
stichting

mathematisch

centrum

BA

BA

~
MC

AFDELING MATHEMATISCHE BESLISKUNDE BW 28/73 AUGUST

J. K. LENSTRA
RECURSIVE ALGORITHMS FOR ENUMERATING SUBSETS,
LATTICE-POINTS, COMBINATIONS AND PERMUTATIONS

2e boerhaavestraat 49 amsterdam

BIBLIOTHEEK MATHEMATISCH
AMSTERDAIJ4

IIIIIIIIIIIIIIIIIIIIIIIWl~iilm~illlllllllllllllllllll
3 0054 00044 9117

PJunted at .the Mathema.Ucai. Cen:tJLe, 49, 2e Bovr.haa.vu.tJr.aa:t, Am.6.te.Jt.dam.

The Ma.thema.Ucai. Cen:tJLe, 6ou.nded .the 11-.th 06 FebJtuaJLy 1946, ,i1> a non
pJto6U iY11>:ti;tU,U.on cu.m,i.ng a.t .the pJtomo:Uon 06 pull.e ma.thema.UC-6 and ..i;:t6
app.U.c.a.Uoru.. 1.t ,i1> .6poY11>0Jted by .the Nethelli.a.ncu Govvr.nment .thJtou.gh .the
Nethelli.a.ncu 01tga.n,iza.Uon 6oJt .the Adva.nc.ement 06 Pull.e Ruea.Jtc.h (Z .W.O),
by .the Mu.n,iupaLLty 06 Am.6.tvr.dam, by .the UniveMUy 06 Am.6.tvr.da.m, by
.the f Jtee UniveMUy a.t Am.6.te.Jt.dam, and by indU6:tluU.

AMS(MOS) subj_ect classification scheme (1970): 05A05, 05A10, 90B35, 90C10

BW 28/73

Errata

page line

11 23 3E quence + sequence 3E

16 21 3E
'

xi; ➔ ; real xi; 3E

17 19 3E variabele + variable 3E

29 15 3E problem(x,n,-1) + problem(x,1,-1) 3E

29 2'5 3E initiated+ initialized 3E

BW 28/73

Errata

page line

11 23 3!' quence ➔ sequence 3!'

16 211 3!'

'
xi; ➔ ; real xi; 3!'

17 19 3!' variabele ➔ variable 3!'

29 1 c-) 3!' problem(x,n,-1) ➔ problem(x,1,-1) 3!'

29 2c-) 3!' initiated ➔ initialized 3!'

Abstract

Recursive algorithms for enumerating various types of combinatorial

configurations are presented. We consider lexicographic as well as

minimum-change methods. The algorithms are defined as ALGOL 60-

procedures. Their correctness and their efficiency are discussed.

Finally we indicate some applications in the field of mathematical

programming.

Acknowledgements

The author gratefully acknowledges the valuable help and suggestions

from Jack Alanen, Peter van Emde Boas and Hendrik Lenstra.

Contents

Abstract

Contents

1. Introduction

2. Subsets

3. Lattice-points

4. Combinations

5. Permutations

6. Computations

7. Applications

Appendix A

Appendix B

Appendix C

Literature

1

3

5

6

9

11

15

19

21

25

28

34
38

3

1. Introduction

In this report we present algorithms for enumerating various types of

combinatorial configurations. We distinguish between lexicographic and

minimum-change methods. Lexicographic methods generate the configurations

in a "dictionary" order, while minimum-change methods produce a sequence

5

in which successive configurations differ as little as possible. The latter

methods have two important advantages. First, the entire sequence is gener

ated efficiently, since each configuration is derived from its predecessor

by a simple change. Secondly, in some applications each configuration has

to be evaluated, and a minimum-change algorithm "may permit the value of

the current arrangement to be obtained by a small correction to the imme

diately previous value, rather than ab initio" [15].

Our algorithms are defined as ALGOL 6O-procedures. They are based

on recursive procedures, they contain no labels, and after one call they

generate the entire sequence of configurations. Each time a new configura

tion has been obtained, a call of a procedure 'problem' is made. Parameters

of this procedure are the configuration, and, for minimum-change enumera

tion, the positions in which it differs from its predecessor. It has to be

defined by the user to handle each configuration in the desired way.

This construction is unlike what has become usual in the literature.

Most of the published procedures are organised in such a way that each call

generates the next configuration in the sequence (see [2; 3; 4; 16; 19];

[1] is an exception). Then in each call it is necessary to recompute the

point which has been reached in the sequence [151. This is inherent to an

iterative description of essentially recursive algorithms. A mechanism for

reducing this kind of computations has recently been devised by Ehrlich [5].

To us, a recursive description seems more appropriate and more transparent.

The following four paragraphs discuss algorithms for the minimum-change

enumeration of subsets, lattice-points, combinations and permutations, re

spectively. Appendix A contains four algorithms for lexicographic enumera

tion, appendix B four faster versions of our minimum-change methods, and

appendix C three previously published minimum-change procedures. In§ 6 we

compare the running times of these fifteen algorithms on a computer. Some

applications to integer programming and scheduling problems are indicated

in§ 7,

6

2. Subset:;;

In this paragraph we discuss a method for the minimum-change enumeration of

all subsets af a set, S = {e1 ,e2 , ... ,en}. A subset X c S will be repre

sented by an integer n-vector with components O and 1:

x[i] = 1

x[i] = 0

if e. € X,
1

if e. 4 X.
1

These vectors correspond to the vertices of then-dimensional cube. A

ha.m.iltonian path on this n-cube defines a minimum-change sequence of sub

sets in which each subset is derived from its predecessor by adding OP re
moving one eZement. Such a sequence is called a binary Gray code [6; 7; 21].

The particular sequence which is generated by our algorithm is the

refZected binary Gray code. For n elements (n ~ 1), it is produced in the

following way. First, list the sequence for n-1 elements and add O's as the

n-th components. Secondly, list the (n-1)-sequence in reversed order, adding

11 s as then-th components. Obviously, the sequence for O elements consists

only of the empty eonfiguration.

As an illustration we present then-cubes for n = 1,2,3 and the re

flected binary Gray codes for n = 1,2,3,4.

n = 1 n = 2 n = 3 n = 4

1 0 1 00 1 000 1 0000
2 1 2 10 2 100 2 1000

3 11 3 110 3 1100
4 01 4 010 4 0100

5 011 5 0110
6 111 6 1110
7 101 7 1010
8 001 8 0010

9 0011
01 II OIO ,,.

10 1011

□
11 1111
12 0111
13 0101
14 1101

0 00 10 15 1001
001 IOI 16 0001

7

In the description, given above, we can replace 11 0 11 and 11 111 by "x0[n]" and

"1-xin]" respectively, where x0 denotes an arbitrary starting configura

tion. In this way a more general reflected binary Gray code is obtained.

The last configuration in the sequence is adjacent to the first one, since

they differ only in their n-th component. It follows that this Gray code

constitutes a hamiltonian airauit on then-cube.

If the rules are written down in a more formal way, the following al

gorithm for enumerating subsets results:

procedure brute force mo (problem,n,x); value n,x;
integer n; in~r arnq; x; p~oedure problem;
conaen't min3m117iange enumeration of subsets;
begin

mcedure node(n); value n; intefer n;
egin if n > 1 then node(n - 1 ;

x["n] :• 1 - x[n]; problem(x,n);
if n > 1 then node(n - 1) - -

problem(x,o); node(n)
end brute force mo; -

If x0 and y0 are adjacent vertices, differing in their last component, then

a call

'brute force me (problem,n,x0) 1

has the following effect:

- A hamiltonian path on then-cube, starting from x0 and ending in y0 , is

traversed.

- In vertex x0 a call 'problem(x0 ,o)' is made.

- In each vertex x, reached by a change of the k-th component, a call

'problem(x,k)' is made.

The latter two assertions are clear from inspection. To prove the first one,

it suffices to show that a call 'node(k)' accomplishes the following:

Starting from a configuration x, all x' for which

x' f x, x'[l] = x[l] for k+1 ~ 1 ~ n

are reached, each exactly once, while no other vertices are reached. The

8

final vertex y is given by

y[k] = 1-x[k], y[l] = x[l] for 1 + k .

. The proof, which is by induction on k, is clear from the following diagram:

node(k)

{ (xl1],, ,x[r2], x[r 1], xr] ,x[r1],, ,xrl)
(x[1],.,x[k-2],1-x[k-1], x[k],x[k+1],.,xCnJ)

x[k]:= 1-x[k]{(x[1],.,x[k-2],1-x[k-1],1-x[k],x[k+1],.,x[n])

node(k-1)

{ l l l l J l
(x[1],.,x[k-2], x[k-1],1-x[k],x[k+1],.,x[n])

node(k-1)

= X

= y

Here a broken arrow means that the component is changed; an unbroken arrow

indicates that it remains unchanged.

3, Lattice-points

Ann-dimensional lattice is defined by two integer n-vectors 1 and u. Its

vertices are given by the integer n-vectors x for which

l[i] ~ x[iJ ~ u[i] for 1 ~ i ~ n.

9

Then-cube is a lattice with l[i] = 0 and u[i] = 1 for 1 ~ i ~ n. Corre

spondingl~", an algorithm for the minimum-change enumeration of lattice

points is obtained as a straightforward generalization of 'brute force me'.

Each vert~ix is derived from its predecessor by increasing or decreasing

exactiy one component by one. However, not each lattice contains a hamil

tonian circuit, as can be seen by taking n = 1, 1[1] < u[1J+1 or n = 2,

1[i] = O, u[i] = 2 for i = 1,2. So the property that we can start in an

arbitrary vertex has been lost.

As an illustration of this method we present two examples in which

n = 4, l[i] = 1 and u[i] = i,5-i respectively.

i

l[i]
u[i]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4

·1 1 1
1 2 3 4

1 1 1 1
1 2 1 1
·1 2 2 1
1 1 2 1
1 1 3 1
1 2 3 1
1 2 3 2
1 1 3 2
1 1 2 2 ·
1 2 2 2
1 2 1 2
1 1 1 2
1 1 1 3
1 2 1 3
1 2 2 3
1 1 2 3
1 1 3 3
1 2 3 3
1 2 3 4
1 1 3 4
1 1 2 4
1 2 2 4
1 2 1 4
1 1 1 4

. + ..

.. +.

. -..

. . +.

. + ..
••• +
. -..
. . -.
. + ..
. . -.
. -..
... +
• + ••
.. +.
. -..
.. +.
• + ..
. • • +
. -.. .. -.
• + •.
.. -.
. -..

l

l[i]

utiJ

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

2 3 4

1 1 1
4 3 2

1 1 1 1
2 1 1 1
3 1 1
4 1 1
4 2 1 1
3 2 1 1
2 2 1 1
1 2 1
1 3 1 1
2 3 1 1
3 3 1
4 3 1
4 3 2 1
3 3 2 1
2 3 2 1
1 3 2

2 2
2 2 2
3 2 2 1
4 2 2 1
4 1 2
3 1 2
2 2

2

+ .••
+ ...
+ ..•
• + .•
-...
-...
-...
• + ••
+ ...
+ •.•
+ ...
.. +.
-...
- ...
. - ..
+ ...
+ .••
+ ..• . -..
-...
--...
-...

10

Our algorithm for generating lattice-points is presented below.

e;ocedure brute force lp me (problem,n,l,u)J value n,l,uJ
inte~ nJ integer arra;y l,uJ mcedure problemJ
C01111lJen minimum-change enumeraton ot iattice-pointsJ
begin

g;edure node(n)J value nJ intepr n;
be n integer dn, in, un; ·

un:= u[n]; u[n]:= ln:= l[n]J
dn:= if 1n < un then 1 else -1 J
if n >1 then noa;fn - 11T

endJ

?or 1n: = Iii+ dn step dn until un do
begin l[n] := ln; problem(i,n,dn)J

if n > 1 then node(n - 1)
end - --

problem(l,01 0); node(n)
end brute force lp me; -

One can check easily that a call

'brute force lp me (problem,n,l,u)'

has the following effect:

- A ham.iltonian path in the lattice, starting from 1, is traversed,

- In vertex 1 a call 'problem(l,O,O)' is made.

- In each vertex x, reached fr-0m y with x[k] f y[k], a call

'problem(x,k,x[k]-y[k])' is made.

J 1

4. Combinations

The algorithm, presented in§ 2 and generalized in§ 3, will now be used to

derive a method for enumerating combinations.

A combination C of m out of n elements e 1 ,e2 , ... ,en is represented by

a binary n-vector x:

x[i] = 1

x[i] = 0

if e. E C,
l

if e. Ej: C.
l

We define an undirected graph G(n,m) whose vertices are given by these vec

tors; (x,y) is an edge of G(n,m) iff x and y differ in exactly two compo

nents. A hamiltonian path in G(n,m) corresponds to a minimum-change sequence

of combinations in which each combination is derived from its predecessor

by adding one element and removing one element.

From the reflected binary Gray code with the empty set as starting

configuration we take the subsequence consisting of those subsets which

contain exactly m elements. We prove that this subsequence constitutes a

hamiltonian path in G(n,m) from

to

= (1, ... ,1,1,0, ... ,o,o)
~ .._____.,

m n-m

= (1, ... ,1,0,o, ... ,o,1)
'ni:-1'~

(note that y0 and x0 are adjacent) if 1 ~ m ~ n-1; if m = 0 or m = n the

path clearly consists of only one vertex.

The proof proceeds by induction on n, the case n = 1 being obvious.

For n > 1, 1 ~ m ~ n-1, the sequence consists of two parts: first, the

quence in G(n-1,m), with O's added as then-th components, and secondly,

the sequence in G(n-1 ,m-1) in reversed order, with 1 's added as the n-th

components. By the induction hypothesis these two parts are hamiltonian

paths which look like:

form > 1 : 1 ... m-2 m-1 m m+1 ... n-2 n-1 n
(1, ... ,1, 1 ' 1 ' o, ... ,o, o, o) .

*(1, ... ,1, 1 ' o, o, ... ,o, 1 ' 0)
(1, ... ,1, o, o, o, ... ,o, 1 , 1)

(1, ... ,1, 1 ' o, o, ... ,o, 0, 1) '

12

for m = 1: 1 2 ••• n-2 n-1 n
(1 , o, ••• ,o, o, o)

*(o, o, ••• ,o, 1 , o)
(0, o, .•• ,o, o, 1) •

Inspection shows that the transitions* are edges in G(n,m), so the total

sequence is a hamiltonian path, as was to be proved.

As an illustration we present the reflected binary Gray code for n = 5

and its subsequences for O ~ m ~ 5,

n = 5 m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

1 00000 00000
2 10000 10000
3 11000 11000
4 01000 01000
5 01100 01100
6 11100 11100

.7 10100 10100
8 00100 00100
9 00110 00110

10 10110 10110
11 11110 11110
12 01110 01110
13 01010 01010
14 11010 11010
15 10010 10010
16 00010 00010
17 00011 00011
18 10011 10011
19 11011 11011
20 01011 01011
21 01111 01111
22 11111 11111
23 10111 10111
24 00111 00111
25 00101 00101
26 10101 10101
27 11101 11101
28 01101 01101
29 01001 01001
30 11001 11001
31 10001 10001
32 00001 00001

13

Combining the recursion scheme of 'brute force me' (cf. § 2) and the

results, presented above, we obtain the following algorithm for enumerating

combinations:

procedure brute choose me (problem,n,m); value n,m;
integ,e!. n,m; procedure problem;
comment minimum-change enumeration of combinations;
begfn integer k; integer array x[1 :n];

procedure over(n,m); value n,m; integer n,m;
if n > m /\ m > O then
begin integer xn, xk;

xn:= x[n]; xk:= 1 - xn;
over(n - 1,m - xn);

end• _,

k:= {if m = 1 then n else m) - 1;
x[n]:';"""xlq x[k~xn;-
if xn = O then problem{x,n,k) else problem(x,k,n);
over(n - 1-;iii= xk) -

for k: = 1 step 1 until m do x[k] := 1;
for k:= m + 1 step 1 until n do x[k] := o;
problem{x,o,o); over(n,m) -

~ brute choose me;

A call

'brute choose me (problem,n,m)'

has the following effect:

A hamiltonian path in G(n,m), starting from x0 and ending in y0 , is

traversed.

In vertex x0 a call 'problem(x0 ,o,O)' is made.

In each vertex x, reached by adding ek and removing e1 , a call

'problem(x,k,l)' is made.

These assertions are proved along the same lines as those for 'brute force

me'. Note that in the body of 'over(n,m)' the components in positions n and

(if m = then n else m) 1 are changed; this corresponds to the transi-

tions * in the diagrams, given above.

14

Another minimum-change method for generating combinations has been proposed

by Chase [4] and Ehrlich [5]. Still another method has been suggested by

Wells [21,Ch,5,1,ex.7],

A minimum-change sequence for combinations of m1 ~ m ~ m2 out of n elements

in which each combination is derived from its predecessor by adding one

element and/or removing one element, is given by the subsequence of the

reflected binary Gray code consisting of those subsets which contain

m1 ~ m ~ m2 elements. The construction of a recursive algorithm for enumer

ating these configurations is left as a challenge to the reader.

5. Permutations

We next consider the minimum-change enumeration of all permutations of n

different elements. Ann-permutation is defined as an n-vector whose com

ponents are these elements in some order.

15

We define an undirected graph G(n) whose vertices are given by then!

n-permutat:i.ons; (x,y) is an edge of G(n) iff x and y differ only in two

neighbouring positions. A hamiltonian path in G(n) corresponds to a mini

mum-change sequence of permutations in which each peY1111Utation is derived

from its predecessor by transposing two elements in adjacent positions.

Denoting then elements by 1,2, ... ,n, we can construct such a sequence

inductively as follows. For n = 1, it consists of the only 1-permutation.

Let the sequence for (n-1)-permutations be given. Placing n at the right

of the first (n-1)-permutation, we obtain the first n-permutation. The n-1

next ones are obtained by successively interchanging n with its left neigh

bour. After that, n is found at the left of the first (n-1)-permutation,

which remained unchanged. Replacing this (n-1)-permutation by its successor

in the (n-1)-sequence gives us the (n+1)-th n-permutation, and the n-1 next

ones arise from successive transpositions of n with its right neighbour.

Then n is found at the right of the second (n-1)-permutation, which now is

replaced by the third one, and the process starts all over again.

As an illustration of this method we present the sequences and the

graphs for n = 1,2,3,4. We note that G(4) lS the edge graph of a solid

truncated octahedron, replicas of which fill entire 3-space. Analogous

statements hold for all n.

n = n = 2 n = 3

1 1 1 2 1 1 2 3
2 2 2 1 3 2

3 3 1 2
4 3 2
5 2 3 1
6 2 1 3

G(1) G(2) G(3)

•, , •

"'Q"'
, ... Z.I

·UI 'l'tl

16

n = 4 G(4)
134Z. 143~

1 1 2 3 4 13 4 3 2 1
2 1 2 4 3 14 3 4 2 1
3 1 4 2 3 15 3 2 4 1
4 4 1 2 3 16 3 2 1 4
5 4 1 3 2 17 2 3 1 4
6 1 4 3 2 18 2 3 4 1
7 1 3 4 2 19 2 4 3 1
8 1 3 2 4 20 4 2 3 1 l'Z.14

9 3 1 2 4 21 4 2 1 3
10 3 1 4 2 22 2 4 1 3
11 3 4 1 2 23 2 1 4 3
12 4 3 1 2 24 2 1 3 4

'U41 1431

The following algorithm generates the l)ermutations in the order

above:

hlocedure brute permute me (problem.,n.,x); value n.,x;
teger n; an:& x; procedure problem;

connent minimum-change enumeration of permutations;
begin E.!:!!:! xk; integer k., 1., q; integer arra.y d[l:n];

procedure node(1); value 1; integer 1;
begin integer di, ti., u1., xi;

end;

di:= d(i]; if di = 1 then
begin t1:-:-1; u1 := r=-1; q:= q - 1
end else
b tin ti:= 1; u1:= r-
en I

x1 := x[q + ti];
if i < n·then node(i + 1);
for ti : = ti step di until u1 do
begin k:= q + ti; l:= k + arr

x[k]:= xk:= x[l]; x[l]:= XiJ
if di= 1 then problem(x,k.,xk1 x1)
- else problem(x.,l.,xi,xk);
if 1 < n tiieii"' node(1 + 1)

end; - -
· d[i] := -di; if di = -1 then q:= q + 1 - -

fork:= 1 step 1 until n do d[k]:= -1; q:= O;
problem(x.,o.,o,o); if n > ~then node(2)

end brute permute me; - - --

+1-u

4i/3

described

If {x0[1], ... ,x0[n]} is then-set to be permuted, then a call

'brute permute me (problem,n,x0) 1

has the following effect:

If n = 1, then a call 'problem(xo,0,0,0) 1 is made, and else

17

- A hamiltonian path in G(n) is traversed, starting from x0 and ending in

y0 such that

In vertex x0 a call 1problem(x0 ,0,0,0)' is made.

In each vertex x, reached by transposition of the elements in positions

k and k+1, a call 'problem(x,k,x[k],x[k+1])' is made.

The latter two assertions are clear from inspection. The proof of the first

one may be left to the reader. As a hint, we note that just before a call

'node(i)' and immediately after its execution, x, d and q satisfy the fol

lowing conditions:

{jli ~ j ~ n, d[j] = 1} has exactly q elements, and if we index them

such that j 1 > j 2 > ••• > jq, then x[k] = x0[jk] for ~ k ~ q,

and if {jli ~ j ~ n, d[jJ = -1} = {j 1, ... ,j~}, where j 1 > j~ > ••• > j;,

r+q = n-i+1, then x[n+1-k] = xn[j~J for 1 ~ k ~ r.

Using the variabele q to determine the place of the transpositions is more

efficient than keeping track of the inverse permutation for that purpose

(cf. [5]) ..

Generation of permutation sequences has received much attention in the

literature.

The algorithm for enumeration by adjacent transposition, presented

above, was discovered independently by Trotter [19] and Johnson [9J. A

different minimum-change method was found by Wells [20]; Boothroyd gives

recursive [1] and iterative [2; 3] ALGOL 60-procedures for this algorithm.

Methods for generating permutations are surveyed by Lehmer [11],

Ord-Smith [15] and Wells [21,Ch.5.2]. Ord-Smith [16] presents a time com

parison between six algorithms, including three minimum-change procedures

[19; 2; 3].

18

We make one final observation.

Let an undirected graph H(n) on n vertices be given. Define an

undirected graph GH(n) on the set of n-permutations, by drawing an edge

between x and y iff x can be obtained from y by a single transposition

of the elements in positions k and 1, where (k,l) is an edge of H(n). One

can prove the following:

GH(n) contains a hamiltonian circuit if and only if

H(n) contains a spanning tree.

The "only if"-part is obvious; the "if"-part follows by an inductive

argument.

In the Johnson-Trotter algorithm, discussed above, the "transposition

graph" H(n) is the tree which looks like:

2 3 n
•---•~--1•---•---•--..j•----·

The transposition graph of the Wells algorithm contains the above one

properly.

19

6. Computations

In this paragraph we give computer results for the algorithms presented in

this report. We include also results for three algorithms which have been

published;

these are

Chase's algorithm acm 382 [4], which implements a minimum-change method

for generating combinations, different from ours (cf. § 4).
Trotter's algorithm acm 115 [19; 16 J which generates permutations by ad

jacent transposition (cf. § 5). For a number of years it remained the

fastest permutation procedure.

Boothroyd's algorithm bcj 30 [3;16] which implements Wells' method for

generating permutations by transposition [20J(cf. § 5). Ord-Smith [16]

found this procedure to be the fastest of six published permutation

algorithms.

These algorithms have been modified slightly in order to make a fair com

parison; Bee appendix C for details.

The procedures have been tested on the Electrologica XS-computer of

the Mathematisch Centrum. When making time comparisons, we chose for the

actual para.meter, corresponding to the formal para.meter 'problem' , a pro

cedure with an empty body; its declaration reads 'procedure empty (x ...);;'

with the appropriate number of formal para.meters.

The results are given in table 1. It is surprising that the Trotter

algorithm is slower than our truly brute lexicographic method for gener

ating peTinutations. As for minimum-change enumeration, it seems advanta

geous to use recursive algorithms. This may be explained by the discussion

in § 1.

Very fast PL/1 procedures for generating various types of combinato

rial configurations have been announced by Ehrlich [5]. It will be inter

esting to compare these "loopless" algorithms with our recursive ones,

using the same programming language and the same computer.

20

ENUMERATION OF seconds configurations/second

SUBSETS brute force brute force ---------------- ---------------
n lex me me b lex me me b

14 26.8 19.5 18.5 611 839 887

LATTICE-POINTS brute_force_lp __ brute_force_lp_

n 1.
1.

u. lex
1.

me me b lex me me b

14 0 1 46.7 28.7 26.3 351 571 623

7 1 1. 20.8 12.6 10.6 242 399 475

7 1 8-i 7.4 4.9 4.4 682 1020 1145

COMBINATIONS brute choose acm brute choose acm ---------------- ---------------
n m lex me me b 382b lex me me b 382b

14 4 3. 1 2.6 1.3 3.0 327 379 782 338

14 7 10. 1 9.0 5.3 9.7 341 380 643 356

14 10 3. 1 2.6 1.8 2.9 325 379 550 349

14 ~0,~14 48.9 43.4 25.5 46.8

PERMUTATIONS brute_permute ___ acm bcj brute permute __ acm bcj

n lex me me b 115b 30b lex me me b 115b 30b

8 97.6 58.9 51.4 101. 0 75.6 413 685 785 399 534

Table 1 Computer results for 15 algorithms.

--- lex lexicographic enumeration, see appendix A.

--- me minimum-change enumeration, see§§ 2-5.

--- me b faster minimum-change enumeration, see appendix B.

acm 382b Chase [4], see appendix C.

acm 115b Trotter [19;16], see appendix C.

bcj 30b Boothroyd [3;16], see appendix C.

21

7. ApPlications

The enumeration algorithms may be applied to optimization problems in two

ways. First, by generating and evaluating each feasible solution to a prob

lem, one obtains an optimal solution. Secondly, one can try to improve upon

a given solution by checking a limited set of local changes. If such a

change in the solution proves to be advantageous, one starts anew, proceed

ing from the improved solution. A locally optimal solution has been obtain

ed as soon as the entire set of changes has been enumerated unsuccessfully.

While the former method yields optimal solutions to small problems only,

the latter enables us to solve "real" problems in a suboptimal but often

satisfactory way.

Some examples of each of these approaches are given below. In every

case, the minimum-change character of the enumeration should be exploited

(cf. § 1).

Our procedure 'brute force me' can be used to enumerate the solutions to

0-1 programming problems. Krol [10] reports that for small problems of this

type, explicit enumeration surpasses several methods based on implicit

enumeration. His use of a lexicographic method and his unability to describe

it raised our interest in the present subject.

Similarly, 'brute force lp me' can solve small integer programming

problems.

By explicit enumeration of permutations one can solve scheduling prob

Zems P of the form

where x = (x[1], .•• ,x[n]) runs through all n! permutations. An example is

the quadratic assignment problem (Q,AP) [14,Ch.8]:

zQ,AP(x) = l~ 1I~ 1 c [·J [.Jd .. 1= J= X 1 X J 1J

where c and dare non-negative nxn-matrices. A special case of the Q,AP is

obtained if we define

22

d •• = 1
l.J

d •• = 0
l.J

for i > j,

for is j.

It is called the aayalia subgraph problem (ASP) [12; 14,Ch.8.4.1]:

,n ,i-1
ZASP = li=1lj=1 cx[i]x[j]"

Another choice of d:

d. = 1 for 1 s i s n-1,
l. i+1

dn1 = 1 '
d .. = 0 otherwise,

l.J

leads to the well-known travelling-salesman problem (TSP) [14,Ch.6,8.4.2]:

A symmetria TSP is characterized by c .. = c .. for 1 s i,j s n.
1.J Jl.

We define the refZeation x and the rotations~ of a permutation x by

x = (x[nJ,x[n-1], •.. ,x[2],x[1J),

~ = (x[k+1], ..• ,x[nJ,x[1], •.• ,x[k]) for Os ks n-1.

One easily proves

zASP(x) = l·.e· c.: - zASP(x)' l. J 1.J
zTSP(x) = zTSP(x) for a symmetric TSP,

zTSP(~) = zTSP(x) for 0 s k s n-1.

It follows that, when we attack a symmetric TSP or an ASP by brute force,

it suffices to enumerate a refleation-free set of permutations (cf. [12,

§ 10]). Further, when solving a TSP, we can fix one of the components of x,

say x[n], and permute only the elements x[1], .•• ,x[n-1].

If the minimum-change algorithm, discussed in§ 5, is used to generate

all permutations of a given arrangement x0 = (x0[1J, ••• ,x0[n]), then the

elements x0[1] and x0[2] are transposed half-way. Let x = (.• x0[1] •. x0[2].)

be a permutation which is generated before this transposition. Its reflec

tion x = (.x0[2] •. x0[1] ..) occurs in the second half of the enumeration.

It follows that the first n!/2 arrangements form a reflection-free set

(cf. [18]).

In general, the n!/(m-1}! permutations in which the original order

of the elements x[1], ... ,x[m-1] is preserved, can be enumerated using a

simple modification of 'brute permute me':

procedure brute permute m me (problem,n,m,x); .•• ;
begin

... ; if n ~ m then node(m)
end brute permute m me;

23

The above discussion shows that QAPs, ASPs and TSPs may be solved by calls

of the form

'brute permute me (qap,n,x)',

'brute permute m me, (asp,n,3,x)',

'brute permute m me (tsp,n-1,if sym then 3 else 2,x)',

where 'qap', 'asp' and 'tsp' are procedures which compute the cost changes

occurring in the Q,AP, ASP and TSP, respectively.

The n!/2 solutions which are checked in an ASP correspond to the

hamiltonian paths in a complete directed graph. The (n-1)!/2 solutions to

a symmetric TSP are the hamiltonian circuits in a complete undirected

graph; they are called rosary permutations [8; 17; 18].

Finally, we indicate some examples of the second approach. These are sub

optimal methods, based on the enumeration of all combinations of m elements

out of n, so we are dealing with applications of 'brute choose me'. For

practical purposes, it is advisable to construct special versions of 'brute

choose me' for fixed m, using a set of m nested for-loops. Further, in each

application the calls of the procedure 'problem' should be replaced by its

actual body.

A solution x to the ASP is said to be relatively optimal [12,§ 9] if

I1=j+1 (cx[j]x[i] - cx[i]x[.i]) ~ 0
for 1 ~ j,k ~ n. z:~- ~ (c x[i]x[kl - cx[k]x[i]) ~ 0

i=J

24

Such a solution can be constructed by enumeration of all pairs (j ,k) wit,h

1 ~ j,k ~ n. This can be done efficiently with a special version of 'brute

choose me' form= 2. In the phase o:f·verification, when no further improve-

_ment is found, this method checks each element of the matrix c exactly once.

A solution x to the TSP is called m-opt if it is impossible to obtain

a solution with smaller cost by replacing m of its links (x[i],x[i+1]) by

a different set of m links [13; 14,Ch.6.6.2]. A 3-opt method, based on the

m = 3-version of 'brute choose me', turns out to be more efficient than

the algorithm presented by Lin [13].

Similarly, suboptimal solutions to the QAP can be obtained by ex

changing elements instead of links [14,Ch.8.3.2].

This approach might be applicable also to other types of complex

optimization problems.

Appendix A Algorithms for lexicographic enumeration

A lexicographic enumeration method generates the configurations x in such

a way that the number x[n] x[n-1] x[2] x[1] is increasing. Note that

this is a binary number for subsets, a mixed-radix number for lattice

points, etc.

25

The reader will have no difficulty in fathoming the algorithms for

lexicographic enumeration, presented in this appendix. They are even more

simple than the minimum-change algorithms, and they are constructed in the

same way. We indicate the following main differences:

The array x in which the configuration is stored, is always declared

within the procedurebody.

At each level of recursion exactly one component of x is defined.

The procedure 'problem' is called when the configuration has been com

pleted, i.e. at the bottom of the recursion.

The sole parameter of the procedure 'problem' is the array x. It is of

no use to include here the T_)ositions in which x differs from the pre

ceding configuration.

26

procedw:-e bnrte force lex (problem,n); value n;
integer n; ~~ocedw:-e problem;
comment lexic:ographic enumeration of subsets;
begin _:integer arre;y x [1 m] ;

(n); value n; integer n;
= O then problem(x) else

for x[n] :~ 1 do node(n -=--T);
node(n)

~ brute fo1~ce lex;

procedure brute force lp lex (problem,n,l,u); value n;
integer n; in er arre;y l,u; procedure problem;
comment 1 phic enumeration of lattice-points;
begin intet%er arral x [1 : n];

procE~dure node(n); value n; integer n;
if n "':"'o""then problem(x) else
beSp integ'er un, m; -

• un:= u[n]; m:= n - 1;
!£!. x[n) := l[n] step 1 until un ~ node(m)

end• _,
node(n)

~ brute force lp lex;

procedure bn1te choose lex (problem,n,m); value n,m;
integer n,m; procedure problem;
comment lexi<:ographic enumeration of combinations;
beSn inte~aer arre;y x [1 : n] ; .

procE~ over(n,m); value n,m; integer n,m;
if m = 0 then bottom(n,O) else
il m = n tlien' bottom(n, 1) else
be'gp_ xTnT:"= O; over(n - 1,m);

x[n]:= 1; over(n - 1,m - 1)

J?FOCE~d.ure bottom(n,d); value n.,d; intefer n,d;
beSr~ for n:= n step -1 until 1 ~ x n] := d;

problem(x)
end· _,
over(n,m)

end brute choose lex; -

lntcedure brute permute lex (problem,n); value n;
in eger n; procedure problem;
coment lexicographic enumeration of permutations;
begin integer h; integer an:& x[1 :n];

wcedure node(n); value n; integer n;
i n = 1 then problem(x) else
begin ~er k; -

end;

node n - 1);
fork:• n - 1 kjep -1 until 1 do
begin h:= x[; x[k] := x[n];x[n) := h;

node(n - 1)
end;
h:= x[n];
for k:= n step -1 until 2 do x[k) := x[k - 1];
xtTl:• h -

~ h:= n step -1 until 1 ~ x[h]:= n + 1 - h;
node(n)

end brute permute lex; -

27

28

Appendix B Faster algorithms for minimum-change enumeration

The following two considerations enable us to speed up the algorithms,

discussed in§§ 2-5,

First, we note that each of these algorithms contains one recursive

procedure which handles two types of changes simultaneously, e.g. increas

ing or decreasing the value of a component, or transposing an element and

its left or :right neighbour. This procedure can be split up in two proce

dures, each handling one type of change, and calling themselves and each

other.

Secondly, one can obtain faster algorithms by explicitly writing out

the deepest level of recursion. This clearly reduces the number of checks

if the bottom of the recursion has been reached already. This device

enables us a:Lso to deal separately with those elements which are involved

in a considerable part of the changes. For example, in 'brute force me 1

half of the changes occur in the first position, and in 'brute permute me'

then-th element is transposed in (n-1)/n of the cases. Also, in 'brute

choose me' the case m = 1 deserves a special treatment.

Following these lines, we can easily construct faster algorithms for

minimum-change enumeration. They are presented below. Some minor differ

ences are indicated if necessary. We emphasize the point that, in each

case, the speeded-up algorithm is equivalent to the original one, in the

sense that the same sequence of successive change positions is generated.

Both methods can be applied for all n ~ 1.

procedure brute force me b (problem.,n); value n;
integer n; procedure problem;
comment mi.nimum-change enumeration of subsets;
besip integer k; integer 8:'£1"& x[l:n];

mcedure rise(n); value n; integer n;
1fn=1then
be~gin xTTl:= 1; problem(x, 1., 1)
end else
!?_e~gin rise(n - 1);

x[n]:= 1; problem(x.,n.,1);
fall(n - 1)

end;

E:ocedure fall(n); value n; integer n;
Iln=1then
'.§'e, xTfT:'= O; problem(x.,n.,-1)
end else
b'ei!-n rise(n - 1);

x[n]:= O; problem(x.,n.,-1);
fall(n - 1)

end• ,
for k:= 1 ste} 1 until n do x[k) := O;
problem(x.,o.,o; rise(n) -

~ brute :force me b;

We note two additional points of difference with 'brute force me':

29

- The array x is declared within the procedure body, and initiated by

x[k]:= O, 1 ~ k ~ n.

- The procedure'problem' has a third parameter, which equals O after

initialization, and +1 (-1) after an element has been added (removed).

30

procedure brute force lp me b (problem.,n,l.,u); value n;
integer n; inte , ;;;;;;;;,;;;.;;;~ 10 u; ~rocedure problem;
comment miA e enumeraTon of lattice-points;
begip in k, x1, 11 9 u1;

____ array even [1 : n]; integer array x [1 :n);

procE~ rise(n); value n; integer n;
if n = 1 then
begi.p_ f'o'rx i : = 11 + 1 step 1 until u 1 do

x[1]:= x1; problem(x,1,1J
en
"'ei'se
boo'iean rm; integer xn., un, m;
un:= u[n]; m:= n - 1;
rm:= true; rise(m);
f2::. xn:= l[n] + 1 ste;R 1 until un ~
~ x(n]:= xn; problem(x,n,1);

rm:= lrm; if rm then rise(m) else fall{m) - - -end
end• _,
~~ fall(n); value n; integ n;
if n = 1 then
begin forxl := u1 - 1 step -1 until 11 do

- b'e'szi x[1] := x1; problem(x, 1 ,-1J
end

end• _,

ttlse
boo'Iean rm; integ r xn, ln, m;
Iii:= I[n]; m:= n - 1;
rm:= even[n]; if rm then rise(m) else fall{m);
for xn:= u[n] =-1 step -1 until 1.ii"'cto
begin x[n]:= xn; problem(x,n,-1);

rm:= lrm; if rm then rise(m) else fall{m)
, --- ~ -end

fork:= 2 s1ep l until n do
begin x[k := 11 := f[k];u1 := u[k] - 11;

- even(k] := (u1 :2) x 2 + ul
end; x[1]:= 11:= 1T1]; ul:= u[1];
problem(x,o,o); rise(n)

end brute force lp me b;

:grocedure brute choose me b (problem,n,m); value n,m;
integer n,,m; procedure problem;
conunent minimum-change enumeration of combinations;
begin _!!1teger k; integer a.rra;y x[1 :n];

12~oced.ure over(n,m); value n,m; integer n.,m;
if n = m then else
1'fm>1then-
begin over(n - 1,m);

x[n]:= 1; x[m - 1]:= O; problem(x.,n,m - 1);
revo(n - 1,m - 1)

e11d else
form:= 2 sjp 1 until n do
~~gin x[m := 1; x[m - fl:= O; problem(x,m,m - 1)
end• _,
p.rocedure revo(n,m); value n,m; integer n,m;
if n = m then else
Il'm>lthen-
begin over(n - 1 .,m - 1);
- x[n]:= o; x[m - 1]:= 1; problem(x,m - 1.,n);

revo(n - 1,m)
end else
form:= n s1ep -1 until 2 do
b,tn x[m := O; x[m - 1]7= 1; problem(x,m - 1,m)
en • __ ,
!2!. k:= 1 step 1 until m .9:2. x[k] := 1;
!2£. k:= m + 1 step 1 until n .9:2. x[k] := o;
problem(x,o,o); if m > o the11 over(n,m)

e11d brute choose me b; - --

31

32

:procedure b:nrl;e permute me b (problem..,n); value n;
integer n; ~:>cedure problem;
comment minimum-change enumeration of permutations;
begin integc~ h., k., 1., q; integer array x[O:n];

~~ regs(i); value i; integer i;
ITT= n then
begin q-;;;-o;

for l:= 2 str 1 until i do

end
begin

end• _,

begin k:= - 1; x[kJ:=h:= x[l]; x[l]:= i;
problem.(x.,k,h,i)

end
'"else
bo""oi'ean rj; integer ti, j;
q:= q - 1;
j:= i + 1;
rj:= x[q] = jj if rj then regs(j) ~ linx(j);
£2! ti:= 2 step 1 unt'IT'T ~
begin l:= q + ti;

k:= 1 - 1; x[k]:= h:= x[l]; x[l]:= i;
problem.(x,k,h,i);
rj:= 7rj; if rj then regs(j) else linx(j) - - -end

~~ linx(i); value i; integer i;
ITT= n then
begin for l: = i stfp -1 until 2 ~

be&1,n k:= - 1; x[lJ:= h:= x[k]; x[k]:= i;
problem.(x,k,i,h)

end
begin

end;

end• _,
q:= 1
else

bo"'oiean rj; integer ti, j;
j:= i + 1;
rj:= x(q] = j; if rj then regs(j) else linx(j);
£2! ti:= i step-=1 unt1T'2 ~ -
begin 1:= q + ti;

k:= 1 - 1; x[l]:= h:= x[k]; x[k]:= i;
problem.(x,k,i.,h);
rj := 7rj; !£ rj ~ regs(j) ~ linx(j)

end· _,
q:= q + 1

~ k:= 0 step 1 until n do x[k] := k; q:= O;
probl«~m(x,o.,o,o); if n > ~then linx(2)

end brute permute me b; - - --

There is one additional point of difference with 'brute permute me':

- The array x is declared within the procedurebody, and initialized by

x[k]:= k, 1 S k Sn.

This is exploited by noting that, in 'regs(i)' or 'linx(i)' the element

i+1 is waiting at the left iff x[q] = i+1, where q, as usually, equals

the number of elements j (j > i) waiting at the left. So we dispense with

the array d which indicated the type (direction) of the paths.

33

34

Appendix C The algorithms of Chase, Trotter and Boothroyd

This appendix contains the text of the three previously published algo

rithms for which computer results are given in§ 6.
Originally, these procedures are organized as is usual in the liter

ature, i.e. each call generates the next configuration in the sequence.

We define new procedures each of which contains the declaration and a

series of calls of the original procedure. Of course, just before these

successive calls it is the right moment to initialize the necessary

auxiliary variables and arrays.

The proeedures, obtained in this way, generate all configurations

after each call and are comparable to our algorithms. Inspection will

reveal some additional minor modifications.

procedur1::, acm 382b (problem.,n.,m); value n.,m;
integer :n.,m; procedure problem;
comment chase., c.acm 13(1970)368;
begin :boolean busy;integer x., y; integer arra;y b[O:n]., p[O:n + 1];

procedure twiddle(x.,y); integer x.,y;
'.begin integer 1., j., k;

j:= O;
11: j:= j + 1; !f p[j] ~ 0 ~ ~ 11;

if p[j - 1] = 0 then
begin for 1:= :r=-1 step -1 until 2 ~ p[i] := -1;

p[j]:= O; p(1]:= x:= 1; y:= j; ~ 14
end;
lij > 1 then p[j - 1] := O;

12: J:"= j + 1; !! p[j] > O ~ goto 12;
1:= k:= j - 1;

35

13: i:= i + 1; g p[i] = O ~ begin p[i]:= -1; goto l3 end;
if p[i] = -1 then ?1n p[i] := Ii['k"J'; x:= 1; y:= k; p[k] := -1; ~ 14 end;
1 1 = p [O] then begin busy:= false; ~ 14 end;
p["j]:= p[i];p['I]:= O; x:= j; y:= 1;

14:
end twiddle; ·-
:y:=n-m;
for x:= 1 step 1 until y do b[x]:= p[x]:= O;
:!£!_ x:= y + 1 step 1 untirn !!2_ begin b[x]:= 1; p[x]:== x - y end;
y:== n + 1;
p[O]:= y; p[y]:= ---2; if m = O then p[1]:= 1;
x:= y:= O; busy:= true; -

next: 'b[x] := 1; b[y] := o;
problem(b,x.,y); twiddle(x.,y); if busy then ~ next

end acm 382b; --

36

ccedure acm 115b (problem,n,x); value n,x;
:teger n; !!:'!!:l. x; procedure problem;

comment trotter, c.acm.2_(1962)43ti-435.
ord-smith, comput.j. 14(1971)136-139;

begin boolean busy; !!!;! s,~; integer cu integer an:& p, d[2:10h

~cedure pem(x,n)J value n; integer n; array x;
egin inteeer k;

k ·= • . .,
index: p[n]:= q:= p[n] + d[n];

if q = n then~ d[n] := -1; ~ loop end;
I? q + O tJim ~transpose;
d'.[°n] : = 1 J ""'1t':": ~ 1 J

loop: _g: n > 2 ~ ~ n:= n - 1; E:!:2, index end;
q:= 1; busy:=~

transpose: q:= q + kJ ~ + 1;
t:= x[q]; x[q]:= s:= x[k]; x[k]:= t

end perm; -
!2::, q:= 2 TP 1 until n do begin p[q] := OJ d[q] := t end;
q:= OJ s:= := OJ busy:= trl.ie•

next: problem{x,q,s,t); perm(x.,n); !,! busy~ £'!:2. next
end acm 115b; -

kocedure bcj 30b (problem;n,x); value n,x;
teger ni1 x; procedure profilem;

comment boo d, comput@j. 10(1967)311.
Ol:'d-smi th, co:mput. j • 14(1971) 136-139;

begin boolean busy; real x1;-" x2, x3, x4; integer 1;
integer arraz m-;710];

exit:

s1: ...,, . ;::w_.
s3:
8'4-:

for i : = 5 stef 1 until n do d[i] : = 0;
GO; x1 := x 1]; x2:= x[m"; x3:= x[3]; x4:= x[4]; busy:= true;

next: problem(x); perm(x.,n); .f! busy ~ ~ next
end bcj 30b; -

37

38

Literature

1. J.BOOTHROYD, Algorithm 6, Perm, Comput.Bull • .2_(1965)104.

2. J.BOOTHROYD, Algorithm 29, Permutation of the elements of a vector,
Comput.J • ..!Q(1967)311.

3. J.BOOTHROYD, Algorithm 30, Fast permutation of the elements of a vector,
Comput.J • ..!Q(~967)311-312.

4. P.J.CHASE, Algorithm 382, Combinations of M out of N objects, Comm.ACM
fl(1970)368.

5. G.EHRLICH, Loopless algorithms for generating permutations, combinations,
and other combinatorial configurations, J.ACM 20(1973)500-513.

6. M.GARDNER, The curious properties of the Gray code and how it can be
used to solve puzzles, Sci.Amer. 227.2(August 1972)106-109.

7. E.N.GILBERT, Gray codes and paths on then-cube, Bell System Techn.J.
37(1958)815-826.

8. K.HARADA, Generation of rosary permutations expressed in hamiltonian
circuits, Comm.ACM ~(1971)373-379-

9. S.M.JOHNSON, Generation of permutations by adjacent transposition,
Math.Comp . .11.(1963)282-285.

10. G.KROL, Het gemillimeterde hoofd,133-138, Amsterdam,1967.

11. D.H.LEHMER, The machine tools of combinatorics, in: E.F.BECKENBACH(ed.),
Applied combinatorial mathematics,New York,1964,5-31,

12. H.W.LENSTRA,JR., The acyclic subgraph problem, Report BW 26/73, Mathe
matisch Centrum, Amsterdam, 1973.

13, S.LIN, Computer solutions of the traveling salesman problem, Bell
System Tech.J.44(1965)2245-2269.

14. H.MULLER-MERBACH, Optimale Reihenfolgen, Berlin etc.,1970.

15. R.J.ORD-SMITH, Generation of permutation sequences: Part 1 , Comput.J.
.11(1970)152-155.

16. R.J.ORD-SMITH, Generation of permutation sequences: Part 2, Comput.J.
~(1971)136-139.

17. R.C.READ, A note on the generation of rosary permutations, Comm.ACM
12.(1972)775.

18. M.K.ROY, Reflection-free permutations, rosary permutations, and adjacent
transposition algorithms, Comm.ACM .1§_(1973)312-313.

19, H.F.TROTTER, Algorithm 115, Perm, Comm.ACM .2_(1962)434-435,

20. M.B.WELLS, Generation of permutations by transposition, Math.Comp. 12.
(1961)192-195,

21. M.B.WELLS, Elements of combinatorial computing, Oxford etc.,1971.

