation.

20

Again, we can define a number of optimality criteria:

(10) minimize L = max {Lk}; max k

(11) minimize T = max {Tk}; max k

(12) maximize E = max {Ek}; max
k

(13) minimize L 1 r Lk; = -n

(14) minimize T 1 r Tk; = -n

(15) maximize E 1 r Ek; = n

Now (13), (14) and (15) are again special cases of (16), (17)

and (18) respectively.

Furthermore, we find by definition:

so that, Eakdk being a sequence-independent constant, (13) is

equivalent to (4), (5) and (6) and (16) is equivalent to (7),

(8) and (9) •

No such easy formulas exist for tardiness and earliness.

Still, especially the former is a very realistic criterium;

often the only concern of management is to finish a job on time

or failing that, as soon as possible after the due-date. There

is no extra premium in that situation on being finished well

ahead of the due-date.

21

2.3.3. Criteria_based_on_inventory_cost_and_utilization

We may judge the quality of a schedule by looking more closely

at what happens in the shop during the whole production process.

Important measures to be considered are then:

time t;

def Nf(t) number of jobs finished at time t;

Nw(t) def number of jobs waiting to be processed at time t;

def N (t) number of jobs actually being processed at p

Af(t) def work finished, i.e. sum of the processing times

of all operations finished at time t;

A (t) def work remaining, i.e. sum of the processing
w

times of all operations that still have to be performed at

time t;

A (t) def work in progress, i.e. sum of the processing p
times of all operations performed at time t.

By definition:

Now, if we consider all averages to be taken over the period

(0, F) , we see that: max'

(1) Np+ Nw gives an indication of average in-process

inventory costs:

(2) Nf gives an indication of average inventory costs

for finished products;

22

(3) AP should be high, and depends heavi.ly

on the average length of Pkt"

By looking at the illustration below, where the jobs are

·started and finished in order (1, ..• , n), we see directly

that in this case the following relation holds:

I
I

' •
3

2

1

-->• time

N (t)+N (t)
p • w

F n-1 F max

It is not difficult to prove that the same type of relation

holds it rk f o for all k and if the jobs are not completed

(4)

in arrival order (see Conway, Maxwell and Miller (24], page

15-20). (In fact, all these relations are special cases of the

fundamental equation of dynamic scheduling theory:

N + N = AF p w

where A is the mean rate of j.ob arrival. This equation holds

true under very general circumstances).

We return again to (1). It is trivial to prove in the static

case:

N p

so we conclude:

N = w

and

=
Fmax

(N + N) = p r

n W
F max

n (F - F)
max

F max

(3)

(4)

F = n - n. F max

As to Af, A and A, it is not so easy to derive comparably
r p)

simple formulas for Af and Aw*. We can easily, however,

23

construct the graph of A (t) for an example Gantt chart below. p

Ml

Mr, ~-

M3

A p

l

1 2

F7 D

1

2 1

I D

--+) time

2

Fl
max

F max

*) In fact, Af can be written as a complicated weighted sum
of the Wki' but this does not seem to lead anywhere.

24

It is easy to verify from this drawing that
2

1: Pkt
A = k,i (5)

P Fmax

·so that any sequence minimizing F maximizes A. max p

There are two further measures here that require attention.

However, if we define idle time I 1 on machine i to be the time

that the machine is not used between O and Fmax*), it appears

that the sum of idle times is equal to

m F
max

so that minimization of Fmax ensures minimal (weighted) idle

times.

A more important measure is that of utilization, which reflects

the necessity of intensive use of available machinery because

of fixed costs caused by depreciation allowance etc .•

Utilization is usually defined as

1: Pkt
U = _k..._,_i __

m Fmax

which implies again that maximum mean utilization is equivalent

to minimum Fmax·

Combining this with (4), we get:

< 1: Pkn>. (N + N) p(N + N)
U= ki Jt., p w =--P __ w_

m n F F

where pis average processing time; this equation again plays

a fundamental role in dynamic theory.

*) This definition is not used by Ashour [2], which leads
to an error on page 51.

25

2.3.4. Criteria_based_on_change-over_times

For the sake of completeness we have added criteria based on

change-over costs to own list. This criterium implies assumption

(JMl) is partly dropped. In fact, only one criterium has been

extensively studied, namely the minimization of total change

over times in the nil situation, where these times c .. - when
1)

changing from job i to job j -, are sequence-dependent. This

problem is equivalent to the well-known travelling-salesman

problem; we shall return to the subject in 4.2.4 .• One could

view a nlmlF problem, where to object is to minimize total

sequence-dependent change-over costs, as an extended travelling

salesman problem, where each "city" gets ·visited in the same

sequence by all the (more and more experienced) salesmen!

The other situation of interest is the situation wherein we

have to satisfy a given continuous demand for several products,

produced by one machine. The object then becomes to minimize

the number of change-overs in a certain time-interval (Glassey

[41]). We will return to this problem in 4.2.4 •.

2.3.5. MultiEle_criteria

In actual situations it happens frequently that we have to take

into account not one, but several criteria at the time. This

leads to general problems of decision-making with multiple

objectives. We have to combine all the objectives into one

measure whereby one can judge alternative outcomes. Several

general methods have been developed so far (see the review by

Roy [87]). One could, for instance, order all possible outcomes

lexico-graphically, i.e. completely order the objectives, choose

the outcome which scores highest on the first objective, break

ties by means of the second objective etc.; or one could attach

weights ak to each objective Ok and combine them into a linear

function rakOk; alternatively one could get goals for each

26

objective and try to minimize the (weighted) sum of the

differences between goal and actual value of each objective

function, etc. etc.*). There is no doubt that multiple objective

decision-making is a frequently occurring problem, especially

in strongly areas like scheduling where decisions are influenced

by many factors. However, there are doubts about the applicability

of the afore-mentioned mathematical methods, and in any case

little scheduling research has been conducted along these lines.

In fact, only two studies are known, one by Smith [93] and one

by Florian et al. [17], where F respectively Fmax is minimized

under the side condition that T = o. We will return to these max
studies in 4.2. too.

We conclude this section by giving a short review of all

criteria mentioned so far. We have split them up in equivalent

groups, equivalence meaning that the same sequence(s) is (are)

optimal for all criteria in the group.

The groups are:

(1)

(2)

(3)

(4)

(5)

w max

C, F, W, L

*) Ashour [2] gives a worked-out example of several
techniques.

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

*)
Tmax

E max

if

E

If we look at this list, it is not so surprising that most

work has been done so far on groups (2), (4) and (5).

27

A comparison of all these criteria would be interesting; the

only studies we know of are by Gupta [45], and by Ashour [2)

(for just one example). We will return to the former study in

chapter 6.

*) Actually, the sequence minimizing Lmax also minimizes Tmax

(but not necessarily vice versa): if

L (s') ~ L (s) max .. max

for all sequences s, then:

max (O,Lmax(s')) = Tmax(s') ~ max (O,Lmax(s)) = Tmax(s)

for alls.

28

3. Methods of solution

3.1. Introduction

·The machine scheduling problem is a typically combinatorial

optimization problem where the optimum is to be found among a

large, but finite number of possible solutions.

Most methods to attach this kind of problem typically try to

reduce the set FS of all feasible schedules to a smaller set

POS of potentially optimal schedules and look for the optimum

within this smaller set. No general efficient method has so

far been developed, the discreteness and the resulting

"discontinuity" of the optimality criterium function leading

to very difficult problems.

The machine scheduling problem belongs to a group of problems

that center around the concept of an "optimal sequence". In

his book [70], devoted to these problems, Milller-Merbach

mentions four general solution methods for these problems:

(1) complete (explicit) enumeration;

(2) tree searching algorithms;

(3) heuristic methods;

(4) special algorithms.

Now (2), according to Milller-Merbach, consists of the following

methods:

(2a) dynamic programming;

(2b) branch-and-bound procedures;

(2c) implicit (bounded) enumeration,

and (3) can also be further split up:

(3a) non-iterative methods;

(3b) iterative methods,

(3a) and (3b) usually being used simultaneously. (4) consists

of a few special algorithms that have been developed with

analytical methods.

29

We shall not pay specific attention to (2c), by which Muller

Merbach means any technique by which a (heuristically found)

solution is being gradually improved. Only a few applications of

this method are known in machine scheduling; anyhow, the

methodological distinction between (2c) and (2b} is not at all

clear. We shall in what follows pay attention then to (1), (2a),

(2b}, (3) and (4), where (4) shall be interpreted as to include

all combinatorial-analytical theory available on the machine

scheduling problem. Furthermore, we shall remark on the

application of integer and linear programming techniques to

the machine scheduling problem and we shall study two methods

that have been specifically developed within the machine

scheduling context, namely the algebraic methods of Giffler [37]

and Rial [83 J and the application of sampling techniques by

Heller [49] and other researchers.

Mainly for use in the bibliography abbreviations for each

solution method are pr~posed in the heading of the section

describing it; i.e. CE= complete enumeration, etc .•

nlmlGIF ICE would then indicate a complete enumeration max
solution to the nlmlGIFmax problem.

3.2. Complete enumeration (CE)

We can be short on the subject of complete enumeration. In the

nlmlG problem there are (n!)m possible schedules, a number

that soon reaches astronomic proportions. For instance,

(5!) 5 ~ 3.10 10 , which implies that if a computer would evaluate

100.000 schedules a second, it would still take 3.10 5 seconds

or approximately 1 year of computing time to evaluate all of

them.

30

In the nlmlF problem, there are for theoretical reasons in some
cases (depending on the criterium) "only" (n!)m- 2 schedules to

enumerate (m ~ 3), whereas in the nlmlP problem, the order of

the jobs on each machine is identical and therefore only n!

.different schedules have to be evaluated. However, this number

also soon outgrows any computer-feasible size.

It may be noted, however, that of the (n!)m different schedules

of the general job shop problem, many will be infeasible

because of incompatible job- and machine-orderings. Supposing

we have an efficient algorithm to eliminate these infeasible

schedules, could we then enumerate the remaining ones? In

general the answer is no, since the number of feasible schedules

nF is bounded by can be quite high as well. In an nlmlG problem,

where each job passes all machines, the situation closest

resembling the nlmlF problem (where all (n!)m sequences are

feasible) is the one in which all jobs pass all machines in the

same order (1, ..• , n) except for one job which passes machine

(t+l) before machine t. This leads to (n-1) unfeasible schedules:

a very small reduction indeed!

3.3. Integer and linear programming (IP)

There have been several attempts to solve the machine scheduling

problem by formulating it as an integer programming problem,

which in the most general form looks like this:

minimize c 1x + c 2Y

subject to:

X ~ 0

Y ~ O, integer.

31

For a general survey of integer programming, see Beale [12],

Balinski [11] or Geoffrion [35] .

The oldest attempts to solve the machine scheduling problem

along these lines are by Bowman [16] and Wagner [102].

Bowman uses O - 1 variables X. 'k where X. 'k = 1 indicates that
lJ lJ

job i is processed on machine j in period k.

This leads to restraints of the type:

T

}:; X. 'k = o .. lJ - lJ (i = 1, ... , n; j = 1, ... , m)
k=l ·

where Tis the scheduling period. If job splitting is not

allowed, constraints of the type:

T

p. . (X . . k - X. . k+ 1) + }:; X . . o ~ P ..
lJ lJ. lJ, !=k+ 2 lJ~ -i7

(i = 1, • • • I n; j = 1, •.• , m;

k = 1, ... , T)

have to be added, so as to prevent a !-variable to be followed

by a a-variable and a 1-variable in that order.

As each machine may only handle one job at the time, we have

constraints:

n
L X. 'k ~ 1

i==l lJ
(j = 1, ..• , m; k = 1, ..• , T)

The prescribed machine ordering for each job is reflected by

constraints of the type:

(1)

(2)

(3)

32

(k = 1 , .•• , -r}

for every given direct-precedence relation (i,j 1 } << (i,j 2}.

Bowman suggests an optimality criterium function of the form:

n n
l.i:lxijit + 4-i!lxiji,t+l + •••

n
+ 4t'-t I: x . .

i=l l.J i -r

where ji is the last machine job i has to pass through and
m

t = max
i

I: p ..•
j=l l.J

(4)

The number of variables equals nm-r, and the number of constraints

equals m[n(2-r+l} + -r] for the general problem. Apart from the

curious optimality criterium, it is clear that the number of

0 - 1 variables is excessively large and that this formulation

could hardly be called practical.

The reason to mention this approach here is that a similar

formulation by Von Lanzenauer and Himes [48] forms the only

possibly successful linear programming approach to the problem.

We again have constraints (1) and (3), but job splitting is

prevented here by introducing variables Yijk' where

if xijk - xij,k+l = 1

otherwise

and demanding:

yijk ~ xijk - xij,k+l

T
I: y. 'k = 1

k=l l.J

33

Direct-precedence relations (i,j 1) (i,j 2) are reflected by

t t+l
r y .. k - r y iJ' 2k > 0

k=l l.Jl k=l
(t= 1, ... , -r)

Now we need to make sure that job i is processed on one machine

at a time:

m

r X. 'k ' 1 j=l l.J
(i = 1, ... , n; k = 1, ... , -r)

We can reduce all summations by restricting them to feasible

time periods. We can now use Bowman's criterium again. The

essential point to notice now is that, by introducing Yijk'

we have succeeded in making all coefficients equal to +l or -1.

We would therefore not be very surprised if a linear programming

algorithm applied to this problem, would produce an integer

solution, just as happens in the case of a transportation problem.

However, computing experience with this algorithm is small,

and an integer solution cannot be guaranteed. The latter fact

reduces this algorithm effectively to a heuristic (suboptimal)

one.

Wagner's approach is quite different and in fact only suitable

for the nlmlP problem. We give a formulation for the nl3IP

problem, where "only" n! sequences have to be considered.

The permutation is determined by O - 1 variables X .. where
l.J

X .. = 1 indicates job i comes in position j, with
l.J

n
L X .. = 1

i=l l.J

n
r X .. = 1

j=l l.J

(j = 1, ... , n)

(i= 1, •.• , n)

To ensure that jobs are processed by one machine at the time

in the right order, and that one machine only processes one

job at the time, variables Sit and Uii are introduced where

Sit= idle time on machine i between the i th job and

the (i+l) th job;

(5)

(6)

34

Uit = waiting time of the i th job between machine 1 and
machine (1+ 1)

and constraints of the following type (see the drawing):

kth job
8k2

(k+l) th job

M2 I t

(k-1) th job k th job
8k3

(k+l) th jQb

M3 n ' ,-uk2--f

or

kth;ob
I

(k-1) th job (k+l) th job

n n
8k2 + i:lpi2xi,k+l + uk+l,2 = uk2 + i:lpi3xik + 8k3

(k = 1, ••• , n-1)

n

i:lpilxi,k+l + uk+l,2

(k = 1, ••• , n-1)

Wagner chooses to minimize

(7)

(8)

35

n
which is equal to F - r p. 3 . The number of constraints is

max i=l 1

(4n - 3). He tries to solve the problem by using an all-integer

dual algorithm, created by Gomory. In chapter 14 of the book

by Muth and Thompson [96], however, he has to report that he

has "not yet found an integer programming method that can be

relied upon to solve most machine sequencing problems rapidly".

A much better formulation is given by Manne [64]. He solves

the nlll IFmax problem by using variables Tk to indicate the
starting time of job k.(Manne restricts himself to integer Tk,

but they may as well be real). Writing p 11 , .•. , Pnl as

p 1 , •.• , pn' the fact that job j either takes place before or

after job k, in indicated by:

or Tk - T. ➔ p.
J J

This is converted into one inequality by using O - 1 variables

Yjk and a constant C which should be larger than all possible

values of T. (j = 1, ... , n).
J

Now the restrictions:

(9)

(10)

(C + p.) (1 - Y.k) + (Tk - T.) ~ p.
J J J J

are together equivalent to (9): if Yjk = 0, (10) becomes

Tj - Tk ➔ pk, and (11) is trivially true; if Yjk = 1 we get

Tk - Tj ~ pj.

Other precedence relations (assumption (JG) being droppee),

(11)

such as job j precedes job k, are given by trivial inequalities:

(12)

36

etc. etc •• Due-dates can also be incorporated:

(13)

·Putting

(k = 1, ••• , n)

we can then minimize T.

Manne gives no computing results, and only indicates vaguely

that this approach could be generalized to the nlmlGIFmax problem.

However, this is trivial: taking Tki as the starting time of

operation (Jk,Mi) we have

or

for all pairs j,k*). The prescribed machine order for each

job is given by

for every directly-precedes relation (k,m) << (k,i).

Again we can introduce due-dates:

(k = 1, ••• , n)

(14)

(15)

(16)

where jk is the last machine for job k (dropping assumption (J3))

and we can also easily drop assumptions (J2), (M2) and (M3):

*) This can easily be generalized to the situation where a
job does not necessarily pass through all the machines.

(1 7)

37

(k = 1, .•• , n) (18)

(k = 1, ••• , n) (19)

where (18) and (19) indicate the limited availability of machine

i and ik is the first machine of job k. Sequence dependent set

up times cjki (when job k follows job j on machine i) can be

easily introduced in (14) , so that assumption (JMl) can also

be dropped.

The inequalities under (14) can again be combined into one

inequality by introducing the O - 1 variable Yjkt and a large

constant C and demanding

We can then minimize T where

(k = 1, ••• , n)

and have a mixed-integer programming problem.

(20)

(21)

This formulation is given by Balas [7], Gupta [47] and

Raimond [81]. Balas solve the problem by his more generally

applicable filtermethod and Raimond uses a direct-search method;

however, both methods effectively boil down to a branch-and

bound method, which in the case of Balas is introduced in

another article by him (Balas [8]).

We think one may safely conclude by now that the elegant

formulation of scheduling (and so many other) problems by means

of O - 1 variables insufficiently takes into account the special

structure of the scheduling situation. Therefore it is highly

38

unlikely that a general integer programming method will ever

provide the most efficient way to solve scheduling problems.

3.4. Dynamic programming (DP)

There is no need to describe in detail here the familiar method

of dynamic programming, due to Bellman. Good examples can be

found in Beckmann [13] and Milller-Merbach [70]. Applications

of this technique to general sequencing problems are quite

numerous, but to the machine scheduling problem they are

comparatively rare. We shall give an example, due to Lawler

and Moore [59], which demonstrates the usefulness of the

approach for a series of nil problems. Suppose jobs J 1 , ••• , Jn,

to be performed in this order, can be handled in two different

ways. In the first way Jk requires gk units of time, and a loss

of yk(t) is incurred upon completion of Jk at time t; in the

second way the time required is Sk units and the loss crk(t).
We want to minimize the total loss.

Now let

f(k,t) = minimum total loss for first k jobs, job k

being finished no later than t.

By a typical dynamic programming argument, we see:

· (k = 1, ••• , n; t ~ 0)

We put:

f(0,t) = 0 (t ~ 0)

f (k,t) = oo (k = 0, ... , n; t < 0)

(19)

and solve our problem by calculating f(n,T) where Tis

sufficiently large (e.g., T = E max (gk,sk)).
k

A small example will clarify this method. Suppose we have two

jobs J 1 ,J2 ; g 1 = 2, g 2 = 1, s 1 = 1, s 2 = 2; yk(t) = 2t,

crk(t) = 3t. Taking T = 2 + 2 = 4, we find:

f(2,2) = min

f(2,l) = 00

4 + f(l,1) =~

6 + f(l,O) = 00

f(2,3) = min 6 + f(l,2) = 9

9 + f(l,l) = 12

8 + f(l,2) =@

f(2,4) = min 8 + f(l,3) = min 14 + f(l,l) = 17

17 + f(l,2) = 20

12 + f(l,O)

12 + f(l,l) = min 14 + f(0,-1)

15 + f(O,O)
12 + f(l,2) = min 16 + f(O,O) = 16

18 + f(O,l) = 18

from which we see: f(2,4) = min (7,11,15) = 7, reached by

producing J 1 in the second way and J 2 in the first way; J 1 is

ready at t = 1, J 2 is ready at t = 2 and the costs are

1 X 1 + 3 X 2 = 7.

39

= 00

= 00

=®

40

We apply this to a nil problem. Suppose n jobs have processing

times pk and a common deadlined, and suppose we have loss

functions

(t ~ d)

(t > d)

n
We want to determine a sequence so that E ck(t) is minimized.

k=l
This boils down to partitioning the jobs in two classes: those

that will be completed on or before d and those that will be

tardy. The :first group will be sequenced according to the ratio's

pk/ak (the :job with the smallest ratio first - see 4.2.1.),

the second c;roup follows in arbitrary order.

We can solve this problem by ordering the jobs by their pk/ak

ratio, putting

s = 0 k

and applying (19).

t
Now suppose ak is given and a deadline dk is given for every

job. We put Sk = akdk and choose d so that akd ❖ Sk (k = l, .•• ,n).

Then the sequence minimizing E ck(t) also minimizes E c'k(t)
k where

so it maximizes E c"k(t) where

c" (t)
k

This is true because the graphs underneath immediately show

that c"k(t) = -c'k(t) + Sk.

41

ck(t)

---- c'k(t)

-•-·-·-· c" (t) k

·-·-·-·-·-·-·-
d

We see that, by choosing Sk and din this way, we have

effectively maximized EakEk' the weighted sum of earlinesses,

so that we have solved the nlll IEakEk problem! Notice that

EakEk is not a regular measure.

We shall return to the formulation of Lawler and Moore in 4.2.,

when we consider the nlll IEakTk problem.

42

3.5. Branch-and-bound methods (BB)

One of the most promising techniques for solving optimization

problems is the technique called "branch-and-bound". Originally

.developed by Land and Doig in the context of integer programming,

it is being applied to a growing number of problems such as

non-linear programming, the quadratic assignment problem and

the travelling salesman problem, where it was used in the

classic paper by Little, Murty, Sweeney and Karel [62].

A fairly recent survey is given by Lawler and Wood [58].

A general description of a branch-and-bound algorithm, shall

be given now. In general, the set of all possible solutions

to the minimization problem is being split up stepwise in

disjunct subsets. For each subset a lower "bound" is calculated:

the value of the objective function for each solution in the

subset will be larger than or at least equal to this lower

bound. We then choose a subset from where we can "branch";

this could be the one with the presently lowest lower bound,

but an other way to choose is possible and will be mentioned

later on. "Branching" now implies further splitting up the

subset in disjunct parts. As soon as one of these subsets

contains only one element,.we have a complete solution for

which we can calculate the value V of the objective function.

We can from then onwards disregard all subsets with a lower

bound greater than V; no improvement can be found in them.

We continue the branching and bounding, continuously comparing

lower bounds, with the present best complete solution, until we

have a complete solution whose value is smaller than or at

least equal to all remaining lower bounds. This solution is

the desired optimum one.

We see then that a branch-and-bound algorithm is determined by

three prescriptions:

(1) the bounding prescription, i.e. how to calculate

a lower bound;

(2) the branching prescription, i.e. how to split up

a subset of solutions;

(3) the searching prescription, i.e. how to choose a

new branching point.

43

Now (1) obviously is very important and the quality of any

branch-and-bound algorithm is mainly determined by the sharpness

of the bounds.

Rules with regards to (2) are often incomplete in the sense

that they do not uniquely determine how to split up the subset

under consideration. Various heuristic rules may then be

employed to arrive at the definite splitting.

Finally, (3) is sometimes not explicitly given in literature,

and is mainly an administrative matter. Basically one can

distinguish two different approaches:

(3a) branch from the subset with the present lowest

bound ("frontier search");

(3b) branch from the most recently created subset

("newest active node">*).

Method (3b) usually leads to more branching operations than

(3a), but requires little computer storage (of the pushdown

stack type), whereas (3a) demands large space for the storage

of intermediate data.

*) One could combine the two by branching from that subset
among the most recently created ones, that has the lowest
bound.

44

Branch-and-bound methods have been very successful in solving

sequencing problems in general and some machine scheduling

problems in particular. Various examples will be dealt with

in other sections; especially in the njmjG problem branch-and

bound methods have been used extensively. However, a recent

article by Bratley, Florian and Robillard [34] indicates that

already a l0ll0IG problem poses great problems and can probably

not be solved solely by branch-and-bound methods.

Nevertheless, branch-and-bound methods have heuristic value

as well; if one is willing to be satisfied with a solution

within, say, 10% of the optimum, and a complete solution with

value Vis known, all subsets with lower bounds greater than

llV/10; this should speed up calculations considerably.

We purposely refrain from going any specific example at this

point as we have done in other sections. As mentioned before,

applications of branch-and-bound methods are so numerous

throughout this report that they will sufficiently illustrate

the power of this method.

3.6. Combinatorial-analytical methods (CA}

By combinatorial-analytical methods we mean all theoretically

derived results whereby either the set FS of feasible solutions

is effectively reduced to a much smaller set POS of potentially

optimal ones, or a constructional method to find the optimum

is explicitly given.

In the first case, results usually have the form: "if a sequence

has property P, this sentence can never be optimal", "there

exists an optimal sequence with property P" or "any optimal

sequence has property P". The third formulation is much stronger

than the second one: propositions of the second type are not

necessarily "additive", by which is meant that, if we have

a number of these propositions referring to properties

P 1 , ... , Pn, this does not imply that there is one optimal

sequence which has all of these properties.

45

In the se~cond case, the problem is, of course, solved: we have

a constructional method that enables us to find an optimal

sequence .. Results like this are, however, comparatively rare

in machine scheduling theory and they are generally confined

to very simple situations, such as the nj2jFjFmax problem,

solved by Johnson's classic paper [54] in 1954.

Many examples of these results will be given throughout this

report, so again there is no need to go into details here.

Nevertheless, it would be nice if one could give a few

generally applicable results here. The theory of combinatorial

optimization, however, has hardly been developed so far and

the only interesting theorem was given by Smith [93] in 1956:

Theorem 3.6.A: a sufficient condition that f(i) ~ f(TT) for

all TT, where f is a real function defined on permutations TT

of (1, , n) is that:

(1) there exists a function g, defined on ordered

pairs (k,1) such that, if

TT = (i l , ... , ik, ik+ l , ... , in) and

TT' = (i 1 , ... , ik+ 1 , ik, ... , in) , then

f(TT) ~ f(TT') if g(ik,ik+l) ~ g(ik+l'ik) i

(2) TT is such that k precedes 1 if g(k,1) ~ g(1,k).

Proof: in any TT+ i, we can interchange the pair (ik,i1), where

i 1 immediately precedes ik in TT, but follows ik in TT. By (2),

46

g(ik,ii} < g(ii,ik}, so by (1) the interchange does not

increase f(~}.

The situation is even simpler when g is function of one

-variable only, k preceding i, if g(k} < g(i}. In this case,

g is necessarily transitive; in the general case, if

g(k,i} < g(i,k} and g(i,m} < g(m,i}, it does not necessarily

follow that g(k,m} < g(m,k}. So one has to check if a sequence

(i 1 , •.• , in} where k precedes i if g(k,i} < g(i,k} can be

constructed at all.

No general constructional method for g is given, but in general

one interchanges elements ik and ik+l and tries to write the

resulting change in the value off as a function of these two

elements only. A more abstract formulation of this idea is

given by Elmaghraby [29].

Examples of this method will be given in chapters 4 and 5;

by the nature of theorem 3.6.A. applications are restricted to

those cases where the value of the optimality criterium is

determined by one permutation only.

As announced, we shall not give any specific examples here.

It is interesting to point out, however, that the usefulness

of theorem 3.6.A. is due to the fact that it permits one to

find an optimum by only checking the effect of interchanging

pairs of elements. The theorem guarantees that our local optimum

(in the sen~e of Nicholson [79] }, is also global.

47

3.7. Algebraic methods (A)

There have been only a few attempts to solve scheduling problems

by algebraic methods. By the latter we mean those methods that

concentrate on structural properties of the set of all operations,

and on the relations between them. Here we shall pay attention

to the work of Giffler ([37], [38]) on schedule algebras and

the work of Rial ([83]) and Driscoll and Suyemoto ([26]) on

relation nets. The lack of any further research in this

direction explains why we shall see no need to return to these

methods any more after this section.

We realize that Giffler's approach is aimed at situations

lacking the characteristic difficulty of machine scheduling

problems: in his schedule algebra theory, it is assumed that

a complete ordering of jobs is (implicitly or explicitly) given,

in which case the schedule graph is equal to a PERT-CPN type

of network. Also we realize that Rial's approach is aimed at

far more general problems than the machine scheduling problem.

However, we think it not unlikely that algebraic methods may

turn out be powerful aids in solving this problem and therefore

describe the two approaches in somewhat more detail.

3.7.1. Schedule_algebras

In schedule algebra theory, we generally try to solve the

well-known problem: given n strictly-ordered activities and

the starting times of all unpreceded ones, what is the earliest

starting time of each activity?

We assemble all relevant information in an x n-matrix S, with

s . .
l. J

{
{t .. }

= l.J

0

if i << j

otherwise,

48

where {t .. } is the set of minimum intervals between the start
lJ

of activity i and the start of activity j, arising from various

technological and other considerations*). If t .. has "zero
lJ

magnitude", we shall denote this by l, to avoid confusion with

s .. = o, which indicates that i does not directly preceed j.
lJ

We shall now study the structure of all matrices of this type

whose essential characteristic is that its elements are sets

of real numbers (including l), or O (zero). We can define two

relevant ways to add and multiply these matrices. For the first

way define C =A$ B where A and Bare both (n x m)-matrices

by defining c .. = a .. $ bij by the following procedure:
lJ J. J

(1) collect all entries of the sets a .. and b .. ;
J. J 1]

(2) replace by zero all combinations with the same

magnitude, but different signs;

(3) if all entries are now zero, surpress all but one;

if not, surpress all zero's.

Multiplication is then defined as follows: D =AG B where A
. () . d () . h . . th t is a n x m -matrix an Ba m x p -matrix, as as i-J en ry

d. . = (a 1. 1 0 b 1 .) e . . . e (a. 0 b .) ;
J.J 1 · 1m mJ

to define a 1k 0 bkj' we take all pairs of elements (aik'Bkj)

from both sets, form

laikl+IBkjl if they have the same
sign

aik (~ Bkj = -laikl-lBkj I if they have different
signs

0 if one or both are zero

*) We use the term "activities" instead of "operations".

and add all these products, according to the above definition

of EB.

49

Under this addition,@, the (n x m)-matrices form an additive

group with the matrix that is identically zero as neutral

element. 'The (n x n)-matrices form a non-commutative ring with

identity matrix I, that has {l} on the diagonal and zero

elsewhere. As with real matrices, inverses according to

multiplication are unique (if they exist).

For the second way to define addition and multiplication, we

remark that, whereas the above operations shall turn out to

produce the time-length of all possible paths between two

activities, usually we are only interested in the maximum length

of these paths. So we restrict outselves to situations where

all matrices have entries that are either i, a positive real

number or zero and define E =A* B by

e. . = max {a .. ,b .. } ,
1] 1] 1]

treating Oas negative infinity; and F =Ai B by

The reason that we did not immediately introduce these

definitions, is that the set of all these matrices (where

now we just as well replace the set a .. , that is the i-j th
1]

element, by max a ..) has much less structure under these
1J

definitions; they do not even form a group any more.

Returnin~J now to the previously defined matrix S, that in fact

gives the length of all "one-level chains", i << j, we see that

S 0 S = s 2 effectively gives the length of all two-level chains

i << k << j, the i-j th entry being

50

in so far as tik and tkj are not zero. Analogously, the set

that is the i-j th element of Sw gives the lengths of all

possible w-level chains. Obvious Sw will be identically zero

if w > A for some A. Defining 0 as follows:

e := I EB S EB s2 ... EB s"-

eij gives the lengths of all chains from i to j.

It is now easy to prove that

e = {I EB (-I G S)) -l

{22)

(2 3)

where -I has -l on the diagonal and zero elsewhere. To do so, we

multiply both sides of (23) by (I EB (-I 6 S)), getting:

e EB (-I G s G) e) = I

or

e == I EB (S G) e)
which follows directly from (22), because S>..+l 0 e is

identically zero. Elsewhere [38], Giffler gives efficient

methods to determine the inverse of a schedule matrix.

Now, if we are only interested in the maximum length of all

chains from i to j, we compute:

~=I* S * (S # S) * (S # S # S) * ... * (S # # S)

--->..---

the i-j th entry of p giving the desired information.

Given a (1 x n) vector T, where

the earliest starting time of activity j,
if j is unpreceded

otherwise

we compute

which gives the earliest possible starting time for all n

activities.

Writings+ Sas s• 2 , etc., we have

T = T + (I* S * s• 2 * ... * s•A)

= (Ti I) * (T + S) * ((Ti S) + S) *

((T + s• 2) + S) * * ((T + s• A- l) + S)

which gives rise to the recursive formula:

where:

T = T
0

k = 1, 2, 3, 4, ...

(TA= TA+r'r = 1, 2, ... , because A* A= A for all A).

Example: suppose we have

51

52

0 1 2 3

0 0 0 3
s =

0 2 0 2

0 0 0 0

which corresponds to the following graph of activities:

3
We find:

0 4 0 4

s2
0 0 0 0

= 0 0 5 0

0 0 0 0

0 0 0 7

s3
0 0 0 0

=
0 0 0 0

0 0 0 0

0 0 0 0

s4
0 0 0 0

= 0 0 0 0

0 0 0 0

l 4 2 7

0 l 0 3
0 =

0 2 l 5

0 0 8 l

53

If T = (3 0 0 0) , we find:

Tl = T * (T =II= S)

= (3 4 5 6)

T2 = Tl * (T 1 :II: S)

= (3 7 5 7)

T3 = T2 * (T2 :II: S)

= (3 7 5 10)

T4 = T3 * (T 3 :II: S)

= (3 7 5 10)

so T = (3 7 5 10) •

The method of schedule algebras can be extended to the situation

where the directly-precedes relations are given implicitly

by some priority rule (such as First On, First Off, etc.).

In its present form, it can, however, not contribute directly

towards the solution of the machine scheduling problem, because

the fundamental relation: "i precedes j or j precedes i" cannot

be expressed*). For an approach, where these (and many other)

relations are readily available, we turn to so-called relation

algebras.

3.7.2. Relation_algebras

The basic idea of relation algebra, as presented somewhat

forbiddingly by Rial [83], and Driscoll and Suyemoto [26], is

*) Schedule algebras can, of course, be used as part of a
general algorithm to solve a nlmlG problem, (see, for
instance, Ashour and Parker []).

54

the following. Suppose we have a set of n activities with all

kinds of time-relations between them, either very vague (i.e.,

X starts before Y) or very precise (Y begins exactly when X

stops, X starts n time-units after Y). Especially in large

projects these relations may well lead to logical contradictions.

We want to discover these contradictions (if they exists) and

find out how they can be dissolved.

First then, we have to classify all possible relations. Now

each activity Xis characterized by its starting time t and
X

finishing time T. Likewise, Y is characterized by ty and T.
X y

There are five possible relations between t, and t and T:
X y y

t < t, t = t , t < t < T, t = T, t > T; the same
X y X y y X y X y X y

relations exists between Tx, and ty and Ty. Of the 25 resulting

combinations, 12 turn out to be infeasible, which leaves 13

fundamental relations. They are illustrated by the scheme

below*):

*) Our notation differs from Rial's.

t <t
X y

t =t
X y

t <t <T
y X y

t =T
X y

t >T
X y

T < t X y

X I i

I y □

Xa5Y

TX = t

I X I I
I

t:::, y

xa.6Y

t y

I
< T < T

y X

X I i

y c::::::,

X p
Yb

X D

y·-------

xa7Y

y

I
T = T X y

I
x-: I l

c1 y

X r7 . '
y t::i

xD

y----

xaay

T > T
X

x-: I •
y □

X I I
•

y t::1

X c::J

y t:::]

X p
y..d

y

X D

y.c::::l

xa9y

I xa0Y

xa1Y

Xa2Y

xa 3Y

Xa4Y

u,
u,

56

Each feasible combination is illustrated by two time scales

with the positions of X and Y. As to notations, Xaijy has to

be read as: (XaiY) A (XajY), A standing for logical conjunction.

In order to discover logical unconsistencies, we introduce the

concept of implication: if it follows from (XSY)

then (Xo 1z) v ... v (XonZ), the relation o1 v o2
said to be the implication (or the product) of 8

" (YyZ) , that

V • • • V O is
n

and y; v is

the sign for logical disjunction. By example, if Xa17Y and

Xa 0Z, then X(a5 v a 6 v a 7)z, as will be obvious from the

picture below.

X --~,---------

y

z

• I

' ' I
I

' I I

"' We can extend these relations by defining XBY to mean YSX
A -(i.e., a 05 = a 49) and by defining xax to mean that XSY is not

the case. All implications and conjunctions have extensively

been tabularized by Driscoll and Suyemoto.

Now, if there is any logical inconsistency in the network of

relations, it will necessarily arise out of some loop

x 1 a 1x 2 a 2x 3 ... 8n_lxnanx1 • To discover this, we transforc each

of these loops step by step by means of implications into a

relation,.of the type x 1y 1Xiy2x 1 , which is identical to

X1 (y1 A y 2)x2 . We then check in a table of conjunctions if

this conjunction is false (i.e.: no pair (X 1 ,x2) could possibly

have this relation). If so, we have an inconsistency.

Example: suppose we have the following cycle:

x1a 08x2 and x2a 27x3
because x1a 7x3 means

T = t (< T).
x3 xl xl

imply x1a 7x 3 . Now X1 (a 7 A ~ 6)x 3 is false,
A

t < T < T and x1a 6x3 means
x3 xl x3

An obviously indispensable result which we need here, is:

Theorem 3.7.A: x1s1x2 ... Bn-lXnBnXl and

XkBkXk+l ... Bn_lXnBnXlBlX2 ... Bk-lXk have the same thruth
value fork= 2, ... , n.

Proof: trivial for n = 2,3; from there by induction.

Given the network of relations and the tables, the search for

inconsistencies, described above, can easily be carried out

57

by a computer. Rial announces a program in preparation; no

results have been presented since then. Driscoll and Suyemoto

present a number of heuristic rules whereby a logical conflict

might be solved.

Rial has extended his approach to so-called metrized relations,

where not only is given that, for instance, t < t, but where
X y

we know that t = t + i. The notation is easily extended, to y X

cover these relations, the above example being written as

xa0 (i)Y, and, for instance, xa27 (i,j)Y denoting the following

situation:

58

X
...... i , 1+-j--+

t I I I
I t I I
I I

I l I I
I I t I

I I

y _J

In the case of metrized relations we can again study the

implications of two metrized relations f\ (i) and s2 (j).

However, what is more important is that metrized relation place

a number of restrictions (in the form of linear equations) on

the parameters i, j, ... and the durations d = Tx - t of the
X X

activities. For instance, in the above example, we have

i + d + j = d
X y

which must be true if the relation Xa27 (i,j)Y is true.

In this way,, a number of necessarily valid equations can be

derived from a true metrized relation network. Let us illustrate

what we can do with them by a final example.

Suppose we have the following network (one can think of T as

a common time base).

y

T

The network can be shown to be true

in a logical sense. We take all cycles

and derive equations from them

(tables exist for this procedure).

i + dx +JI,= dT

d + JI, = j + d
X y

dy =dz+ k

m +dz+ k = dT

xa0 (j)Ya17 (k)Za2 (m)Ta27 (i,1)X gives no new information.

So we have:

d
X

d y

1 0 0 1 0 0 1 0 d z

1 -1 0 0 -1 0 1 0 i

• =
0 1 -1 0 0 -1 0 0 j

0 0 1 0 0 1 0 1 k

1

m

(dT is assumed constant).

59

Now if we want to know the effect of a small change in the

variables (especially the influences these changes have on

each other), we know that the augmented variables must satisfy

the same equations, and get by subtracting:

6d
X

6d y

1 0 0 1 0 0 1 0 6dz :, 1 -1 0 0 -1 0 1 0 61

• =

:) 0 1 -1 0 0 -1 0 0 6j

0 0 1 0 0 1 0 1 6k

61

6m

60

By elementary row transformations we find that the matrix of

coefficients is equivalent to

1 0 0 1 0 0 1 0

0 -1 0 -1 -1 0 0 0

0 0 -1 ... 1 -1 -1 0 0

0 0 0 -1 -1 0 0 1

which implies that we can choose Llj, ilk, Lli and Llm, and then

solve for Lld, Lld, Lld and Lli. The "conditional conflict"
X y Z

(as Rial calls it) has been adverted.

It cannot be denied that the examples given are extremely

artificial. Nevertheless, the algebraic methods at least fully

employ the structural properties of the scheduling problem,

however, inelegant they may seem. There is room for improvement

here, and subsequent developments may well justify the attention

paid to the methods here.

3.8. Sampling techniques (ST)

In this section we enter the realm of heuristic methods, by

which we shall generally mean methods that cannot strictly

guarantee the finding of an optimum solution.

By far the most important heuristic methods are those that use

more or less sophisticated priority rules. Designing these

rules and comparing their performance by extensive simulation

has kept many researchers happy and busy. We shall present the

main results in the next section, but here we want to pay

attention to a curious feature of the machine scheduling-.problem,

that has been exploited by Heller [49] and others.

The background of their methods is that the number of distinct

maximum flow times Na is relatively small, especially in the

61

nlmlF or nlmlP situation. For a 1ols situation, the number of

possible sequences is 6.29 x 10 32 , whereas Nd is 9.38 x 1011 in

the flow-shop situation and 1.13 x 10 15 in the job shop

situation*). In an nlmlP situation, the maximum flow time is

a sum of (n + m - 1) processing times, which gives an immediate

upper bound on Nd of {nn! m - 1). This indicates that it might

be profitable to study the distribution of the different times

over the population of all possible schedules. Heller has

conducted some experiments in this direction, and has concluded

(and derived theoretically) that this distribution is

asymptotically normal.

The practical use of Heller's work is not at all clear. One is,

of course, mainly interested in what happens round the lower

tail of the normal distribution, whP-re the fit is worst.

Moreover, if one wants to simulate a great number of different

solutions, there are more efficient populations to sample

from than the population of all feasible schedules. There is

an application, cited enthusiastically by Elmaghraby [29],

which boils down to fitting a normal distribution to the results

gained so far and calculating therefrom the probability of

finding a better schedule than the present best one in the next

simulation. Surely this process rests on very weak theoretical

grounds; not surprisingly, practical applications have not

been reported so far.

3.9. Heuristic methods (H)

By now it will have become apparent that an optimum solution

to a scheduling problem is generally not so easy to find.

Taking into account as well that it is already difficult enough

*) Reported by Ashour [] •

62

to isolate a scheduling problem from a host of surrounding

complex problems, it is altogether not surprising that only

a few practical applications of pure scheduling theory are

known. What happens in most cases is that, given a particular

scheduling problem, one tries to develop a method that will

generally produce "good" sequences, although it cannot guarantee

to find an optimum one. These "suboptimal" methods we shall

call heuristic. We shall deal with them here and for the rest

of the report stick to methods that really guarantee optimal

solutions.

Research into heuristic methods has mainly concentrated on

testing different kinds of so-called priority rules. Generally,

the technique of testing any heuristic method is to use that

heuristic method to generate one (or more) feasible schedule(s)

for a given problem. Then one evaluates the quality of the

(best) schedule, and repeats the whole experiment with either

the same data and a different method (so as to compare methods)

or differen~ data and the same method (so as to get an

impression of the quality of the method in general).

Now a schedule is completely determined if the starting-times

of all operations are known. If the schedule is generated in

such a way, that a decision taken with regard to the starting

time of any particular operation can never be revoked, the

procedure is called a single-pass one. The fact that almost

all known procedures are single-pass ones is a serious limitation,

as most human beings, operating for instance on a Gantt chart,

continuously change previous decisions. More research on

simulation of this adjusting behaviour is badly needed*).

*) The only available study is by Dutton ([28]).

63

If in a single-pass procedure decisions are taken "on the

spot" (which means that they can be taken in the order in which

they are implemented), we speak of a dispatching procedure.

Again, most known methods belong to this class.

We now introduce the important concept of the set S0 of

scheduleable operations. At any time this is the set of all

operations whose predecessors have all been scheduled. It

therefore consists of exactly n operations, one for each job.

Scheduling one of these operations implies moving it to the

set S of the (m) operations ~n progress. S can be split up: p 0

= s 1 U U ...
0

where s1 contains all operations to be scheduled at machine 1.
0

Now, if c1 is the finishing-time of the present operation

machine ji and sk! is the potential starting-time of (k,1)

then the earliest possible start and finish-times of (k,1)

are given by max (C1 ,sk1), resp. max (c 1 ,sk1) + Pkt"

If we choose as the next operation to be scheduled any one with

minimal earliest possible starting-time, we get a so-called

non-delay schedule; similarly, if we choose any one that starts

before the minimal earliest possible finishing-time, we get a

so-called active schedule.

In general, an active schedule is one where it is not possible

to decrease the starting-time of any operation without increasing

the starting-time of another one (Conway, Maxwell and Miller

[24], page 111). Obviously, any optimal schedule must be active.

A non-delay schedule is an active schedule where at no time

a machine stands idle on which a scheduleable operation could

have been processed. An optimal schedule, however, is not

64

necessarily non-delay. Take, for example, the optimal sequence

for a 2l3IF1Fmax problem where p21 = p 23 = O, that is
illustrated below and that has a delay on M2 :

1

Ml

1 2
M2 I Cd •

1

M3

By randomly breaking ties, we can generate a number of active
and non-delay schedules and compare their performance*).

This has been done by Bakhru and Rao (reported in [24]) and

leads to the general conclusion that non-delay schedules

behave better in general. However, things get more realistic

if ties are not broken randomly, but by application of some

priority rule, or if - alternatively - an operation is selected

from S0 by this priority rule and the starting-time is then so

determined as to produce an active or non-delay schedule.

Many of these priority rules have been developed and tested

(Day and Hottenstein [25], Gere [36]). To name but a few,

one can grant highest priority to the operation (k,1) where

(1) Jk has the earliest due-date;

(2) Jk has either hig~est or lowest slack-time (i.e.

difference between time remaining before the due

date and sum of remaining processing times);

*) This is similar to the approach by Giffler and Thompson [39] .

(3)

(4)

(5)

(6)

(7)

(8)

(9)

65

Jk has lowest slack-time per remaining operation;

(k,t) arrived first in St (FCFS: first come, first
0

served, or FIFO: first in, first out);

Jk has lowest shop arrival time rk;

pkt is minimal (SPT: shortest processing time, or

SOT: shortest operation time);

Jk has either minimal or maximal total remaining

processing time;

Jk has minimal total processing time;

Jk has either minimal or maximal number of

remaining operations;

(10) (k,t) has minimal set-up time;

(11) (k,t) is chosen in a completely random manner.

Other priority rules can be found in the literature mentioned

above; Day and Hottenstein [25] give many references. The

performance of most of these rules has been extensively

investigated. We cite Conway, Maxwell and Miller [24], who

report a study by Jeremiah, Lalchandani and Schrage, which

proved among other things that priority rules work best in

combination with non-delay schedules, that SPT scheduling and

random scheduling (sic) are about equally superior on active

schedules, and that the "maximum remaining work load" criterium

performs reasonably well on the whole. However, there is no

obviously "best" rule. The latter remark coincides reasonably

well with the results of Gere [36]. He finds that rules based

66

on jobs slack are slightly better than SPT scheduling, which

is in turn slightly superior to the equally bad random and
FCFS-method.

~ext, however, Gere moves on to add some additional heuristic

rules, two of which turn out to be very effective: an "alternate

operation" rule, whereby job Jl is chosen instead of the

originally picked job k, if the choice of k threatens to cause

overdue delivery of job Jl, and a "look ahead" rule, which

forces the chosen job k to wait if a more critical job is on

its way. He conjectures that all previously tested procedures

will work about equally well when bolstered by these two

additional rules, but does not present any definite evidence.

His conclusion is nevertheless that the choice of additional

heuristics is far more important than the choice of a priority

rule itself. One might therefore just as well choose the

easiest one available (SPT). All together, these heuristic

methods are (not surprisingly) superior to Heller's sampling

approach, reported in 3.8.

A more sophisticated development, also reported in [24], are

methods whereby one varies between using one priority rule and

the completely random method by assigning non-equal pr~babilities

to each operation in S0 , the job with the highest priority

getting the highest probability. Again, the results are not

consistently better than either of the two extremes, but a

surprising outcome of some experiments (by Nugent) is that,

with some procedures, there is a certain degree of randomness

that is clearly superior to both complete randomness and

complete determinacy. The reasons for this amply demonstrated

fact are not clear.

Concluding this section we feel that in general heuristic

methods have not been sufficiently explored and have been

67

interpreted too narrowly. More work should be done on heuristic

methods that are tailor-made for a particular problem (e.g.,

Burstall [20]), and more attention should be devoted to

simulating the methods of a good human scheduler. It is not

unlikely that, given the present poor state of applicable

scheduling theory, good heuristic methods will continue to be

of utmost practical importance.

3.10. Conclusion

In this chapter we reviewed existing methods to attach the

machine scheduling. Most of them typically try to eliminate

sequences that are obviously non-optimal. (A method like

complete enumeration which does not do this, may be rejected

straight away). This elimination is performed in various ways:

branch-and-bound methods try to evaluate the quality of a

partly filled schedule as early as possible, dynamic programming

always chooses the best of equivalent partly filled schedules

to proceed with, combinatorial-analytical techniques rely on

careful judgment of the effect of certain interchanges in a

sequence. These methods are in fact the best we have at the

moment. As stated we do not believe integer programming will

ever produce an optima~ solution method to the scheduling
problem, nor do we have much faith in Heller's sampling method.

Algebraic and heuristic methods deserve more attention, the

latter ones probably dominating in real-life situations for

many years to come.

68

4. Some special cases

4.1. Introduction

In this chapter the techniques described in chapter 3, shall

be applied to a few special and (comparatively) simple machine

scheduling problems. Most prominent among them is the nil

problem, on which a lot of work has been done. Still, even

here many problems remain to be solved. We devote special

subsections to situations where there are additional precedence
constraints among the jobs. Furthermore, we pay attention to the

situation where instead of one machine we have m identical

machines to perform the jobs on.

The two-machines and three-machines problem also deserve some

special attention; Johnson's work on the nl2IFIF problem max
in 1954 aroused new interest in machine scheduling problems

in general. Finally we pay attention to the 21m situation,

mainly because of the interesting graphical method designed

to solve problems there.

4.2. The one-machine problem (njl)

Most theoretical work on machine scheduling problems pertains

to the nil situation. We shall try to give a review of known

results, classifying them by the various optimality criteria

in a way analogous to 2.3 •.

There are a few remarks to be made bef0rehand. Firstly, it is

trivial to prove that in solving a nlll l~Cc 1 , ••• , en) problem,

where ~(c1 , ••• , c) is a regular measure of performance; one n .
does not have to consider any schedule with job splitting or

idle time. In both cases the schedule could be improved in an

obvious way.

Secondly, it

and W. are min
considered.

is clear that well-known criteria like F C max' max
now independent of sequence and do not have to be

_____ , ············;;;;;;:··.·.·.,===--;;.-.-.·-·.·.,.,.,.,.,.,.,.,.,.·.,.,.----~

In view of the first remark we only have to consider then!

different permutation schedules. As to notations, we denote

69

by ik or jk the job number that in a given permutation occupies

the k th place. For example, i 8 = 2 means job 2 is in the eighth

position. Furthermore, we can write pk for pkl and Wk for Wkl

(k = 1, ••• , n).

4.2.1. Criteria_based_on_comEletion-dates_and_flow-times

Having assumed that rk = 0 for all k, important criteria to

consider here are

the former one being equivalent to Wand L, the latter one to

Ea.kWk and Ea.kLk.

The nlll IF problem is easily solved and the solution has been

known for a long time. Denoting a sequence by i 1 , i 2 , ... ,

we find

i I n

Theorem 4.2.1.A: the nlll If problem is solved by the sequence

i 1 , ... , in with

Pt ~ p. ~ . .. $ pi . 1 12 n
k 1 n

Proof: F. = E p. ' so f = E (n - i + l)p. i
:1k j=l lj n j=l

1.
J

this sum is minimized by arranging the P[i] in order of

increasing magnitude. A graphical "proof" is also given in

Conway, Maxwell and Miller [24].

This way of sequencing is called: shortest-processing-time

sequencing (SPT). It also minimizes W, L (and C) , Wmax, Cmin

and! EF: (a.> o). To prove the latter one notes that is

70

p. > p. in some sequence, one can interchange these two
1 k 1 k+l

jobs, thereby holding F~ constant and increasing
1 k+l

The nlll IEcx.kFk problem is hardly more difficult to solve.

Theorem 4.2.B: the nlll IEcx.kFk problem is solved by the sequence

i 1 , ... , in with

Proof (Smith [93]): given a sequence i 1 , ... , in, and

interchanging ik and ik+l' the old sequence will better than

or as good as the new one if

k k+l k-1 k+l
ex.. E p. + ex.. E p. < ex,. E p. + p. + ex,. E p.

1 k j=l 1 j 1 k+l j=l 1 j 1 k+l j=l 1 j 1 k+l 1 k j=l 1 j

or

We have found a function g(k) as described in theorem 3.6.A.;

the proof is now immediate.

4.2.1.1. Precedence constraints

We now turn to the more complicated situation where there are

precedence constraints among the jobs. (dropping assumption (J6)).

We can represent these constraints by a directed graph, nodes

representinq jobs and a directed arc linking Jk with Jk' implying

that Jk should precede Jk'"

*) We really use here (as below) theorem 3.6.A ..

71

Let us, however, first treat the simple case, where has been

split up in groups Gi of ni jobs, where each group has to be
executed consecutively in a given order*). We then have, if

Jk E Gi:

Fk = F - c Gi k

where FG. is the flow time of Gi and ck is a constant, equal to

the sum 5f the processing times of the jobs following Jk in Gi.

Then:

EakFk = E(E ak)FG. - Eakck
Gi 1

and from theorem 4.2.B. we see that the optimal sequence of the

groups is given by ordering them according to increasing

(E pk)/(E ak) ratio. This solves this particular nlll (J6) IEakFk
Gi Gi

problem, and therefore also the nlll (J6) IF problem, where we

order according to the (E pk)/n. ratio.
G. 1

1

Returning to the more general problem, we find that the only

known algorithm is restricted to the case where the directed

graph representing the precedence constraints is a forest, i.e.

a collection of trees, ·each with a root node, from one of which

runs a path to every other node in the graph.

5

8

15 16 17

*) If the order is not given, we first order Gi by previous
theorems.

72

An example is shown above; for the first job there are only

two candidates, the jobs 1 and 2. When one of them is scheduled,

we delete the node and all the branches leading from it from

the tree and get a new set of trees with roots to choose the

_next job from.

The nlll (J6) lrakFk problem in this solution is now solved by

Horn's algorithm ([50]). To describe it, we introduce the

notion of a successor set Sk to node Jk; this set has the
following properties:

(1) Jk E Sk;

(2) if J. E Sk
J

and j =f= k, then Jk precedes Jj;

(3) if J. E Sk and J . precedes J., then either Ji E Sk J l. J
or J. also precedes Jk.

l.

Now the algorithm runs as follows. For each root Jk we calculate

For each root Jk we calculate

yk = min (E pk)/(E ak)
Sk

where the minimum is taken. over all successor sets. Schedule

the root job with minimal yk, remove it and repeat with the new

set of roots.

The proof of correctness of this algorithm is extremely

complicated. What one does here basically, however, is to find

out whether the ordering according to increasing pk/ak ratio

conflicts with the precedence constraints•>. If this happens,

one has to group jobs together, assigning them processing time
•,

r pk and weight r ak, in accordance with the result mentioned
above.

*) For a more general result on this situation, see Gapp,
Mankekar and Mitten [105].

73

An inter,esting feature of Horn's method is that it can be also

used for situations where the precedence constraints have the

form of upside down trees. One just turns the trees upside

down again, reverses all arrow and replaces ak by -ak!

We conclude this section by remarking that no go9d algorithm is

known for the situation in which there are more general

precedence constraints among the jobs.

4.2.2. Criteria_based_on_due-dates

We have seen already that the nlll IL problem is solved by

theorem 4.2.1.A. (order by increasing pk's) and that the

nlll IIakLk problem is solved by theorem 4.2.1.B. (order by

increasing pk/ak ratio's).

The nlll ILmax and nlll ITmax problems, are solved by the following

theorem, due to Jackson (reported in (24]):

Theorem 4.2.2.A: the nlll ILmax problem and the nlll ITmax problem

are solved by the sequence i 1 , ... , in where

d.
l n

dk being the due-date of Jk.

Proof: suppose di > d. . Interchanging the two jobs leaves
k 1 k+l

everything unchanged except for the lateness of the k th and

(k+l) th job, the lateness of the (k+l) th job in the first

sequence dominating all the others. The second sequence can

therefore not be worse with regards to L , nor with regards to max
T = max (0,L) .

max max

74

Analogous to theorem 4.2.2.A., one can prove (Conway, Maxwell

and Miller [24]):

Theorem 4.2.2.C: the nlll ILmin problem and the nlll ITmin problem
are solved by the sequence i 1 , . . . ' i , where n

Having solved the nlll ltakEk problem in 3.4. by means of

dynamic programming and noticing that Emax can be maximized

by arguments similar to theorem 4.2.2.B., we can now turn to

the more complicated nlll IT and nlll ltakTk problems.

There are a few situations in which these problems are trivial.

If the jobs are all late when scheduled by increasing pk's,

then in this case the SPT sequence also solves the nlll IT

problem. Also, if only one job is late when we schedule by

increasing due-dates, this sequence solves the nl1I IT problem

in this particular case. However, for a long time these were

the only results known.

The first serious work on this problem has been done by Lawler

[57], an early article by McNaughton [65] in fact only solving

the trivial case that d1 = ... = dn = 0.

Lawler has tried out various methods on the more general problem

of minimizing Eck(t), where ck(t) is a monotone non-decreasing

cost function. In the first place, he has given a dynamic

programming formulation.

If Jc N = {l, ••• , n}, define C(J) to be the minimal total

cost of performing J, i.f none of these jobs is started before

d(J) = E pk. Then:
k$J

min
J {

C (J) =

C(¢) = 0

These two equations define a dynamic programming approach,

whereby the minimum cost C(N) can be determined. The number

of calculations is of the order 2n and grows therefore very

rapidly.

75

Next, if: all the jobs have the same processing time p, Lawler

shows that we have a linear programming problem of the assignment

type:

minimize

n
subject to r x .. = 1

j=l lJ

n
r x .. = 1

i=l lJ

x., ~ 0
lJ

(i = 1) () I •••t Il ••••••••••••••• *

(j = 1 , . . . , n) • • • • • • • • • • • • • • • (**}

(i = 1, ... , n; j = 1, ..• , n)

Here xij = 1 means that job i finishes at time jp.

Finally., Lawler extends this method to the case of different

processing times. However, job splitting can not be prevented

then. Adding constraints to do so leads to a mixed integer

programming formulation.

Lawler and Moore extend their dynamic programming approach,

already presented in 3.4., to the nil! lrakTk problem where all

deadlines are identical.

More interesting, however, is the theoretical work done by

Emmons [30 1 on the nil! IT problem. Defining¾ and Bk to be

the jobs that have been. shown to come after Jk, respectively

before ,Jk in some optimal schedule and ordering the jobs so that

j < k implies pj ~ pk, he proves:

76

Theorem 4.2.2.C: (i) if j < k and d. ~ max (Ip, + pk,dk),
J B l.

then j comes before kin some optimal schedule1"

(ii) if d 1 ~ max (pk,dk) for all k > 1,

then J 1 comes first in an optimal schedule;

(iii) if max (p ,d) ~ dk for all k < n, n n
then Jn is Last in an optimal schedule;

(iv) if SPT scheduling is identical with

earliest due-date scheduling, then these schedules are optimal;

(v) the SPT schedule is optimal if
k+l

dk +pk~ I pk fork= 1, ... , n-1.
i=l

Proof: (i) • (ii), (i) • (iii): take B = ¢ k
(i), (ii) • (iv): trivial

(ii) =~ (v) : d 1 < p 2 , so J 1 is first. Removing it and

subtracting p 1 from all dk, J 2 must be first in the new job

set, etc ..

So we only have to prove (i), which is possible by carefully

considering the effect of interchanging Jk and Jj (see

Emmons [30]) •

The next theorem tells when a longer job may precede a shorter

one.

Theorem 4.2.2.D: (i) if j < k, d. > max (Ip. + pk,dk) and
J B l.

d ~ th k d . . k · 1 . + p. > ~. p., en prece es Jin some optima sequence;
J J ifl\k l.

(ii)
n

if dk = max dJ. and dk +pk> Ip.,
t=l 1

then Jk is last in an optimal schedule;

(iii) the earliest due-date schedule is optimal

if Lk < pk for all k.

Proof: (i) • (ii), together with theorem 4.2.2.C. (i).

(ii)• (iii): if dk = max dj, and Jk is last, then:
n

L = Ip. - dk < pk implies we can use (ii), drop Jk and
k i=l 1

repeat.

77

(i) is proved again by looking at the effect of putting

Jk directly in front of Jj.

Emmons gives a branch-and-bound algorithm based on reducing

the search for an optimum as much as possible by means of the

two theorems above and branching when it cannot be determined

if one job proceeds another or not. He gives no details, no

computer results and no bounding prescription. However, we

shall illustrate the use of his theorems by a small example.

Suppose:

rl = 1 P2 = 3 P3 = 4 P4 = 9 P5 = 15

dl = 11 d2 = 6 d3 = 14 d4 = 10 d5 = 9

Now we find:

(1) J 5 is last, because max (p5 ,d5) = 18 ~ dk for

k = 1, 2, 3, 4 (theorem 4.2.2.C. (iii)). We remove J 5 , getting:

p' = 1 1

d' = 11
1

p' = 3
2

d' = 6 2,

o' = 4 ,_ 3

d' = 14
3

p' = 9
4

d' = 10
4

(2) Theorem 4.2.2.C.(iii) cannot be applied again:

max (9,10) = 10 < 11,17.

However, max {d'} = d' = 14 > p' + p' + p' = 13 so now we put j 3 1 2 4 '
J 3 last because of theorem 4.2.2.D. (ii). We get:

p" = 1
1

d" = 11
1

p" = 3 2

d" = 6 2

p" = 9 '
3

d" = 10 3

(3) We cannot reapply theorem 4.2.2.C. (iii) (10 < 11),

nor can we reapply theorem 4.2.2.D. (ii) (11 < 12). Now look at

J 1 • If d 1 < max (d2,p2) or di~ max (d3,p3), then J 1 would

precede J 2 or J 3 by theorem 4.2.2.C. (i). However, this is not

the case. We see next that J 2 precedes J 3 : 6 ~ max (9,10).

So J 3 e A2 , and J 1 and J 2 are candidates for the first place.

78

(4) Now d" > max (p~ d") and d" + p" ~ p" + p" So 1 2' 2 1 1 ' 1 2· '
by theorem 4.2.2.D.(i), J 2 precedes J 1 . We remove J 2 , putting

it first and subtract p2 = 3 from d1 and d 3; we get:

p" I = 1
1

d"' = 8
1

p"' = 9
2

d"' = 7
2

(5) By theorem 4.2.2.C. (i), J 1 precedes J 2 , because

dj'.' = 8 ~ 9 = max (p2• ,d21).

So the optimal order is: J 2 - J 1 - J 4 - J 3 - J 5 ,

I I

with average tardiness T 1 = S (0 + 0 + 3 + 3 + 23) = 29/5.

In this case, branching has not been necessary. It is difficult

to judge Effill'_ons' algorithm, because the branch-and-bound

details are so insufficiently specified.

I

Finally and most recently, a branch-and-bound-solution to the

nlll IEakTk problem has been suggested by Shwimer [91], inspired

by work of Elmaghraby.

This branch-and-bound algorithm constructs an optimal sequence

in the inverse order. The first subsets are formed by taking

successively J 1 , ... , Jn as the last job, ordering the other

jobs by increasing due-dates and keeping the best schedule.

However, here as during the whole algorithm the following

elimination theorem is used:

Theorem 4.2.2.E: if aj ~ ak, dj ~ dk and pj ~ pk' then one

only has to consider schedules where Jj precedes Jk.

Proof: this is a direct extension of theorem 4.2.2.C. (i) and

is proved in a likewise complicated check of all possibilities

when Jk and ,J j are interchanged.

At any l13vel, we branch by means of the set S of jobs not yet

scheduled. If S consists of only one job, we can construct a

complete solution; if dk = max d. ~ t pJ., then place Jk last

79

S J jES
of all jobs in Sand branch from S - {Jk}*); otherwise, create

subsets by successively placing each job Jk last among all

jobs in !3.

A lower bound LB is then given by the following expression:

LlB = C + a.k max ((t pi) - dk,0) +
s

min {a.. max ((t p.) - p - d. , 0) +
S-{Jk} J s 1 . k J

(min a..) . T (S - {Jk,Jj})}
S-{Jk,Jj} i

max

where C ·-·- cost incurred so far (see below) , and the whole

lower bound is based on the idea of scheduling just before Jk
that job Jj which adds the smallest possible amount to ta.kTk,

and then finding the minimal T of the remaining jobs by max
scheduling them according to due-date (theorem 4.2.2.B.),

multiplying this by the smallest remaining weight a.i.

The costs C incurred so far are stored with any subset and

calculab3d by adding a.k max ((t pi) - dk,0) to the previously
s

incurred cost. The algorithm is of the "newest active node"

type, thi= subsets being stored away, however, in order of

decreasing lower bounds. Computer experience is quite good,

a 30 I 1 I I :!::a.kTk problem being solved in about 4 seconds on an

IBM 360/155. Still, sharper bounds and more extensive theoretical

elimination may well speed up things considerably.

Generally we may conclude that the non-linearity of Tk causes

serious theoretical complications in the nil! IT and nlll lta.kTk

*) This uses in fact a weaker form of theorem 4.2.2.D. (ii).

80

problems, and that the situation with regards to solutions is

still far from satisfactory.

4.2.2.1. Precedence constraints

Suppose now there are precedence constraints among the jobs.

The nil! (J6) lTmax problem can be dealt with by a theorem of
Lawler and Moore [59]. However, Lawler has since then given a

quicker and more general method for these and other problems [60].
Suppose a monotone non-decreasing function ck(t) is given,
describing the loss incurred if Jk finishes at time t.

Theorem 4.2.2.B: let S be the subset of jobs not required to
n

precede any others, and T = r pk. If K is such that
k=l

then there exists a sequence minimizing the maximum loss, where

JK is last.

Proof: if JK is not last, putting it last can never increase

the maximum loss.

This theorem solves our problem: for nlll (J6) IL , take max
ck(t) = t - dk: for nlll (J6) ITmax' take ck(t) = max (t - ¾,O).

In view of _the complicatedness of the nlll IT and nlll lrakTk
problems, it is not surprising that no work has been done on

these problems if there are precedence constraints among the

jobs as well.

81

4.2.2.2. Number of tardy jobs

We end this section by considering a slightly different problem:

minimizing the number of tardy jobs. Moore [69] gave an

algorithm to solve this problem, which was simplified by

Hodgson to read as follows:

(1) sequence the jobs according to increasing due-dates,

giving a sequence i 1 , • • • I
i .
n'

(2) if all jobs are on time, we have finished;

(3) if J. is the first late job, remove J. , where
lk li

p. = max (p1. ,
1 i 1

... , p.) , to be processed later. Repeat (2)
1 i-l

and (3) on the remaining sequence, until no remaining jobs are

late anymore.

Moore's proof of the correctness of the algorithm,was fairly

difficult and has been simplified later by Sturm [97].

We can also ai:,ply the functional equation of 3.4. here, ordering

the jobs according to due-date and specifying:

t ~ d.
J

t > d.
J

= 0

*) Or a.k, if the weighted number of tardy jobs is to be

minimized.

82

For the sake of completeness, we just remark that, in the

nil case, Fmax being a constant, the mean number of jobs in

the shop is directly propertional to F, and is therefore
minimized by SPT scheduling.

As announced already in 2.3.4., we shall treat two cases of

interest here. The most well known one is surely the nil problem,

whereby it takes c .. time units if job j is followed by job i.
l.J

Minimizing total change-over time is then equivalent to finding

the sequence i 1 , ••. , in that minimizes

n-1
r c ..

k=l 1 k 1 k+l

This problem will be readily recognized as the famous Travelling

Salesman Problem, where a salesman has to visit n cities with

distances c .. and wants to minimize the distance he travels.
l.J

Bellmore and Nemhauser [14], amongst others, give a survey

of known solution methods;, no generally efficient algorithm

is known, but certain branch-and-bound algorithms can solve

problems up to 80 cities. A special case, originating as a
A.

J
machine scheduling problem, where cij = ~- f(x)dx if Aj ~ Bi

l. Bi
and c .. = l

l. J A.
g(x)dx if Bi> Aj, with <¾,Bk) given constants

J
and f(x) + g(x)

Goinory [40 1 •

~ o for all x, has been solved by Gilmore and

In the second place we want to draw attention to a problem,

that strictly speaking does not fall within our definition

of the machine scheduling problem. The problem, considered

83

by Glass,ey [41] , consists of finding the minimum number of

change-overs needed to have produced dk(t) units of product k

by time t (t = 1, •.• , T) where the machine produces one unit

of product per time unit. The problem not quite belonging in

our class, we shall not pay much attention to it here, but only

formulat,e the elegant result, obtained by graph-theoretical

and dynamic programming arguments. Denoting (d1 (T), ... , dn(T))

asp*, we generally construct the set p! by including all
o i i 1 i-l i-1 *

elements (x1 , ... , xn) where for some (x1 , ... , xn) E pi-l

i i-1 i i-1
and for some k: x 1 = x 1 , ... , xk-l = xk-l,

i i-1 i i-1 i i-1
xk+l = xk+l' ... , xn = xn and xk = xk - y, where y is

i-1 maximal in the sense that xk - y - 1 would be smaller than:

d [T - (d (T) - xi-l) -
k 1 1

(the level of demand at that time).

In this sense (x~,
i-1 i-1

(xl , ... , xn)

• • • I xi) is one of the best predecessors of n

Proceeding like this and eliminating obviously non-optimal

points in p~, the optimum value is the minimal i for which
. 1 * (0, 0, •.. , 0) E pi, as can be easily understood.

4.2.5. MultiEle_criteria

We shall not delve into general methods for combining various

criteria (see Ashour [2 for examples), but shall only treat

two problems, where some criterium is minimized, subject to

the condition that no job may be finished after its due-date.

84

The oldest of the two, solved by Smith [93], is the

nlll lrakFk,Tmax = 0 problem.

Theorem 4.2.5.A: if there is a sequence whereby Tmax = o*>,
·then JK is in last position in the solution to the

nlll lrakFk,Tmax = 0 problem if:

n
(1) dk ~ E pk (i.e., TK = 0);

k=l

(2) PK I aK ~ PL / aL for all L

(i.e., JK has the greatest pK / aK ratio

could be last) •

n

n
with dL ~ E pk

k=l
of all jobs that

Proof: if dL < E pk' then putting JL last will make TL> o.
n k=l

If dL ~ E pk, then putting it last would increase EakFk
k=l

(theorem 4.2.1.B.). (Having put JK last, we repeat the procedure

for the other (n-1) jobs).

Bratley, Florian and Robillard [17] solve two problems: the

nlll (16) IFmax'Tmax = 0 and nlll IFmax'Tmax = O.

The first one, where job splitting is allowed, is fairly simple.

Let xij be a O - 1 variable, xij = 1 indicating that job j is
processed at time i. Then we have:

n
E x ..

j=l 1J

d.
J

E x ..
i=r. 1J

J

~ 1

= p.
J

(j = 1, ..• , n)

(at most one
job at a time)

•> If sequencing according to increasing dk does not accomplish
this, no sequence will (theorem 4.2.2.B.)!

=

= X = 0 max {dj}, j
(j = 1, ... , n).

A feasible solution can be found by a labelling algorithm

similar to that for the assignment problem. By checking if
n
r x .. = 1 for all i, one can find out if there is any point

j=l 1J
in looking for a better solution.

The second problem, where job splitting is not allowed, is

solved by a branch-and-bound algorithm.

85

We createi initial subsets by putting either J 1 , J 2 , .•. or Jn

first in the sequence. No direct bound is calculated; we branch

from every subset, and split them up by placing successively

all jobs that are still unscheduled, in the next position.

There are, however, several exclusion mechanisms:

Lemma 4.2:.5.A.: if we schedule a job in a particular position

and it is: then late, we may disregard the entire subset.

Lemma 4. 2:. 5. B.: if we schedule J., where r. is larger than the
J J

sum of processing times of all scheduled jobs, the sequence

is so far optimal and we need not consider reordering the jobs

scheduled so far.

Lemma 4.2:.5.C.: if we have a feasible solution where: (i) some

jobs JK starts at rK; (ii) all the following jobs are processed

without delay; (iii) all their rj's are larger than rK, then

this solution is optimal.

Lemma 4.2:.5.D.: if a feasible solution with F =tis not max
optimal, we may set all dj's equal to (t-1).

Computer experience with this algorithm is good: 66% of a set

of 100 job problems is solved within 18 seconds (100 ! ~ 10 158)

by a CDC 6400 computer.

86

4.2.6. MultiEle_identical_Earallel_machines

To end this section on the one-machine problem, we pay attention

to the situation logically belonging here, where a job can be

processed on any of m identical machines. Simultaneous processing

is impossible. The machines are identical in the sense that pk

is independemt of the machine on which Jk is processed.

Here, preemption may very well speed up things considerably, so

every time we have to consider whether it will be allowed or not.

It is easy to see that

F = max max

(McNaughton [65]), if preemption is allowed. If not, the optimal

schedule may be difficult to find; no satisfactory solution exist

for this problem. Baker ([5]) reports a heuristic procedure

that behaves fairly well.

Fortunately,. for the F and EakFk criteria, McNaughton [65] has

proved that there exists an optimal schedule without splits.

The nlm I IF problem is now trivially solved: if one machine R,
p

the job sequence is JR, ' • • • I JR, ' then
1 n R.

m n R.
F 1 E E (n R. k + 1) p R, = -n. R.=l k=l k

Applying the: results used in theorem 4. 2. l .A., we see that we

can order all jobs by increasing pk and schedule the first

m jobs first on M1 , ... , Mm, the next m jobs second on

M1 , ... , Mm, etc ..

87

No such satisfactory solution exists for the nlmpl IEakFk*)

problem, however. Clearly, on each machine jobs have to be

ordered by increasing pk/ak ratio, but it is not at all obvious

how to divide the jobs over the machines. Apart from two

heuristic methods reported by Baker ([5]) and a generalisation

of Lawler's LP method (reported in 4.2.2.), leading to a

transportation problem if all processing times are equal, the

best we can do is to use dynamic programming (Rothkopf [85]).

First, we order the jobs according to decreasing pk/ak
ratio's, so that it is no restriction to assume that all

machines will process any subset of them in the inverse order.

We then define ~(t1 , .•• , tm) to be the minimal cost of

processing J 1 , ••• , Jk if m1 is not available before t 1 • Then:

where we start by evaluating c1 (t1 , ••• , tm) for all combinations

(t1 , ••• , tm) for which t 1 < t!+l (i = 1, ••• , m-1) and

No computing results are given, but the procedure is most likely

very time-consuming.

Where the tardiness criteria cause already so many difficulties

in the one-machine case, it is hardly surprising that form

parallel machines there are very few results indeed. Job splitting

may very well be profitable here, as demonstrated by the T
optimal schedule below.

*) Mp is to be read: m parallel machines.

**) Rothkopf treats a slightly more general case than we do.

88

1 2
I

2 3
I I

M2 ,1------1------
d1 = d = d 2 3

Again we can use Lawler's transportation problem-formulation if

all pk are equal. If this is not the case, we are left with

Root's algorithm [84] that solves the n I mp I IT problem where all
deadlines are equal and job-splitting is not allowed. Root attacks

attacks this problem by theoretical arguments. His proofs are

again very'involved; basically his method boils down to the

following. Ordering the jobs first by increasing processing

times, Root proves that there is an optimal sequence whereby

J 1 , ••• , Jq are all started before the common due-dated, and

Jq+l' ••• , Jn are processed by scheduling Jq+l' •.• , Jq+l+m

next on M1 , ••• , Mm, followed by Jq+l+m+l' ••• , Jq+l+2m on
M1 , .•• , Mm, until every job has been scheduled. The only

problem then is to determine q, and the schedule J 1 , ••• , Jq.

As to q, the only result given is that the number of feasible

values for q is smaller than m. For every feasible value of q,

we have to find the schedu~e for J 1 , ••• , Jq that minimizes
m
r Tt, where Tt is the tardiness of the (maximally one)

i=l
job that finishes late on Mi. No algorithm is given for this

procedure either. The lack of these details make it very

difficult to judge the computational value of Root's work.

We conclude that algorithms for the nlm0 1 ltakFk and the

nlmpl lrakTk problems are very much need~d and are likely

to be fairly complicated.

89

4.2.6.1. Precedence constraints

The only problem with precedence constraints that has been

satisfactorily attacked, is the nlmpl (J6} IFmax one, where job

splitting is not allowed and pk= 1 for all k. We then have Hu's

algorithm [51]: label all jobs without successors 1; then label

the other jobs ak where

ak = 1 + max {ajlJk directly-precedes Jj by the precedence

constraints}.

Now, if there are less than m scheduleable jobs, schedule them;

otherwise schedule them jobs with largest ak. Repeat until all

jobs are scheduled. Again we find here that the correctness of

this ~?tuitively obvious algorithm is very hard to prove.

Treating Jk with processing time pk as a series of pk jobs with

processing time 1, we can apply this algorithm to the more general

case too. A limited kind of preemption can then not be avoided.

If we allow preemption in general, only the case where m = 2 has

been solved by Muntz and Coffman [23] (reported by Baker [5]}.

Their algorithm boils down to splitting] into independent

(non-interfering} subsets, ordering these first and then

combining them; it is fairly complicated and we shall not repeat

it here, as no generalisation for larger m seems possible anyhow.

The general problem, either with or without preemption, remains

unsolved. Also no other criteria have been investigated here.

With regards to the nlm problems therefore, a lot of work p
remains to be done. The difficulty here consists chiefly of

assigning the jobs to a machine; at present, no generally

satisfactory rule for this procedure exists.

4.3. The two-machines problem (n!2}

We start this section by proving two theorems (Conway, Maxwell

and Miller [24]} that will drastically reduce the number of

potentially optimal solutions to some future problems.

90

Theorem 4.3.A: in solving nlm!Fl~(c1 , .•• , en) problems, where

~ is any regular measure, we only have to consider schedules

on which th,e same job order is prescribed on the first two

machines.

Proof: trivial.

Theorem 4.3.B: in solving nlmlFIF problems, we only have to max
consider schedules with the same job order on M1 and M2 , and

the same job order on Mm-land Mm.

Proof: interchanging jobs on Mm will not increase Fmax·

(Theorem 4.3.B.) is not true for any regular measure; look at

the F-optimal schedule below!).

2 1

Ml r=Jt

2 1

M2 t-1 0

1 2
DI

Several applications of these theorems will be given below.

This is the problem solved in the often-mentioned paper by

Johnson] . Because of theorem 4.3.A., we may restrict

ourselves to schedules prescribing the same order on M1 and M2 .

A Gan.tt chart could look as follows:

P11 P21 P31 P41
II II d

F
max

91

Theorem 4.3.1.A: the nj2jFjF problem is solved by the sequence max
... , i , where

n

< mi'n (p p)
l. I' . 2 •
k+l 1 k

n
Proof: it is trivial that we must minimize r X. over all

. 1 l J= j
sequences (i 1 , • • • I i) n (where X. is idle

l,
time on M2 between

J

the processing of J. and J.) , and that
l. l l.

n
r X. = max

j=l lj

= max

def
where Kk =

J- J

n n-1 n-1 n-2
(r p. 1 - r p. 2 , r p. - r p. 2 ,
j=l lj j=l lj j=l ijl j=l lj

(K .
n'

k k-1
r p. I - r p. 2·

j=l lj j=l lj

• • • I

Now, inb:rchanging ik and ik+l' changes Kk into Kk, Kk+l into

Kk+l and leaves the other Kk's unaffected.

The old sequence will be better if

Now, max (Kk, Kk+l) is given by (*), and:

max

max

k+l

(Kk' Kk+l) =

k-1 k-1
(. r Pi· . 1 + p. 1 - r p.
J=l J 1 k+l j=l 1 j 2

k+l
r p. -

. l 1.l J= J

k-1

k-1
r P· 2 - P·) =

j=l lj lk+l2

:E p. 1 -, 1 l,
J== J

r p. 2 , 1 l,
J= J

+ max

92

So, treatin9 max (Kk' Kk+l) likewise, (**) will be true if:

max (-p . 1 , -p . 2)
1 k+l 1 k

< max

leading easily to:

min < min

An example shows that theorem 4.3.1.A. is intuitively plausible.

-- 4 = 3 = 6 = 2

p == 5 12 = 5 = 4 = 1

The steps are:

(1) p 42 is minimal, so J 4 comes last;

cross off J 4**);

(2) now p 21 is minimal, J 2 comes first and can be

removed;

(3) p 11 is minimal now; J 1 comes before J 3 .

Solution:

2 1 3 4

M2 1----------•-----•----•:J-. ___ _
F = 9 max

*) Of course, we do apply theorem 3.6.A. here; formally we
would have to prove that this function g defines a transitive
relation.

**) Ties between pk and P.11, are resolved in favour of Jk.
1 2

93

A graphical interpretation of the algorithm is given in Conway,

Maxwell and Miller [24].

No comparably easy solution is known for the nl2IFIF problem,

although theorem 4.3.A. still is applicable. It is easy to see

that Ji should precede Ji if both p. 1 ~ pi 1 and p. 2 ~ p. 2 •
k t 1 k t 1 k 1 t

However, this does not order the jobs. Ignall and Schrage [52]

offer a "newest-active-node" branch-and-bound algorithm.

Branching is done by next scheduling any job that is not yet

scheduled. The bound is given by adding the flow times of jobs

already completed to max (S,T), where Sand Tare the sum of

remaining flow times under the respective assumptions that

p. 1 ~ p. 2 and p. 2 ~ p. 1 for all unscheduled jobs. The
ik ik ik ik

computer results are quite discouraging; if n = 9, a difficult

problem took 4 minutes on a CDC 1604. The number of computations

grows exponentially with n. However, no better algorithms are

known.

The nl2IGIF problem was solved in an ingenious way by max
Jackson [53], and surprisingly enough, approximately seven

years later in a less ingenious way by Szwarc [99]. Jackson's

solution is simply to divide all the jobs in four groups:

Gi contains the jobs that are only processed on Mi

(i=l,2);

G .. contains the jobs that are processed first on M~,
1J

then on M . (i = 1 , j = 2 ; i = 2 , j = 1) •
J

Now, sequence the jobs in G12 and G21 according to Johnson's

method, and choose the following order:

94

on M1 : jobs from Gl2 followed by

jobs from Gl followed by

jobs from G21;
on M2 : jobs from G21 followed by

jobs from G2 followed by

jobs,from Gl2°

This order is clearly optimal.

Mitten (68], Johnson (55], Szwarc [99] and Nabeshima (74]

have considered nl2IFIF problems wherein some time lags max
between operations on M1 and M2 have been prescribed.

In Mitten's paper, constants tk (k = 1, ••• , n) are given.

The operation (Jk,M2) may start tk time-units after (Jk,M1) has

started (if M2 is free then); however, it must not be finished

sooner than tk time-units after the finishing time of (Jk,M1).

Overlapping is therefore allowed.

Denoting starting-times of (Jk ,M1) (k = 1, •.• , n; t = 1, 2)

by tkt' and restricting ou+selves to "passing not permitted",

we see:

tk2 = max (tk-1,2 + pk-1,2' tkl + tk, tkl + pkl + tk - pk2).

n
Just as in 4.3.1., we have to minimize I: x.

k=l 1 k
the total i~le time

on M23 over all sequences il, • • • I i . n

Now define: yk = tk - min (pkl'pk2). Following Johnson (55 1,
we may interpret yk as the (possibly negative and possibly

95

overlapping) processing times on Jk by an intermediate machine.

So the nl2IP,(20) IFmax problem is equivalent to a nl3IF1Fmax
problem, which, because of theorems 4.3.A. and 4.3.B. is again

equivalent to a nl3IP1Fmax problem. However, it is a very

special nl3IP1Fmax problem. In a general nl3IF1Fmax problem
we would find for a given sequence i 1 , .•• , in:

U V n *)
max (E pi l + E yk + E pi 2)

l~u~v~n k=l k k=u k=v k

In this case, however, the yk may overlap (there are "no

bottlenecks") and so we have here:

u n
F = max max { E o. 1 + y + E pi 2 }

l~u~n k=l. 1 k . u k=u k

which implies that we can treat this a special case of the

nl2IF1Fmax case solved by Johnson with processing times:

(for details on this, see 4.3.).

Sequencing J 1 , ••• , Jn according to Johnson's method, using ~he

processing times above, leads to the optimal sequence. By

interpreting the problem in this way, we have avoided Mitten's

long and complicated proof, that leads, of course, to the same

algorithm.

Szwarc [99] and Nabeshima [74] consider slightly other forms

of this problem. Szwarc.only introduces start-lags~ - pkl so

that, in the notation used above:

tkl = t + p k-1,1 k-1,1

*) See 4.4.

96

Szwarc proves that the optimal order is identical on both

machines and can be found by splitting the jobs in two subsets

Sand S' where:

Jobs in S precede jobs in S'. S itself is ordered by increasing

values of max (pkl' ~) and S' is ordered by decreasing values

of max (pk2 ,~ - zk). Szwarc's proof is very involved. However,

we may again regard max(~ - pkl' 0) as the processing time
of Jk on a non-bottleneck intermediate machine. Therefore, we

can apply Johnson's algorithm again, putting:

Nabeshima deals with the situation that (Jk,M1) is split in

two consecutive parts with processing times p1kl and p 2kl"
Moreover, (J1 ,M2) may not be started before tkl + tk, and may

not be finished before tkl + p 1kl + ~-

So we have here

1 2
= tk-1,1 + p k-1,1 + p k-1,2

Again avoiding Nabeshima's complicated proof, we note that this

is equivalent to a special nl3IF1Fmax problem, where yk (the

processing time on the non-bottleneck intermediate machine)

is given by:

max

1 2 2
where pkl = p kl+ p kl and m'k = ~ - pkl

If we drop the assumption that the two machines process the

jobs in the same order, things get much more complicated.

Johnson [55] gives a method by which one can reduce the set

of feasible solutions to potentially optimal ones only.

However, a good algorithm remains to be found.

We finish this section of miscellaneous nl2 problems by

mentioning the work of Sahney [88 1 on a nl2l (M3) IF problem,

where jobs J 1 , ••• , JK have to be processed by M1 only,

97

JK+l' ..• , Jn have to be processed by M2 , and there is a time

~ij needed to move the one available machine operator from

machine i to machine j (i,j = 1,2; if j). A few theorems are

obvious then: ordering the jobs by increasing pk's on each

machine, we can at any point where J 1 , ... ,Ji-land

JK+l' ..• , JK+l+(j-l) have been processed so far, stick to M1
if pi< PK+l+j and switch to M2 if pi> PK+l+j + ~12 + ~21 •
Sahney derives a few more complicated theorems and suggests

a branch-and-bound procedure to choose between the remaining

feasible solutions.

We shall not go into details here any further, but wish to

point out that Sahney's work is one of the few theoretical

approaches that explicitly considers labour as a limiting

factor.

98

4.4. The three-machines problem {n!3)

Theoretical results for the case that m = 3 center around the

nl3IF1Fmax problem. Here again we can apply theorem 4.3.B. and

.conclude that the job order on each machine will be identical

in an optimal sequence.

A Gantt chart of any sequence i 1 , ••• , in will look as follows

{the meaning of X. and Y. here are obvious).
1 k 1 k

Now, we want to minimize

We have:

n
E Y. over all sequences i 1 ,

j=l l.j

n n n-1 n-1

. . . '

Y. = max { E p. 2 + EX. - E p. 3 - E Y. , o)
1 n j=l 1 j j=l 1 j j=l 1 j j=l 1 j

so:

n n n n-1 n-1
E Y. = max { E p. 2 + E X. - .E Pi.3' E y)

j=l l. . . 1 l.. j=l l. . j=l ij J J= J J J=l J

n n n-1 n-1

i . n

n-1
= max { E p. 2 + E X. - E p. 3, E p. 2 + E X.

. 1 l. . j=l l. . j=l l.j ·-1 l.j j=l l. .
J= J J J- ' J

n-2
- E p. 3, • • • • I p. + X.)

j=l l.j 1.1 1.1

= max {Hv + K }
1,u,v,n u

V v-1 u u-1
where H = E p. 2 - .E Pi.3' K = E p. 1 - E p. 2

V u . 1 l. . j=l l.j j=l l.j J=l J J= J

n
Adding E p. 3 to both sides, we find:

j=l ij

n n U V n

99

F = max E p. 3 + E Y.
j=l ij j=l ij

= max { E p. l + _E Pi. 2 + _E Pi. 3 }
l~u~v~n j=l 1 j J=U J J=V J

a formulation we encountered in 4.3.4 ..

Exchanging ik and ik+l' we find that only Hk' Hk+l' Kk and Kk+l

are changed into Hk' Hk+l' Kk' Kk+l" The old sequence will be
better than the new one if

max {K })
u

Hk' + max {K1 , K K'}) .•• , k-1' k

We can draw no general conclusions now. However, if

which is the case when

min {pk1 }
k

then (*) reduces to:

leading easily to:

Comparison with theorem 4.3.1.A. shows, that in this case the

nl3IF1Fmax problem is a special case of the nl2IF1Fmax problem
with processing times:

so that Johnson's algorithm produces the optimal sequence.

Szwarc [99] tries to develop a comparable method, applicable

to more general cases. However, his proofs are incorrect,

as shown by Arthanari and Mukhopadhyay [1]. These authors

also give solutions to two more special

In this

so:

where

(1)

case,

max
l~u~v

n
r Y.

j=l ij

max {pkl} ~ min
k k

we have:

{K} = Kl = p. 1 u 11

V v-1
I = r p. 2 - r p.

V j=l ij j=2 ij3

{pk2}

cases:

For i 1 = 1, ... , n, we can find min { max {Iv}} by Johnson's
2~v~n

algorithm, and thereby solve this problem.

(2) max
k

~ min
k

101

In this case, max {H} = H; this problem is then again solved
V V n

by solving n nl2IF1Fmax problems.

Apart from the integer programming formulation by Wagner [102],

given in 3.3., there have been several attempts to solve the

nl3IFIF problem by branch-and-bound methods. Ignall and max
Schrage [52] use a "frontier search" algorithm, where branching

is done by successively scheduling next all the jobs that are

yet unscheduled. A lower bound LB is calculated as follows.

Let T1 , T2 , T3 be finishing times of the set ~s of scheduled

jobs on M1 , M2 , M3 , "::Ts= J- ~s·

Tl + I: pkl + min {pk2 + pk3}
~s ~ s

LB = max T2 + I: pk2 + min {pk3}
"J ~s s

T3 + I: pk3
-::Ts

This lower bound is not very sophisticated and computing results

are not very impressive, although computation time is reduced

by applying a simple dominance criterium whereby some nodes can

be eliminated directly.

A similar method has been developed by Lomnicki [63] and

subsequently been extended by Brown and Lomnicki [19] to cover

the nlmlPIF problem. Their bound is the following one. max
Suppose J. , ••. , J. have been scheduled so far, and J. is

11 ik ik
finished· on M1 at Tki" Then define:

n m
gn = Tkn + I: p. n + min { I: Pi· r}
~ ~ j=k+l" 1 j~ k+l~j~n r=R,+l j

Then g = min {g1 } gives a lower bound at every node. Lower
l,E::R,~m

bounds for the first n nodes can be developed likewise. The

bounds are identical to those of Ignall and Schrage if m = 3.

MATHEMATISCH
AMSTER DA"

102

A few other branch-and-bound methods for the nlmlPIF problem, max
that could be applied here, are mentioned by Bakshi and Arora

[6]; we will not go into them here any more.

4.5. The two-jobs problem (2!m)

The highly artificial 2lmlFIF and 2lmlGIF problems are max max
being considered here, because there are two interesting

approaches to it that might find wider application. We shall

follow in this section the convention by which Mt means that

(J 1 , MR,) < (J2 , MR,) and MR, means that (J2 , MR,) < (J1 , M1).

In the first place, we note that infeasible sequence here is

characterized by containing MR.Mt'' while in the technological

machine ordering we find:

(l,t') (l,t)

Furthermore, it is easy here to distinguish sequences that can

never be optimal. We have the following rule (developed.by

Akers and Friedman):

if the following orders are prescribed:

103

then disregard any sequence containing M1M1 ,M1 ".

From this rule more specific rules (e_ight in all) may be derived

by interchanging J 1 and J 2 , and by disregarding M1 , M1 " or

both. In this (non-numerical) way, one can delimit the search

for an optimum to a smaller set of feasible sequences.

Hardgrave and Nemhauser have developed a graphical technique

to solve the 2lmlG1Fmax problem. We shall illustrate this

technique by a 2l4IG1Fmax example. Suppose the technologically
prescribed machine orderings are

Processing times are:

= 5 = 7 = 4

We can depict this information in the diagram below, taking one

axe for·each job.

104

(2, 4)

(2, 3)

(2, 2)
, , ,

N 8 ..p;;...,_/--.,..-;•· ~
(2 , 1) < _ -' :::>;

... ~-,·' .,/,,,_.,..,,.,..,.,.,,,
✓- --·- -

N (1,1) 7

,

/. ,,
./ .

, -'i ,., ..

,, , ,

(1, 3)

N3 Nl destination

(1, 2) (1, 4)

The lines represent a feasible schedule: they run from (0,0)

to (Ep1 Ep2), and avoids the hatched areas (because that
k, R.

would imply a machine ran on two jobs simultaneously). Fmax is

equal to the sum of vertical (horizontal) segments plus

Epkl (Epk2) •

In principle, one would have to draw all 2m lines and decide

which one has the smallest sum of vertical segments. However,

one can avoid some schedules by drawing two from the origin

and two from the destination that favour consistently job 1 or

job 2. The dotted lime for instance favours job 1 consistently.

All potentially optimal schedules then have to lie in the area,

formed by the intersection of these four schedules. This ·area

has been shaded in the drawing. We see then that the schedule

marked by·-· is optimal with Fmax = 26.

105

Szwarc [99] evaluates the lengths of all paths in the shaded

area by dynamic programming. He considers the origin, the

destination and the north-west and south-east corner of each

rectangle as nodes Nj (j = 1, ... , J). Nodes are ordered

lexicographically by decreasing (x, y) coordinates. Define the

(vertical) distance between N. and N. (where i > j):
1 J

Now,

d (N . , N .) = max ((y . - y .) + (X • - X .) , 0) •
1 J J 1 J 1

define TI(N.) to be the set of N. (j >
1 J

to N. that does not contain any other
1

= {N4 , N5 , N6 }) and define

min (d (Ni, N.) + f (N.)) .
TI(Ni) J J

i) with a feasible

N. (e.g.,
J

Taking f(N 1) = o (N 1 is the destination), f(NJ) will give the

minimum value of F max

Szwar~ suggests that it may sometimes be possible to solve a

nlmlGIF problem by first solving (n2) 2lmlGIF problems max max
and combining the solutions. This method obviously cannot

guarantee a feasible solution.

106

5. The qeneral flow shop and job shop problem

5 .1. Introduction

If we now turn finally to the general nlmlp, nlm!F and nlm!G

problems, the lack of theoretical and practical results becomes

particularly obvious. To start with, the only criterium considered

here is a minimizing F . In the nlmlPIF problem, where we max max
only have to consider n! permutation schedules, there are a

few theoretical results that reduce the search for the optimum

solution. With regards to the nlmlFIF problem the common max
machine order for all jobs does not give much extra information

at all, except for theorems 4.3.A. and 4.3.B •. So one might as

well study the nlmlGIFmax problem, which still remains the most

difficult of them all. Practically no theoretical progress has

been made here, but some sophisticated branch-and-bound methods

have been developed. However, it looks as though even they

cannot solve problems of any appreciable size. If one considers

moreover the seeming unrealisticness of the nlm1GIF problem · max
in general, things look bleak indeed. It is pretty obvious that

present combinatorial methods are not powerful enough to solve

these very large problems; the combinatorial proofs encountered

so far in simpler problems are already very complicated.

Altogether it is not at all surprising, as mentioned before,

that known applications of scheduling theory have mostly been

heuristic ones. Below, we shall review the work done so far

(as far as this has not been mentioned earlier in chapters 3

and 4), and.hopefully await better times.

5.2. The nlmlPIFmax problem

The restriction that "passing is not permitted" reduces the

search for an optimum ton! sequences only. The restriction

itself is not very realistic; however, nlmlPIFmax solutions

107

have some heuristic value as well if one regards them as

approximations to given nlmlFIFmax problems. As we shall see
below, an optimal solution to the latter problem may well be

one where "passing" is necessary, but a reasonable solution is

better than no solution at all.

Having already mentioned Wagner's integer programming approach

[102] and the branch-and-bound method of Brown and Lomnicki [19],

we want to pay attention now to theoretical results obtained

by Szwarc [100]. These methods allow a sizeable reduction of

the search for an optimal nlmlPIFmax solution.

By definition, there are only n! different schedules to consider,

each one characterized by a permutation of (1, ••• , n). This is

the situation in which combinatorial-analytical methods might

indeed be used profitably. The general method to use is familiar

by now: eliminate as many sequences as possible and search

sensibly among the remaining ones.

What we want to do essentially in the nlmlPIFmax situation is
to find some criterium which, if it holds, allows one to

eliminate a set of sequences that can never be optimal (or,

weaker: to eliminate a ~et of sequences so that the remaining

set contains at least one optimal solution).

All criteria mentioned in Szwarc's article have the same form:

if a certain condition C(a, Ja' Jb) holds with regard to a

given sequence of jobs a and jobs Ja and Jb' then we can eliminate

all sequences beginning with aJb.

Of course, we have to check if there is at least one optimal

sequence remaining after the elimination. A way to do this is

given by the following criterium.

108

Suppose TI' and TI" are sequences satisfying: TI' n TI"=¢,

(TI' u TI") n (crJaJb) = ¢, TI' u TI" u (crJaJb) = {J1 , ... , Jn}'~) •

Then if C(cr, Ja, Jb) implies:

(where t(TI,1) is the finishing date of a given sequence TI on M1),

then we can be since that there is an optimal sequence not

starting with crJb (because we would not increase F by moving max
Ja between cr and Jb).

Now Szwarc mentions five of these elimination criteria, four

of which were known already. First he defines:

The five criteria now read: eliminate all sequences beginning

with crJb if:

(1) t(crJaJb, 1) ~ t(crJbJa, 1)
(due to Dudek and Teuton [27]);

(2)

t(crJa, 1-1) ~ t(crJb, 1-1)

(due to Smith and Dudek [95]);

(3) /J.1 ~ Pa1
(due to Bag,ga and Chakravarti [4]) ;

(4)

(due to Szwarc) ;

(5) /J.1-1 ~ Pal
(due to Smith and Dudek [94]).

(1 = 2 , ..• , m)

(1 = 2 , ••. , m)

(1 = 2 , ••• , m)

(1 = 2 , . , • , m)

(1 = 2, ... , m)

*) In this context we regard sequences as sets by forgetting
about precedence relations.

109

First, we want to check that Szwarc's criterium is really a

valid one. To get the flavour of the type of reasoning needed

here, we shall follow the proof that Szwarc's criterium (4)

is valid in the sense that if it holds, (*) must also be true.

We need two fairly general lemma's:

Lemma 5.2.A.: if (4) holds, then, for any sequence TT such that

an TT=¢, Ja $ TT, Jb $ TT:

Proof: induction on 1 and p (the number of elements in TT).

Trivial for 1 = 1 and p = 1.

Now: 1 - 1 ~ 1 (p = 1, TT= JS)

t(crJ JbJ , 1) - t(crJbJ , 1) = a s s

max (t(crJ JbJ , 1-1), t(crJ Jb, 1)) + p n
a s a sN

max (t(crJ JbJ, 1-1) - t(crJbJ , 1-1), a s s

(the two last steps being justified by the induction step and

(4)) •

*) max (A,B) - max (C,D) ~ max (A-C,B-D).

110

We can now repeat the proof for any p, if we assume the case

p - 1 has been proved.

Lemma 5.2.B.: let E and E' be different permutations of the

same set of jobs, and TT any permutataon, such that En TT=¢.

Then:

t(E,~~) < t(E' ,£) => t(ETT,£) < t(E 1 TT 1 £)

Proof: the proof is by induction and based again on

t (EJ , £) = max (t (EJ , £-1) , t (E, £)) + p n s s SN

Now, we can prove that (4) implies (*): if (4) holds, then by

lemma 5 . 2 . A. :

Lemma 5.2.B. (with E = crJaJbTT', E' = crJb1r'Ja' TT= TT 11
, £ = m)

now gives (*) immediately.

So we know (4) is a valid criterium. What about the other ones?

(1) is known to be false; Karush [56] already provided a

counter example. Szwarc himself has given in an earlier article

a counter example to (3). He now gives a counter example·

to show that application of criterium (5) at le~st does not

imply (*). So we are left with (2) and (4). By a complicated

proof similar to the one above Szwarc now shows that (2) implies

(4); therefore (2) also is a valid criterium. Nevertheless (4)

111

is a stronger one, because any sequence eliminated by (2) could

have been eliminated by (4), but not vice versa!

We now give a small example to illustrate the use of Szwarc's

criterium.

Suppose n = 3 and m = 3. Let:

P11 = 1 P12 = 2 P13 = 3

P21 = 2 P22 = 1 P23 = 2

P31 = 1 P32 = 3 P33 = 3

(1) Taking a = ¢ in (4) , we see that we have:

6 1 =Pal~ 62 ~ .•. ~ 6i and because 6i ~ Pai= Pal~ Pai
(i = 2, ••• , m). So in the example J 1 and J 3 could play the

role of Ja. First, take Ja = J 1 , Jb = J 2 (a is still¢).

We have to check:

Draw up two Gantt charts

1 2
pc:,

1 2
I I

1
J

2
lc:J

2 p 61

2
D 62

2

63

= 1

= 1

= 3

112

Both inequalities hold. J 2 cannot be first.

Now take Ja = J 1 and Jb = J 3 •

1 3 3 po p

1 3 3
n i

1 3 3

• i

ti 1 = 1

ti2 = 2

ti3 = 2

Again the inequalities hold. So J 3 cannot be first too, and J 1
must be first.

Now we try to eliminate jobs from the last position, by filling

up a schedule back to front. For job Ja it then has to be true

that Pam~ Pak (k = 1, ••• , m-1). There is no job satisfying

those constraints.

(2) We know J 1 must be first. So we take cr = J 1 • We try

J 3 first as Ja' and J 2 as Jb.

1 3 2 1 2
p:7C7 pc::7 til = 1

1 3 2 1 2
d ID g

• ti2 = 3

1 3 2 1 2
H IC:J I ti3 = 3

113

Again we find: 81 ~ 82 ~ p 32 = 3 and 82 ~ 83 ~ p 33 = 3. So we

can eliminate a sequence, starting with (1,2), which leaves

only (1,3,2) as the optimal sequence with Fmax = 11.

The unfortunate thing is that Szwarc neither gives an algorithm

based on this criterium nor any computing experience with it.

Claiming he does this "intentionally", one wonders about the

goal he is trying to attain here. Still, it should not be too

difficult to devise a branch-and-bound method to search the

best among the remaining sequences. Moreover, Szwarc himself

hints that it may be possible to find even sharper elimination

criteria.

Having already mentioned the existence of several branch-and

bound methods to solve the nlmlPIFmax problem (see Bakshi and
Arora [6]), our discussion would have to end here, were it

not that under very special circumstances a nlmlFIF problem max
degenerates into a nlmlPIF problem. We are referring to the max
case in which no intermediate storage is allowed (this implies

(J4) is no longer valid), so that all operations have to be

processed directly after each other.

This problem has been-attacked by Wismer [103) and by Reddi

and Ramamoorthy [82] practically simultaneously. Although

Wismer is rather vague on this point, his method also depends

on the fact that each machine processes all jobs in the same

order. (A sequence like the one below would not be allowed,

1 2
i

2 1
c:::d I

2 1

114

although all operations are performed without delay). Reddy and

Ramamoorthy deal with a F and therefore P situation straight from

the beginning.

Now, it is obvious that the minimum time between initiation of

Jk and the initiation of J 1 is a function c of k and t only.

It is not difficult to .derive an exact formulation for this

minimum time, but the easiest way to conceive of this function

is to picture Gantt charts for Jk and J 1 , and, fixing the one

for Jk, to move the one for J 1 as far to the left as possible

until two operations "touch" each other.

Jk Jt

I
I Jk Jt
I

I ' I 1
I Jk • Jt
'

I

c (k, t)

If we introduce a job J 0 with

c(O, k) = 0 (k = 1, • • • I m)

m
c(k, 0) = r pk. (k = 1, • • • I m)

j=l J

we see that the minimization of Fmax is equal to the minimization

of

m
r c(i., i.+1) + c(i, i 0)

j=O J J .. m

115

over all permutations (i0 , ••• , im) of (0, ••• , m). This is

easily recognized as another example of the Travelling Salesman

Problem.

Examples of a process where intermediate storage would indeed

not be allowable can be found by looking at steel mills or at

computers processing a set of jobs.

5.3. The n!m!F!Fmax problem

We now turn to the general flow shop problem. Generally speaking

all (n!)m possible sequences are feasible (i.e. compatible with

the given machine ordering per job) in this situation, as is

easy to prove. However, theorem 4.3.B. permits elimination of

those sequences with different orderings on the first and second,

or (m-1) th and mth machine, leaving (n!)m- 2 to be evaluated

- a considerable number.

One might hope that the optimal sequence was one whereby jobs

did not pass each other. However, the example below for n = 4

shows that this is not the case; the depicted sequence is optimal

with respect to F max

2 1
Ml I ■ i

2 1
M

2 I 0

1 2

M3 I D

1 2

M4 I • n

116

It might be interesting to find out what percentage of random

nlm!FjFmax problems has a "non-passing" optimal solution.

No more specific theory for the general flow shop problem exists.

Apart from the special cases treated in chapter 4, it is just

as difficult as the general job shop problem to which we turn

now.

5.4. The nlmlGIFmax problem

There is little doubt that we have now arrived at the most

formidable problem of them all. As Conway, Maxwell and Miller

[24] put it discouragingly: "Many proficient people have

considered this problem, and all have come away essentially

empty-handed. Since this frustration is not reported in the

literature, the problem continues to attrack investigations,

who just cannot believe that a problem so simply structured

can be so difficult, until they have tried it."

Throughout the report, methods to attach this problem have been

mentioned. We have noted the failure so far of integer programming

methods and the lack of any combinatorial-analytical results.

Also we have introduced the concepts of active and non-delay

schedules; though we can easily generate all active schedules

(e.g. by the algorithm of Giffler and Thompson [39]), this

class is still too large to be completely enumerated within

reasonable time. There are mainly two things left to do. We

shall take a look at methods to find infeasible solutions,

and we shall review attempts to solve this problem by branch

and-bound methods. Throughout this section we rely rather

heavily on the disjunctive-graph model formulated in 2.1 ••

117

5.4.1. Elimination_of_infeasible_seguences

Unlike the flow shop problem, some solutions to the nlmlG

problem may be infeasible. Already (in 2.1.) we have seen that

these infeasible solutions correspond to cycles in a directed

graph.

To detect these we can use a simple algorithm, like the one

developed by Marimont (reported in [6]).

First we number all operations from 1 to nm, starting with

those of J 1 , etc.*). (We stick to this convention throughout

this section.) Then we construct a (nm x nm)-matrix of which

the i-j th entry is 1 if operation i directly precedes operation

j (by technological reasons or by the proposed solution), and 0

otherwise. Any operation with an empty row or column can be

scheduled and removed. If all operations can be removed, the

solution is feasible.

Example: Suppose we have a 2l2IGIF problem, corresponding - max
**) to the following disjunctive graph :

*) All methods in this section are also applicable if any job
Jk does not pass all machines or passes some machines twice.

**) See the footnote above.

118

One proposed solution might be:

0

*

4 5

The matrix is:

0 1 2 3 4 5 6

0 0 1 0 0 1 0 0

1 0 0 1 0 0 1 0

2 0 0 0 1 0 0 0

3 0 0 0 0 0 0 1

4 0 0 1 0 0 1 0

5 0 0 0 1 0 0 1

6 0 0 0 0 0 0 0

The solution is obviously feasible.

Baskshi and Arora ([6]) and Ashour ([2]) mention another

trivial technique to eliminate infeasible solutions, developed

by Nelson. We draw up a tree by starting with operation 0, and

branching to every node that directly follows the present one.

This process does not terminate if the solution is infeasible.

119

For our example, the tree would look like below.

This method is slightly more interesting than the previo~s one,

because, if we assign length p. to branch {i-j), the longest
1

branch in this tree will be equal to Fmax {this is again

equivalent to saying that Fmax is equal to the length of the

longest {the so-called critical) path in the graph).

Now this implies that, if the tree corresponding to some solution,

is contained in the tree corresponding to another one, the

latter solution can never be optimal.

For instance, suppose ~e have the following solution, where

one disjunctive arc has been changed to another direction:

1 2 3

0 *

The corresponding tree is:

120

and by comparing it to our former tree, we see that this solution

can never be optimal.

Now, here we have a non-numerical technique to detect potentially

optimal sequences. What is far more important, however, is the

following. We have now seen that, if in a disjunctive graph we

assign a direction to the disjunctive arcs in accordance with

some proposed solution, the maximum flow time of this solution

is equal to the longest {critical) path in the created directed

graph. {Any infeasible solution will lead to loops.)

This insight has lead to the best of the branch-and-bound

methods, that we shall now deal with.

5.4.2. Branch-and-bound_methods

In order to facilitate discussions, we first restate more

formally the disjunctive graph model.

The disjunctive graph G, corresponding to a given nlmlGIFmax

problem, is completely characterized by three sets,>,/', e andi:J

J'f'is the set of nodes of G, each node corresponding to an

operation. We index these nodes by first taking the n 1 operations

of J 1*) and number them in the given machine order 1, •.. , n 1 •

*) We may drop the assumption that n 1 = n, etc ..

121

Likewise, the n 2 operations of J 2 are numbered n 1+1, ••• , n 2 ,

etc •. Also included in cJ/' are two dummy operations O and*,

whose meaning will be clear later on. We call the set of the

first operations of J 1 , ••• , Jn a, and the set of the last

operations 8. Furthermore we designate by µ 1 all the operations

that are performed on machine M1 (t = 1, ••• , m).

{! is the set of all conjunctive arcs. These are ordinary

directed arcs that connect node k to node (k+l) (k = 1, ••• , n 1-1,

n 2 , ••• , n 2-1, n 3 , ••••.•• , nn-1), signifying that k directly

precedes (k+l) for technological reasons. Furthermore there are

n conjunctive arcs from Oto the nodes in a, and n conjunctive

arcs from 8 to*· To any of these arcs we assign a length pk'

corresponding to the duration of the operation that the arc is

branching from (take Po= 0).

oelis the set of disjunctive arcs. Any disjunctive arc can be

thought of as a pair of oppositely directed arcs, each with a

length assigned to it according to the rule above, that connect

all pairs of operations from different jobs in µ 1 (t = 1, .•• , m).

Below is the former example; job 1 consists of operations 1, 2, 3

with processing times 2, 3, 4; job 2 consists of operations 4, 5

with processing times 1, 6.

122

Now, by "resolving a disjunctive arc" we shall mean choosing

one directed arc and (temporarily) dropping the other. This

corresponds to assigning precedence to one of the two operations

on the machine under consideration. If we resolve a number of

disjunctive arcs, forming a subset D of ti:> , we shall speak of

a partial solution. Associated with any partial solution is a

set N cc>/', containing the nodes all of whose disjunctive arcs

have been settled. When evaluating any partial solution, we

will usually disregard any non-resolved disjunctive arcs. When

all disjunctive arcs have been resolved, we have a solution to

the problem,. that is feasible if the now-created directed graph

does not contain any loops. The value of Fmax for this particular

solution then corresponds to the length of the longest path in

this directed graph. A very efficient algorithm, devised by

Kelley, exists for calculation of this so-called critical path

CP. Basically it uses the formula

max {CP(j) + p.}
J

{
CP (k) =

CP(O) = 0

the maximum being taken over all nodes directly-preceding node

k, and the length of CP being given by CP(*).

Several algorithms either implicitly or explicitly depend on

the above model. We shall distinguish two main groups, and also

pay attention to Balas's algorithm ([8]), which is mainly of

theoretical interest.

The first group consists of the algorithms of Greenberg, Nemeti,

Charlton and Death, Nabeshima and Sussmann. In fact, Greenberg

([43]) was one of the first authors to apply branch-and-bound

techniques to the scheduling problem. Essentially, he first

disregards all disjunctive arcs and then adds them one by one

123

in an unspecified order, branching by resolving them either in

one or in the other direction. At each branch a lower bound is

given by the longest path in the graph constructed so far*).

Using a frontier search method, gradually the optimal solution

is built up.

Now this method obviously is not very efficient. There is just

no need to resolve all disjunctive arcs in this way, because

very often two operations on the same machine will not be

competing for time at all. Only for those operations that do

have this conflict, we need to settle the disjunctive arcs one

way or the other.

The above consideration has led to the practically equivalent

algorithms of Nemeti [77 1, Charlton and Death (21 1,
Sussmann (98] and Nabeshima [76]. Again we start by

disregarding all disjunctive arcs. Then, by calculating the

present earliest starting times tk of all operations by Kelley's

algorithm, we look if there is at present any conflict between

two operations on one machine (i.e., t. - tk < pk and tk - t. < p.
**) J J J for j,k E µi) • If not, we have a complete solution. Otherwise,

we select a conflict in a heuristic way (several recipes for

this are given) and branch by resolving the corresponding

disjunctive arc in one way or the other. Again, a lower bound

is given by the longest path in the graph constructed· so far.

Proceeding either by newest active node (Charlton and Death,

Sussmann) or frontier search (Nemeti), we arrive at the optimal

solution.

It is interesting to notice that no infeasible solutions are

ever generated this way, since any path existing from j to k

or vice versa prior to the resolution of the disjunctive arc

*) Infeasible solutions are quickly discovered by this value
becoming infinitely large.

**) tj is the starting date of operation j.

124

must have had a length of at least either pj or pk' in which

case there would be no conflict. However, the argument does not

apply any more if sequence-dependent set-up times are included

in the pk's. Nabeshima ([76]) gives a counter-example to show

this.

The above bound is improved by Charlton and Death in a later

article ([22]). For any partial solution with corresponding

sets D. c rJ:) and N c c>f' , they take the maximum of the longest

path and

max {'max {t. + p.} + E p.}
J J jE(f)/"-N) J R, :jENnµ R,

n µt

Nabeshima finally has stressed the potential usefulness of this

algorithm for other criteria; computation of the lower bounds

is not so simple then, however.

Although computing experience with some of the above algorithms

is not at all bad, the lower bounds are just not very sharp.

To see how they might be increased, we turn to the second

group where we find the work of Brooks and White, Schrage,

Florian, Trepan, McMahon, Bratley and Robillard.

Brooks and White ([18]) in the first branch-and-bound solution

to the scheduling problem essentially propose the following

algorithm. For each partial solution consider the set s0 of

scheduleable operations (i.e. the successors to N; in the first

step of the algorithm, take s0 = a). Now find operation kin

s0 so that

= min
jESO

{t. + p.}
J J

125

Suppose k is performed on Mi. We then have a conflict between

operation k and all other scheduleable operations on M1*). We

branch by successively scheduling first all operations in

s0 n µi. For each branch a lower bound is computed in the

following way. First we find the set~* of all machines that

perform at least one final operation {i.e. those machines Mi

for which µin S +~).Next we calculate the earliest finishing

time Ti on each machine Mi e.>(.* by disregarding all unresolved

disjunctive arcs except on Mi itself, where operations are

scheduled according to the FIFO principle {i.e. the operations

on Mi are performed in order of increasing earliest starting

times tk). The maximum of the earliest finishing times Ti over

all Mt E ~* then gives a lower bound for the particular branch

under· consideration.

The above formulation covers the rather vague terminology of

Brooks and White {mainly aimed at the nlmlFIF case) and also max
the work of Florian, Trepant and McMahon {[32 J). The latter

authors' algorithm is already superior to those of Schrage {[89]),

who uses a similar approach with less sharp bounds, and Balas

{[8 1), who will be treated later. However, the lower bounds

are not yet completely satisfactory. The restriction to the set

J(.* of machines that perform at least one final operation, has

been made essentially because we wanted to disregard everything

that happened to the jobs after they had passed the machines in
~*. h ""'- Obviously this can only be justified if we stick to mac ines

that are in the above sense "final", because otherwise the

method would lead to worthless bounds.

Nevertheless, we would like to extend the calculation of the

bound to the set J"f.. 0 .:> .M..-* of all machines that still have to

perform some unscheduled operations. What one could do then

{Florian and Sang, [33 J) is treat every machine Mt E ,M,0 as a

*) If k is the only one, just schedule k and go on.

126

"final" one, and calculate earliest finishing times Tt on each

Mt by again disregarding all unsettled disjunctive arcs and

FIFO-scheduling on Mt itself. Next we could calculate for each

Mt E c.M,,0:

where qk is the sum of the processing times of all operations

remaining for Jk after Mt. Then,

would give a lower bound for the branch in question.

This is still not very satisfying, for, given Mt E .J't0 , one

would rather use qk directly for scheduling the jobs on M1 •

instead of just using FIFO-scheduling and adding qk afterwards.

So, in fact, to calculate the lower bound, we have to solve a

number of OnE:! machine problems whereby jobs are available on Mt

at date tk*), take pk time-units to be processed and then have

"tails" qk remaining before they are finished~ the objective is

to minimize C , including the qk. Doing this for all machines max
Mt E .M..0 gives us a number of values for Cmax' the maximum of

which then provides the lower bound.

Now, obviously the usefulness of this lower bound heavily

depends on speedily finding the optimum sequence for all these

one machine problems. Bratley, Florian and Robillard ([17]) who

advocate this approach, have devised an implicit enumeration**)

*) Formerly called rk!

**) The formal difference between implicit enumeration and
branch-and-bound is that in the former we gradually try to
improve a. "good" starting solution (using bounds if necessary).

127

algorithm to solve this nil problem~), that looks very much like

their algorithm in 4.2.5.

A good initial solution is given by ordering the jobs Jk for

this nil problem according to the following rule: start with Jk

with minimal tk, at any time to choose of the available jobs Ji

with ti~ t the one with largest qi, break ties by largest di;

if no job is available again take the one with lowest tk.

(Several samples are solved below).

In gradually improving the starting solution, the lower bound

becomes important. Let S be the set of scheduled jobs. We have

a lower bound then:

where

and

max
s

= min
B p

where BP is the last block in the given schedule, blocks having

been defined previously in 4.2.5 .• It is easy to see that LB2
can be increased by 1 if the last job scheduled is not the one

with minimal qk over BP.

If in the initial solution Jc is the job with Cmax = ac +be+ qc,

then it is again easy to see that this solution is optimal if

*) We could regard this as a nl2IF,(J2),(M8) lcmax problem by

regarding qk as the processing time on a non-bottleneck M2 ;

this does not seem to lead anywhere.

128

Jc comes la.st in its block and has the smallest tail of its

block. However, if this is not the case, and if ac + b + q is
C C

not equal to LB for this solution, we have to find a better one

by branching and bounding*), aided by the following trivial

lemma's:

Lemma 5.4.2.A.: if job k could be finished, before job tis

available, schedule it.

Lemma 5.4.2.B.: if at any date t, tk < t for all

schedule the remaining jobs by decreasing qk.

Lemma 5.4.2.c.: any solution can only be improved

forward.

remaing k, then

by moving J
C

Lemma 5.4.2.D.: except in consequence of 5.4.2.C. it is no use

backtracking over an unavoidable gap (see lemma 4.2.5.B.).

To show the application of the algorithms in the second group,

let us calculate the bounds for one problem situation. The

disjunctive graph is given below (the lengths of the disjunctive

arcs have not been added, but are clear from the picture).

*) Bounds are recalculated if a gap appears in the schedule.

129

No jobs have been scheduled so far; N = {0}. So s0 = {1,4,7,11}.

Now t 4 + p 4 = 2 is minimal over s0 , so we restrict attention to

{1,4,7}. We have te create three branches.

First, we compute the bounds by the first method.~•= {M2 ,M4}.

(1) Schedule 1 first.

Then on M . t2 = 3 t9 = 7 tl2 = 4 2 .

Choose order 2 - 12 - 9; T2 = 10

On M4
. t = 5 t6 = 6 tlO = 9 . 3

Choose order 3 - 6 - 10; T = 13 4

Lower bound . max (10,13) = 13. .

(2) Schedule 4 first.

On M2 t2 = 5 t9 = 6 tl2 = 4

Choose order . 12 -. 2 - 9; T2 = 11

On M4 .
t3 = 7 . t6 = 3 tlO = 8

Choose order . 6 - 3 - 10; T4 = 13 .

Lower bound . max (10,13) = 13. .

(3) Schedule 7 first.

On M2 . . t2 = 6 t9 = 4 tl2 = 4

Choose order . 9 - 12 - 2; T2 = 11 .

On M4 t3 = 8 t6 = 6 tlO = 6

Choose order 10 - 6 - 3; T4 = 14

Lower bound max (10,14) = 14.

130

We note that calculating the lengths of the longest path in

the three cases above would have given us lower bounds of 11,

11 and 12 r,especti vely.

Now we extend .K* to all .11.o = {Ml ,M2 ,M3 ,M4}. The bounds then

become:

(l) Schedule l first.

Tl = 8 ql = min (6,3,5) = 3

T2 = 10 02 = min (0,2,4) = 0

T3 = 7 03 = min (2,4,3) = 2

T4 = 13 04 = min (0,0,0) = 0

Lower bound: max (11,10,9,13) = 13.

(2) Schedule 4 first.

Tl = 8 Ql = 3

T2 = 11 02 = 0

T3 = 6 03 = 2

T4 = 13 Q4 = 0

Lower bound: max (11,11,8,13) = 13.

(3) Schedule 7 first.

Tl = 8 C\ = 3

T2 = 11 Q2 = 0

T3 = 6 ci 3 = 2

T4 = 14 Q4 = 0

Lower bound: max (ll,11,8,14) = 14.

131

So this gives no increase here, mainly due to the small

processing times following M3.

Now we use the last method to calculate one new bound.

Schedule 1 first. Then we have:

on M1
. . tl = 0 P1 = 3 ql = 6

t4 = 3 P4 = 2 q4 = 3

t7 = 3 P7 = 3 q7 = 5

on M2 t2 = 3 P2 = 2 q2 = 4

t = 7 Pg = 2 q9 = 2 9

tl2 = 4 P12 = 3 ql2 = 0

on M3 ts = 5 P5 = 1 qs = 2

ta = 6 Pa = 1 qa = 4

tll = 0 P11 = 4 qll = 3

on M4 t3 = 5 P3 = 4 q3 = 0

t6 = 6 p6 = 2 q6 = 0

·t10 = 9 P10 = 2 qlO = 0

So now we have to solve these four one machine problems.

On Ml: initial solution: 1 . 0 - 3 - 9 *) .
7 . 3 - 6 - 11 .
4 6 - 8 - 11

*) Starting at 0, processed at 3, finished at 9.

132

This solution is optimal by the remark preceding lemma

5.4.2.A.; C = 11.
max

On M2 : initial solution: 2 : 3 - 5 - 9

12 : 5 - 7 - 7

9 : 7 - 9 - 11

The same remark does not apply.

LB 1 = max (9,11,7) = 11; LB2 = 3 + 7 + 0 = 10 •

. So LB= max (11,10) = 11 and the solution is optimal,

being equal to the lower bound; Cmax = 1 L

On M3: initial solution: 11 . 0 - 4 - 7 .
5 : 5 - 6 - 8

8 . 6 - 7 - 11 .
LB being 11, this solution is again

On M4 : initial solution: 3: 5 - 9 - 9

6 : 9 - 11 - 11

10 : 11 - 13 - 13

optimal; C max

Optimal by the same remark as on M1 ; C = 13. max

= 11.

So the bound on this branch is not further increased and remains

13.

The reader may well wonder if this complicated method ever leads

to significantly better solutions. There is, however, convincing

evidence for this. Attacking some old problems with this algorithm,

Bratley, Florian and Robillard found an initial solution for one

of them that was better than the best previously known one; the

finally best solution they found was significantly better. We

must strike a somber note nevertheless, because optimality has
\

not been proved for the two problems mentioned above (resp. 5/20

and 10/10 ones), leading the authors to express their belief

that "methods other than bounds must be used to further curtail

the tree search".

133

So we see the best here is by far not good enough yet, and this

counts even stronger for the implicit enumeration algorithm by

Balas [8] •

Balas' algorithm boils down to resolve the disjunctive arcs

heuristically and then gradually improve the so found feasible

solution by reversing one disjunctive arc at the time. It is

easy to see that the only way to decrease the length of the

critical path is by reversing those arcs that are in the present

critical path C. At any stage we calculate the effect of

reversiwg- any disjunctive arc in C, reverse the one that gives

the greatest·effect and fix the reversed arc temporarily. Thus

at any stage we have a fixed set of arcs F; the longest path in

the graph formed by JI' and (! U F is obviously a lower bound and

we can backtrack if the lower bound surpasses the present best

solution.

We do not pay any more attention to this algorithm, because it

is computationally very much inferior to the algorithm of

Bratley, Florian and Robillard treated above. Repeating the final

remark of the latter authors, we can only stress that, despite

recent advances, present branch-and-bound methods are not likely

to solve satisfactorily the nlmlGIFmax scheduling problem*).

*) We would like to point out here an interesting link between
resource-constrained project scheduling and the nlmlGIFmax
problem. In the former problem we can also use the
disjunctive graph model; we only have to check then if our
(partial) solution is resource-feasible. For details, see
Balas [10], Gorenstein [42] and also Schrage [107] for a
slightly different approach.

134

6 • Scheduling in economic realit_x

6 .1. Present situation

A very regrettable aspect of this final chapter is that it is

going to be too short. Operations research is a section of

mathematics where researchers are typically concerned about the

applicability of their work. Many an article has appeared where

the main accent is on the development of a mathematical model

that can be subjected to existing mathematical techniques,

instead of on the development of a technique itself. In view

of the fact that one feels that decisions regarding an optimal

sequence of activities are certainly not rare ones, the lack

of "case studies" in scheduling is downright disappointing. As

far ago as 1961 Sisson [92] wrote: "I have "heard" of several

actual applications of sequencing theory to several actual cases

during the past year, but no results have been announced. (...)

It is hoped that the use of sequencing theory in an operating

situation will be described soon ... ". Nonetheless, the situation

has not changed much in the meanwhile. A small number of

heuristicall:y solved problems has been reported (e.g. Burs tall

[20]), but Sisson's wish has hardly been fulfilled. This

curious phenomenon deserves some more attention.

We think there are three sides to the explanation of the apparent

lack of applicability of machine scheduling theory.

In the first place we can again quote Pounds [80] : "The job

shop scheduling problem is not recognized by most factory

schedulers, because for them, in most cases, no scheduling

problem exists. That is, there is no scheduling problem for them,

because the organization which surrounds the schedulers reacts

to protect them from strongly interdependent sequencing decisions

(...). Computationally difficult scheduling problems do not arise,

135

because those constraints that would create them, are removed

when they become active". If Pounds is correct here, a great deal

has been explained already. In fact, it is fairly plausible that

pressure on organizations to work with optimal schedules is

fairly low, that due-dates are set with a wide safety margin

and that all kinds of mechanisms exist that can cope with the

unpleasant consequences of a bad schedule. Even so, one can

still hope that, once a theo_retically derived schedule is

carefully and successfully implemented, management will become

more aware of the possibilities that lie ahead. Or will they?

In trying to. answer that question, we arrive at the second

aspect that we want to mention here. Suppose a real-life machine

scheduling problem has been isolated and can be solved purely

by theory. Will existing theory be of any help? There are several

reasons to at least doubt this, and one of them can be found

in 2.2., where all the restrictive assumptions are mentioned

that we often find in scheduling theory. One does not need a

great deal of business experience to see that most of these

assumptions are patently unrea.listic. To mention but a few

criticisms: in general jobs will not be available at the same

time, nor will they be of equal importance (all customers are

equal, but some are probably more equal than others). Also, in

general jobs will just have to be ready on a fixed date; and

machines too are likely not to be continuously available, since,

for instance, they may very well break down. Technologically

speaking, it is highly unrealistic that each job passes all

machines, and each machine only once; equally unrealistic is

the assumption that lap-phasing, assembly or job-splitting

cannot occur. And perhaps the most improbable assumption of all

is the determinate nature of the problem: in economic reality

there are always risks and uncertainties that will spoil the

beautiful theory.

136

Put like this, things look very bleak indeed. Are all these

objections, valid as they may be, really that serious? In general,

we are rather optimistic on this point. Several of the objections

can be incorporated in the model: we can attach weights to the

jobs that indicate their relative importance, we can even assume

there are precedence constraints among them, we can set due-dates

dk and introduce release-dates rk. The disjunctive graph model

is more flexible than we have presented it; it can easily

incorporate assembly operations and jobs that only pass a subset

of the·machines or pass a machine twice or more. Also we have

seen that job splitting sometimes even simplifies the solution.

With regards to variation in the processing times, Conway,

Maxwell and Miller [24] report that optimal solutions of machine

scheduling problems are fairly insensitive to changes in Pkt·

Most important: when a situation is theoretically under control,

sudden emergencies such as high priority jobs or breakdowns need

not worry us too much.

Now it cannot be denied that for a certain type of organisation

the assumption about a fixed set of jobs is possibly too

unrealistic; jobs arrive continuously and our static theory can

indeed be of little use.

Fortunately, however, we can refer here to a growing theory on

queues, waiting lines, etc., while concluding at the same time

that the deterministic theory will be mainly applicable to often

recurring routine processes. Nevertheless, artificial though the

model may be, we do not think that it can only serve as an object

of mathematical "Spielerei". Falling back on our first point,

practical experience will determine if the model has to be

adapted so strongly that present theory would be worthless;

again, we are fairly optimistic about the outcome. It remains

disturbing all the same that of known applications most have

been of the heuristic kind. Perhaps a partial explanation of

this can be found in our third aspect.

At first sight, this third aspect of the present theory will

seriously hinder application: we refer to the unrealistic

optimality criteria. Not unreasonable, Sisson [92]

137

points out that "the ultimate desire is to optimize the objectives

of a larger organization (e.g., profits). This requires knowing

how the :specific situation relates to the whole, knowledge which

we do not have. Thus, for research purposes, one optimizes a

lesser criterion chosen in some reasonable way". We know the

choice·most.researchers have made: F is used by far the most max
frequently, followed at a respectable distance by F, rakFk, L , max
T and rakTk ..

Now, knowing what to produce, the obvious optimality criterion

is to minimize total opportunity cost, i.e. those (controllable)

costs that reflect our loss with regards to an ideal situation.

Deriving an expression for opportunity costs, Gupta [45] has

compared the performance of several criteria with regards to

this new one. He arrived at the disturbing result that in fact

F did worst of all and was only very rarely in accordance max
with opportunity costs. However, at this point as well we are

slightly more optimistic. We shall also derive an expression for

the opportunity costs and indicate the relation with our present

set of criteria (which.Gupta does not do). What are the sequence

dependent components of opportunity cost?

(1) Operation_costs

We only have to include those costs if we have sequence-dependent

set-up t:imes cjkt when Jj precedes Jk at Mt. If not, total

operations cost will simply be equal to

where mt is the machine cost per time unit. This obviously is a

sequence-independent constant.

138

(2) In-erocess_inventory_costs

These costs are caused by the fact that during the production

process, semi-finished jobs are waiting in the shop, representing

tied up capital that could have been used profitably elsewhere.

If return on investment is r, the raw material value of Jk is

bk, the sequence for Jk is {Mk , ... ,~}and machine Mt adds
1 m

vt to the value of the product, then the total capital tied up

in Jk during the production process is:

L V.) •
(k, j) J

< (k, t)

Suppose now, that we can find a reasonably average value Sk, so

that costs with regards to Jk are equal to

So total costs are

(1)

(3) Penalty_costs_for_late_deliveries

Often due-dates dk will have been set, and if jobs are not

completed by then, penalty costs are incurred. These may be of

an administrative nature, they may be due to penalty clauses in

the contract or simply due to loss of goodwill.

The last factor induces us to assume a positive effect if jobs

are completed ahead of their due-date; something that may well

139

be appreciated by the customer. If we estimate the cost per

time unit after dk as ek and the positive effect per time unit

before dk as fk, the total cost will be

If ek and fk do not differ too much, we can both replace them

by Ek' and get

(2)

(4) Machine idle costs ------------------
Obviously, machines standing idle cause a loss to the organization,

since they could have performed other useful work during

that period. If Ikt is the time Mt has to wait for Jk' In+l,i

represents the time between the finish of last job on Mt and

the completion date of all jobs and Pi represents the net loss

on Mt per time-unit, we have for total costs

(3)

where the last summation is taken over k = 1, ..• , n+l.

Taking (1), (2) and (3) together (and therefore assuming

sequence-independent set-up costs) we get for total opportunity

cost OC:

where r, Bk, Ek and Pi are known constants.

Now, we have:

140

E WkR. = F - E Pkt
R, k R,

L = k Fk - d k

E IkR. = F - E pkR.
k max k

so:

so, disregarding the last two (sequence-independent)

d . * Q * an putting ak = r µk + Ek' a = r P.e,, we would have
R,

r ak*Fk + a* F max

constants,

to minimize

Obviously, this criterion appears nowhere in theory. However,

with existing methods we can probably get a reasonable

approximation by first solving according to Fmax; next we solve
according to

+ • • • + • • • +

where Jk is the.)ob that finished last in the Fmax
optimal schedule.

* ex F ,
n n

So even here things are not as bleak as they looked. What, then,

can we predict about the future of scheduling?

6.2. Future developments

First, and most obviously, there remains a lot of theoretical

work to be done. Gaps in existing theory have been pointed out

141

frequently in this report; there is no need to repeat them here.

If we look at progress made already, we may expect interesting

new developments during the coming years. For - and this is a

second point - mathematical interest in the scheduling problem

seems to be growing; many articles appear, many researchers are

interested, because basically scheduling problems are intriguing,

challenging and fun to work at.

There is a dangerous side to all this mathematical activity: as

happened in•game theory, reality may move further and further

away. So one can only hopefully repeat Sisson's wish for

applications. to be made and reported. Surely one of the many

areas, where the machine scheduling model seems appropriate,

can provide a good start?

We would nevertheless not be surprised if, for the years to

come, good heuristic methods remain of the utmost importance.

However, in the long run, nothing is as practical as a good

theory. If this report can contribute at all to inspire new

practical-theoretical work, it has more than served its purpose.

142

Bibliography

[1] T.S. Arthanari & A.C. Mukhopadhyay, "A note on a paper

by w. Szwarc", NRLQ 18 (1971), 135-138; nl2IFIF lcA. - max

2] S. Ashour, "Sequencing theory", Springer Verlag (1972).

[3] S. Ashour & R.G. Parker, "A precedence graph algorithm

for the shop scheduling problem", ORQ 22 (1971), 165-175;

nlmlGIFmaxlH,A.

[4 1 P.C. Bagga & N.K. Chakravarti, "Optimal m-stage production

schedule", J. Can. Op. Res. Soc.§_ (1968), 71-78;

nlmlPIFmax·

[5] K.R. Baker, "Procedures for sequencing tasks with one

resource type", Int. J. Prod. Res. 11 (1973), 125-138;

nlll IF , ~akFk I CA. max

[6] M.S. Bakshi & S.R. Arora, "The sequencing problem",

Mngmt. Sc . .!_.§_ (1969), B-247-263; nlmlGIFmaxlcA,H.

[7] E. Balas, "Discrete programming by the filter method",

OR 15 (1967), 915-957; nlmlGIF IIP.
-· max

[8] E. Balas, "Machine sequencing via disjunctive graphs:

an implicit enumeration algorithm", OR .!1 (1969), 941-957;

nlmlGIFmaxlBB.

[9] E. Balas, "Machine sequencing: disjunctive graphs and

degree-constrained subgraphs", NRLQ 17 (1970), 1-10;

nlmlGIFmaxlIP.

143.

[10] E. Balas, "Project scheduling with resource constraints",

in: "Applications of mathematical programming techniques",

ed. by E.M.L. Beale, The English Universities Press (1970).

[11] M.L. Balinski, "Integer programming: methods, uses,

computation", Mngmt. Sc. g (1965), 253-313.

[12 J E.M.L. Beale, "Survey of integer programming", ORQ 16

. (1965), 219-228.

[13] M.J. ~eckmann, "Dynamic programming of economic decisions",

Springer Verlag (1968).

[14] M. Bellmore & G.L. Nemhauser, "The travelling salesman

problem:, a survey", OR !.§_ (1968), 538-559.

[15] A.J.M. Beulens & A.A. van den Hark, "Oplosmethoden voor

deterministische volgorde problemen", T.H.Eindhoven (1972).

[16 J E.H. Bowman, "Tne schedule-sequencing problem", OR 7

(1959), 621-624; nlmlGl?IIP.

[17] P. Bratley, M. Florian & P. Robillard, "Scheduling with

earliest start and due-date constraints", NRLQ .!.§. (1971),

511-519; nlll IF ,T = 0IIP,BB. max max

[18] G.H. Brooks & C.R. White, "An algorithm for finding

optimal or near optimal solutions to the production

scheduling problem", J. Ind. Eng.!.§_ (1965), 34-40;

nlmlPIFmaxlBB.

[19] A.P.G. Brown & Z.A. Lomnicki, "Some applications of the

"branch-and-bound" algorithm to the machine scheduling

problem", ORQ .!1. (1966), 173-186; nlmlPIFmaxlBB.

144

(20] R.M. Burstall, "A heuristic method for a job-scheduling

problem", ORQ .!1. (1966), 291-304; nl 31 I IH.

(21 J J.M. Charlton & C.C. Death, "A method of solution for

general machine scheduling problems", OR 18 (1970),

689-707; nlmlGIFmaxlBB.

(22] J.M. Charlton & C.C. Death, "A generalized machine

·scheduling algorithm", ORQ ll (1971), 127-134;

nlmlGIFmaxlBB.

(23] E. Coffman & R. Muntz, "Optimal preemptive scheduling

on two-processor systems", I.E.E.E. Trans. Comput. _!!,

1014; nlmpl (J6) IFmaxlcA.

(24] R.W. Conway, W.L. Maxwell & L.W. Miller, "Theory of

scheduling", Addison-Wesley (1967).

(25] J. Day & M.P. Hottenstein, "Review of sequencing research",

NRLQ .!1. (1970), 11-39.

[26] L.C. Dr.iscoll & L. _Suyemoto, "Heuristics for resolution

of logical scheduling conflicts" in: "Proceedings of the

fourth international conference on operational research",

Wiley-Interscience (1966).

[27 J R.A •. Dudek & O.F. Teuton, Jr., "Development of M-stage

decision rules for scheduling N jobs through M machines",

OR g (1964), 471-497; nlmlPIFmaxlH.

[28 J J.M •. Dutton, "Production-scheduling - a behavioural

model", Int. J. Prod. Res. 3 (1964); H.

145

[29] S.E. Elmaghraby, "The machine scheduling problem - review

and extensions", NRLQ ~ (1968), 205-232.

[30] H. Emmons, "One-machine sequencing to minimize certain

functions of job tardiness", OR 17 (1969), 701-715;

n I 1 I IT I CA.

[31] M.L. Fisher, "Optimal solution of scheduling problems

using Lagrange multipliers (revised)", report 7210,

University of Chicago.

[32] M. Florian, P. Trepant & G. McMahon, "An implicit

enumeration algorithm for the machine sequencing problem",

Mngmt. Sc. !l (1971), B-782-792; nlmlGIFmaxlBB.

[33] M. Florian & N. Sang, "A note on lower bounds for the

machine scheduling problem", publ. =t 49, Departement

d'Informatique, Universite de Montreal; nlmlGIFmaxlBB.

[34] M. Florian, P. Bratley & P. Robillard, "On sequencing

with earliest starts and due-dates with application to

computing bounds for the (nlmlGIF) problem", NRLQ ,20 max
(1973), 57-67; nlmlGIFmaxlBB.

[35] A.M. Geoffrion & R.E. Marsten, "Integer programming: a

framework and state-of-the-art survey", Mngmt. Sc. 18

(1972), 465-491.

[36] w.s. Gere, Jr., "Heuristics in job shop scheduling",

Mngmt. Sc • .!l (1966), 167-190; H.

[37] B. Giffler, "Schedule algebras and their use in formulating

general systems simulations" in: "Industrial scheduling",

ed. by J.F. Muth and G.L. Thompson, Prentice-Hall (1963);

n Im I I F max I A.

146

[38] B. Giffler, "Mathematical solution of production planning

and scheduling problems", IBM ASDD Technical Report (1960);

nlml IFmaxlA.

·c 39 J B. Giffler & G.L. Thompson, "Algorithms for solving

production-scheduling problems", OR 8 (1960), 487-503;

nlmlGIFmaxlCA.

[40] .P.C. Gilmore & R.E. Gomory, "Sequencing a one state

variable machine: a solvable case of the travelling

salesman problem", OR g (1964}, 655-679.

(41] C.R. Glassey, "Minimum change-over scheduling of several

products on one machine", OR 16 (1968), 342-352;

nlll I+ change-overslDP,CA.

(42] s. Gorenstein, "An algorithm for project (job} sequencing

with resource constraints", OR 20 (1972), 835-850;

nlmlG,(J2} IFmaxlBB.

(43 H.H. Greenberg, "A branch-bound solution to the general

scheduling problem", OR.!.§. (1968), 353-361; nlmlGIFmaxlBB.

(44] J.N.D. Gupta, "A functional heuristic algorithm for the

flow shop scheduling problem", ORQ 22 (1971); nlmlFIFmaxlH.

[45] J.N.D. Gupta, "Economic aspects of production scheduling

·systems", J. Op. Res. Soc. of Japan ,!l (1971}, 169-193.

(46] J.N.D. Gupta, "Optimal flow shop scheduling with due-dates

and penalty costs", J. Op. Res. Soc. of Japan .!i (1971},

35-46; nlmlFl?IBB.

(47] J.N.D. Gupta, "The generalized n-job, m-machine scheduling

problem", Opsearch 8 (1971}, 173-185; nlmlGIFmaxlIP.

147

[48] C. Haehling Von Lanzenauer & R. C. Himes, "A linear

programming solution to the general sequencing problem",

J. Can. Op. Res. Soc. 1:J! (1970), 129-134; nlmlGIFmaxlLP.

[49] J. Heller, "Some numerical experiments for an M x J flow

shop and its decision theoretical aspects", OR! (1960),

178-184; H.

[50] W.A. Horn, "Single-machine job sequencing with treelike

precedence ordering and linear delay penalties", SIAM

J. Appl. Math.~ (1972), 189-202; nlll (J6) lrakTklcA.

[51] T. C. Hu, "Parallel sequencing and assembly line problems 11 ,

OR 9 (19 6 1) , 8 4 1-8 4 8 ; n I m I (J 6) I F I CA . p max

[52] E. Ignall & L. Schrage, 11 Application of the branch-and

bound technique to some flow shop scheduling problems",

OR 13 (1965), 400-412; nl2IFIFIBB, nl3IF1Fmax1BB.

[53] J.R. Jackson, "An extension of Johnson's results on job

lot scheduling", NRLQ l (1956), 201-203; nl2IG1FmaxlcA.

[54] S.M. Johnson, "Optimal two- and three-stage production

schedules with set-up times included", NRLQ 1 (1957),

6 1-6 8 ; n I 2 I F I F I CA , n I 3 I F I F I CA . max max

[55] S.M. Johnson, "Discussion: sequencing n jobs on two

machines with arbitrary time lags", Mngmt. Sc.~ (1958),

299-303; nl2IFIF lcA. max

[56] W. Karush, "A counter-example to a proposed algorithm

for optimal sequencing of jobs", OR 13 (1965), 323-325;

nlmlPIF . max

148

(57] E.L. Lawler, "On scheduling problems with deferral costs",

Mngmt. Sc. g (1964), 280-288; nlmpl lrck(t) IDP,LP.

(58] E.L. Lawler & D.E. Wood, "Branch-and-bound methods: a

survey", OR.!! (1966), 699-718.

(59] E~L. Lawler & J.M. Moore, "A functional equation and its

applic_ation to resource allocation and sequencing problems",

Mngmt. Sc • .!.§_ (1969), 77-84; nlll IT,EakEklDP.

(60] E.L. Lawler, "Optimal sequencing of a single machine

subject to precedence constraints", Mngmt. Sc • .!2_ (1973),

544-546; nlll (J6) lck(t)maxlcA.

(61 F.K. Levy, G.L. Thompson & J.D. Wiest, "Mathematical basis

of the critical path method" in: "Industrial scheduling",

ed. by J.F. Muth and G.L. Thompson, Prentice-Hall (1963).

(62] J. Little, K. Murty, D. Sweeney & c. Karel, "An algorithm

for the travelling salesman problem", OR 11 (1963),

972-989.

(63] Z.A. Lomnicki, "A branch-and-bound algorithm for the exact

solution of the three-machine scheduling problem", ORQ .!.§_

(1965), 89-100; nl3IF1Fmax1BB.

[64] A. S. Manne, "On the job shop scheduling problem", OR 8

(196.0), 219-223; nl1l(J6}IF lrP. max

(65] R. McNaughton, "Scheduling with deadlines and loss

functions", Mngmt. Sc. &, (1959}, 1-12; nl 111 EakFk!CA,

n I mp 1 I F , E akF k I CA~

[66] P. Mellor, "A review of job shop scheduling", ORQ 17

(1966}, 161-171.

149

[67] G. Mensch, "The inspection problem", Math. Operationsforsch.

und Statist. ~ (1971), 261-269 (generalized nlmlG problem).

[68] L.G. Mitten, "Sequencing n jobs on two machines with

arbitrary time lags", M. Sc. 5 (1958), 293-298;

nl2IF1Fmax1CA.

[69] J.M. Moore, "Ann job, one machine sequencing algorithm

·for minimizing the number of late jobs", Mngmt. Sc • .!_!

(1968) , 102-109; n I 1 I I :lf: tardy jobs I CA.

[70] H. Milller-Merbach, "Optimale Reihenfolgen", Springer

Verlag (1970).

[71 J .F. Muth & G.L. Thompson (eds.), "Industrial scheduling",

Prentice-Hall (1963).

[72] I. Nabeshima, "The order of n i terns produced on m machines",

J. Op. Res. Soc. of Japan l (1961), 170-175: nlmlPIFmaxlcA.

[73] I. Nabeshima, "The order of n items produced on m machines

(II)", J. Op. Res. Soc. of Japan! (1961), 1-8;

n Im I P I F max I CA. ,

[74] I. Nabeshima, "Sequencing on two machines with start lag

and stop lag", J. Op. Res. Soc. of Japan 1 (1963), 97-101;

nl2IF1Fmax1CA.

[75] I. Nabeshima, "Computational solution to them-machine

scheduling problem", J. Op. Res. Soc. of Japan 1 (1965),

93-103; nlmlPIFmaxlcA,DP.

[76] I. Nabeshima, "General scheduling algorithms with

applications to parallel scheduling and multiprogramming

scheduling", J. Op. Res. Soc. of Japan.!_! (1971), 72-99;

nlmlGIFmaxlBB.

150

[77 J L. Nemeti, "Das Reihenfolgeproblem in der Fertigungs

programmierung und Linearplanning mit logischen

Bedingungen", Mathematica i (1964), 87-99; nlmlGIFmaxlBB.

[78] P. Nepomiastchy, "Application of the penalty technique to

solve a scheduling problem and comparison with combinatorial

methods", Rapport de Recherche no. 7, Institut de Recherche

d'Informatique et d'Automatique (1973); nlmlGIFmaxlNLP.

[79 J T.A.J. Nicholson, "A method for optimizing permutation

problems and its industrial applications" in:

"Combinatorial mathematics and its applications", ed. by

D.J.A, Welsh, Academic Press (1971).

[80 J W.F. Pounds, "The scheduling environment" in: "Industrial

scheduling", ed. by J.F. Muth and G.L. Thompson, Prentice

Hall (1963).

[81] J.F. Raimond, "Minimaximal paths in disjunctive graphs by

direct search", IBM J. of Res. and Dev. 13 (1969), 391-399;

nlmlGIFmaxlIP.

[82] S.S. Reddi & C.V. Ramamoorthy, "On the flow shop sequencing

problem with no wait in process", ORQ ll (1972), 323-331;

nlmlF,(J4) IFmaxlcA.

[83 J J.F. Rial, "The resolution of conditional scheduling

conflicts" in: "Proceedings of the fourth international

conference on operational research", Wiley-Interscience

(1966).

[84] J.G. Root, "Scheduling with deadlines and loss functions

on k parallel machines", Mngmt. Sc. ll (1965), 460-475;

n I mp I I T I CA.

151

(85] M.H. Rothkopf, "Scheduling independent tasks on parallel

processors", Mngmt. Sc. 12 (1966), 437-447;

nlmpl I EakFklDP.

(86 J B. Roy & B. Sussmann, "Les problemes d'ordonnancement avec

contraintes disjonctives", note DS no. 9 bis SEMA (1964).

(87] B. Roy, "Problems and methods with multiple objective

_functions", Math. Progr. ! (1971), 239-267.

(88 J V.K. Sahney, "Single-server, two-machine sequencing with

switching time", OR £Q_ (1972), 24-36; nl21 (M3) lFmaxlCA.

(89] L. Schrage, "Solving resource-constrained network problems

by implicit enumeration - non-preemptive case", OR 18

(1970), 263-278; nlmlGIFmaxlBB.

(90] L. Schrage, "Solving resource-constrained network problems

by implicit enumeration - preemptive case", OR 20 (1972),

668-677; nlmlG,(JM2) IFmaxlBB.

(91] J. Shwimer, "On then-job, one-machine, sequence

independent sc~eduling problem with tardiness penalties:

a branch-bound solution", Mngmt. Sc. ll (1972), B-301-313;

nlll IEakTklBB.

(92] R.L. Sisson, "Sequencing theory" in: "Progress in

operations research", ed. by R. Ackoff, Wiley (1961).

(93] W.E. Smith, "Various optimizers for single-stage

production", NRLQ l (1956), 59-66; nlll IEa.kFk,TmaxlCA.

(94] R.D. Smith & R.A. Dudek, "A general algorithm for solution

of then-job, M-machine sequencing problem of the flow

shop", OR~ (1967), 71-82; nlmlPIFmaxlcA.

152

[95] R.D. Smith & R.D. Dudek, "Errata", OR 17 (1969), 756;

nlmlPIFmaxlCA.

[96 A.E. Story & H.M. Wagner, "Computational experience with

integer programming for job shop scheduling" in:

"Industrial scheduling", ed. by J.F. Muth and G.L. Thompson,

Prentice-Hall (1963); nl3IFIF IIP. max

[97] _L.B.J.M. Sturm, "A simple optimality proof of Moore's

sequencing algorithm", Mngmt. Sc . .!l (1970), 116-118;

nlll I• tardy jobslcA.

[98] B.G. Sussmann, "Scheduling problems with interval

disjunctions", Zeitschrift fur O.R. 16 (1972), 165-178;

nlmlGIFmaxlBB.

[99] W. Szwarc,· "On some sequencing problems", NRLQ !2_ (1968),

127-155; nl2IF,G1Fmax1CA, nl3IF1Fmax1CA, 2lmlG1Fmax1CA,

nlmlGIFmaxlH.

[100) W. Szwarc, "Elimination methods in them x n sequencing

problem", NRLQ .!§_ (1971), 295-305; nlmlPIFmaxlcA.

[101) J. Terno, "Algortihmen fiir das klassische Maschinen

belegungsproblem", Math. Operationsforsch. und Statist. 3

(1972), 195-201; nlmlPIFmaxlcA.

[102) H.M .. Wagner, "An integer programming model for machine

scheduling", NRLQ i (1959), 131-140; nlmlFIFmaxlIP.

[103) D.A. Wismer, "Solution to the flow shop scheduling· problem

with no intermediate queues", OR 20 (1972), 689-697;

nlmlF,(J4) IFmaxlCA.

153

Added later:

[104] P. Bratley, M. Florian & P. Robillard, "Scheduling with

earliest start and due-date constraints on multiple

machines", report 111, Departement d'Informatique,

Universite de Montreal (1973); nlm I IF ,T = 0IBB. p max max

[105] W. Gapp, P.S. Mankekar & L.G. Mitten, "Sequencing theory

operations to minimize in-process inventory costs",

Mngmt. Sc. 11 (1965), 476-484; nlll (J6) lrakFk.

[106] L. Schrage, "A bound based on the equivalence of min-max

completion time and min-max-lateness scheduling objectives",

report 7042, University of Chicago; nlmlGIF !BB. max

[107] L. Schrage, "Obtaining optimal solutions to resource

constrained network scheduling problems", (1971);

nlmlGIFmax'rakLk,rakTklBB.

