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Abstract

Recursive algorithms for enumerating various types of combinatorial
configurations are presented. We consider lexicographic as well as
minimum-change methods. The algorithms are defined as ALGOL 60-
procedures. Their correctness and their efficiency are discussed.
Finally we indicate some applications in the field of mathematical

programming.

Acknowledgements

The author gratefully acknowledges the valuable help and suggestions

from Jack Alanen, Peter van Emde Boas and Hendrik Lenstra.






Contents

Abstract
Contents

1. Introduction
2. Subsets

3. Lattice-points
4. Combinations
5. Permutations
6. Computations
T. Applications
Appendix A
Appendix B
Appendix C

Literature






1. Introduction

In this report we present algorithms for enumerating various types of
combinatorial configurations. We distinguish between lexZcographic and
minimum—change methods. Lexicographic methods generate the configurations
in a "dictionary" order, while minimum-change methods produce a sequence
in which successive configurations differ as little as possible. The latter
methods have two important advantages. First, the entire sequence is gener-
ated efficiently, since each configuration is derived from its predecessor
by a simple change. Secondly, in some applications each configuration has
to be evaluated, and a minimum-change algorithm 'may permit the value of
the current arrangement to be obtained by a small correction to the imme-
diately previous value, rather than ab Znitzo" [15].

Our algorithms are defined as ALGOL 60-procedures. Théy aré based
on recursive procedures, they contain no labels, and after one call they
generate the entire sequence of configurations. Each time a new configura-
tion has been obtained, a call of a procedure 'problem' is made. Parameters
of this procedure are the configuration, and, for minimum-change enumera-
tion, the positions in which it differs from its predecessor. It has to be
defined by the user to handle each configuration in the desired way.

This construction is unlike what has become usual in the literature.
Most of the published procedures are organised in such a way that each call
generates the next configuration in the sequence (see [2; 3; 4; 16; 191;
[1] is an exception). Then in each call it is necessary to recompute the
point which has been reached in the sequence [15]. This is inherent to an
iterative description of essentially recursive algorithms. A mechanism for
reducing this kind of computations has recently been devised by Ehrlich [5].
To us, a recursive description seems more appropriate and more transparent.

The following four paragraphs discuss algorithms for the minimum-change
enumeration of subsets, lattice-points, combinations and permutations, re-
spectively. Appendix A contains four algorithms for lexicographic enumera-
tion, appendix B four faster versions of our minimum-change methods, and
appendix C three previously published minimum-change procedures. In § 6 we
compare the running times of these fifteen algorithms on a computer. Some
applications to integer programming and scheduling problems are indicated
in § 7.



2. Subsets

In this paragraph we discuss a method for the minimum-change enumeration of
all subsets of a set, S = {e1,e2,...,en}- A subset X c S will be repre-

sented by an integer n-vector with components O and 1:

x[i]
x[i]

1 if e; € X,
0 if ei¢x.

These vectors correspond to the vertices of the n-dimensional cube. A
hamiltonian path on this n-cube defines a minimum-change sequence of sub-
sets in which each subset is derived from its predecessor by adding or re-
moving one element. Such a sequence is called a binary Gray code [6; T; 211.

The particular sequence which is generated by our algorithm is the
reflected binary Gray code. For n elements (n = 1), it is produced in the
following way. First, list the sequence for n-1 elements and add 0's as the
n-th components. Secondly, list the (n-1)-sequence in reversed order, adding
1's as the n-th components. Obviously, the sequence for O elements consists
only of the empty configuration.

As an illustration we present the n-cubes for n = 1,2,3 and the re-
flected binary Gray codes for n = 1,2,3,bL.

n =1 n=2 n=3 n=1.
1 1 00 1 000 1 0000
2 1 2 10 2 100 2 1000
3 1 3 110 3 1100
4 01 4 010 4 0100
5 011 5 0110
6 111 6 1110
T 101 T 1010
8 001 8 0010
9 0011
ol : olo ne 10 1011
on 11 1111
12 0111
13 0101
1 1101
o ] 00 o (L4 15 1001
001 101

-
(@)

0001



In the description, given above, we can replace "O" and "1" by "xo[n]" and

"1—x0[n]" respectively, where x. denotes an arbitrary starting configura-

tion. In this way a more generag reflected binary Gray code is obtained.
The last configuration in the sequence is adjacent to the first one, since
they differ only in their n-th component. It follows that this Gray code
constitutes a hamiltonian circuit on the n-cube.

If the rules are written down in a more formal way, the following al-

gorithm for enumerating subsets results:

cedure brute force mc (problem,n,x); value n,x;
integer n; integer array x; procedure probiem;
comment min e enumeration of subsets;

e
cedure node(n); value n; integer n;
_ﬂﬁe 1f n > 1 then node(n — 1;;
X[nl:= 1 =x[n]; problem(x,n);
if n > 1 then node(n - 1)

end;

problem(x,0); node(n)
end brute force mc;

If X and ¥y, are adjacent vertices, differing in their last component, then

a call
'"brute force mc (problem,n,xo)'

has the following effect:

- A hamiltonian path on the n-cube, starting from x_. and ending in Yo» is

traversed. °
- In vertex X, a call 'problem(xo,o)' is made.
- In each vertex x, reached by a change of the k-th component, a call
'problem(x,k)' is made.
The latter two assertions are clear from inspection. To prove the first one,
it suffices to show that a call 'node(k)' accomplishes the following:

Starting from a configuration x, all x' for which
x' ¥ x, x'[1] =x[1] for k+1 <1l <n

are reached, each exactly once, while no other vertices are reached. The



final vertex y is given by
ylk1 = 1-x[x], y[1] = x[1] for 1 # k.

_The proof, which is by induction on k, is clear from the following diagram:

(x[1],.,x[%—2], x[§—1], x[k]1,x[k+1]1,.,x[n]) = x
! ! : l
< N ¥
node(k=1) | (,¥17,. x[ke2l,1-x[k-17, x[k1,x[k+17,..xLn])
node (k) x[k1:= 1-x[kI{(x[1],.,x[k-21,1-x[k-17,1-x[k 7, x[k+17, . ,x[n]) '
1
]
node(k-1) i 4 .
(x[11,.,x[k-2], =x[k-11,1-x[k]1,x[k+1],.,x[n]) =¥

Here a broken arrow means that the component is changed; an unbroken arrow

indicates that it remains unchanged.



3. Lattice-points

An n-dimensional lattice is defined by two integer n-vectors 1 and u. Its

vertices are given by the integer n-vectors x for which
10i] < x[iJ < wlil for 1 <1i <n.

The n-cube is a lattice with 1[il = 0 and ulil = 1 for 1 < i < n. Corre-
spondingly, an algorithm for the minimum-change enumeration of lattice-
points is obtained as a straightforward generalization of 'brute force mec'.
Each vertex is derived from its predecessor by increasing or decreasing
exactly one component by one. However, not each lattice contains a hamil-
tonian circuit, as can be seen by taking n = 1, 1[1] <ul1]+1 or n = 2,
1[il = 0, ulil = 2 for i = 1,2. So the property that we can start in an
arbitrary vertex has been lost.

As an illustration of this method we present two examples in which

n==U4, 1[i] = 1 and . uli] = i,5-1i respectively.

i 1234 i 1231%
10il 11 11 1Lil 11 11
uli]l 12 3k ulil 4 3 2 1

1 1111 ... 1 1111 ..

2 1211 .+.. 2 2111 +,

3 1221 +. 3 3111 +.

Ly 1121 .-.. Lok 1 11 +,,

5 1131 . 5 k211 .+,

6 1231 .+.. 6 3211 -

T 1232 ...+ 7 2211 -

8 1132 .- 8 1211 -..

9 1122 ..- 9 1311 .+.
10 1222 .+, 10 2311 +.
11 1212 - 11 3311 +,
12 1112 .- 12 4311 +...
13 1113 + 13 b 321 ..+,
i 1213 .+ I 3321 -
15 1223 + 15 2321 -
6 1123 .- %6 1321 -
17 1133 + 1MmT 1221 .-
18 1233 .+ 18 2221 +.
19 1231L% + 19 3221 +.
20 1134 .- 20 L 221 +,
21 1 121%4 - 21 L1121 ,-
22 122L4 .+ 22 3121 -
23 1214 - 23 2121 -
2h 111 L4 .- 24 1121 -
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Our algorithm for generating lattice-points is presented below.

procedure brute force lp mc (problem,n,l,u); value n,l,u;

integer n; integer array l,u; procedure problem;
coment minimum-change enumeration of Tattice-—points 3
Degin
procedure node(n); value n; integer n;
begin integer dn, In, un; '
un:= ulnl; uln):= ln:= 1[n];
dn:= if In < un then 1 else -1;
if n > 1 then node(n - 15;
Tor In:= In + dn step dn until un do
begin  1[n]:= 1nj problem(I,n,dn);
if n > 1 then node(n - 1)

end
end;

problem(1,0,0); node(n)
end brute force lp mec;

One can check easily that a call
'"brute force 1lp me (problem,n,l,u)’

has the following effect:

- A hamiltonian path in the lattice, starting from 1, is traversed.

- In vertex 1 a call 'problem(1,0,0)' is made.

- In each vertex x, reached from y with x[k] # y[k], a call
'problem(x,k,x[k]-y[k])' is made.
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L. Combinations

The algorithm, presented in § 2 and generalized in § 3, will now be used to
derive a method for enumerating combinations.

A combination C of m out of n elements e,,e “se is repreéented by

TE
a binary n-vector x:

x[i]
x[i]

1 if e. e C,
i

0 if e, ¢ C.

]

We define an undirected graph G(n,m) whose vertices are given by these vec-
tors; (x,y) is an edge of G(n,m) iff x and y differ in exactly two compo-
nents. A hamiltonian path in G(n,m) corresponds to a minimum—changé sequence
of combinations in which each combination is derived from its predecessor
by adding one element and removing one element.

From the reflected binary Gray code with the empty set as starting
configuration we take the subsequence consisting of those subsets which
contain exactly m elements. We prove that this subsequence constitutes a

hamiltonian path in G(n,m) from

x. = (1,...,1,1,0,...,0,0)

0 N~ N ~——
m n-m
to Yo = (1,04.51,0,0,...,0,1)
m-1 n-m

(note that yo and x_ are adjacent) if1<m<n-1; ifm =0 orm = n the

path clearly consisgs of only one vertex.

The proof proceeds by induction on n, the case n = 1 being obvious.
For n > 1, 1 £ m £ n-1, the sequence consists of two parts: first, the
quence in G(n-1,m), with 0's added as the n-th components, and secondly,
the sequence in G(n-1,m-1) in reversed order, with 1's added as the n-th
components. By the induction hypothesis these two parts are hamiltonian

paths which look like:

form > 1: 1T ...m-2m-1 m m+l...n-2 n-1 n

(1,...,1, 1, 0, 0,...,0, 1, 0)
, 0, 0, 0,...,0, 1,
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form = 1: 1 2 ...n-2 n-1 n
(1, 0,...,0, 0, O

)
(0, 0,...,0, 1, 0)
(0, 0,...,0, 0, 1)

Inspection shows that the transitions * are edges in G(n,m), so the total
sequence is a hamiltonian path, as was to be proved.
As an illustration we present the reflected binary Gray code for n = 5

and its subsequences for 0 < m < 5.

00000 00000

10000 10000

11000 11000

01000 01000

01100 01100

11100 11100

10100 10100

00100 00100

00110 00110

10 10110 10110

11 11110 11110
12 01110 01110

13 01010 01010

14 11010 11010

15 10010 10010

16 00010 00010

17 00011 00011

18 10011 ' 10011

19 11011 11011
20 01011 01011

21 01111 01111
22 11111 11111
23 10111 10111
24 00111 00111

25 00101 00101

26 10101 10101

27 11101 11101
28 01101 01101

29 01001 01001

30 11001 11001

31 10001 10001

32 00001 00001

O O~ AW\ FWhN =
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Combining the recursion scheme of 'brute force me' (ef. § 2) and the
results, presented above, we obtain the following algorithm for enumerating

combinations:

cedure brute choose mc (problem,n,m); value n,m;
integer n,m; procedure problem;
comment minimum-change enumeration of combinstions;

__@.Be integer k; integer array x[1:n];

rocedure over(n,m); velue n,m; integer n,m;
i? n>mAm>0 then

begin  intege xn, xk-
xn.l;LTh]; xk:= 1 — xn;
over(n - 1,m - xn);
= (if m = 1 then n else m) - 1;
x[n].- xk; x[k]:= xn;
if xn = O then problem(x,n,k) else problem(x,k,n);
over(n — 1,m — xk)

end;

for k:= 1 step 1 until m do x[
for k:i=m+ 1 step 1 until n do x[
problem(x,0,0)3 over(n,m)

end brute choose me;

~
et s

A call
"brute choose me (problem,n,m)’

has the following effect:

- A hamiltonian path in G(n,m), starting from x_ and ending in Yoo is

0
traversed.
- In vertex XO a call 'problem(xO,O,O)' is made.

- 1In each vertex x, reached by adding e, and removing e;> 8 call

'problem(x,k,1)' is made. :
These assertions are proved along the same lines as those for 'brute force
me'. Note that in the body of 'over(n,m)' the components in positions n and
(if m = 1 then n else m) - 1 are changed; this corresponds to the transi-

tions * in the diagrams, given above.



1

Another minimum-change method for generating combinations has been proposed
by Chase [4] and Ehrlich [5]. Still another method has been suggested by
Wells [21,Ch.5.1,ex.T7]. '

A minimum-change sequence for combinations of m, < m < m_ out of n elements

in which each combination is derived from its p;edecessoi by adding one
element and/or removing one element, is given by the subsequence of the
reflected binary Gray code consisting of those subsets which contain
my<m<m elements. The construction of a recursive algorithm for enumer-

2
ating these configurations is left as a challenge to the reader.
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5. Permutations

We next consider the minimum-change enumeration of all permutations of n
different elements. An n-permutation is defined as an n-vector whose com-
ponents are these elements in some order.

We define an undirected graph G(n) whose vertices are given by the n!
n-permutations; (x,y) is an edge of G(n) iff x and y differ only in two
neighbouring positions. A hamiltonian path in G(n) corresponds to a mini-
mum-change sequence of permutations in which each permutation is derived
from its predecessor by transposing two elements in adjacent positioms.

Denoting the n elements by 1,2,...,n, we can construct such a sequence
inductively as follows. For n = 1, it consists of the only 1-permutation.
Let the sequence for (n-1)-permutations be given. Placing n at the right
of the first (n-1)-permutation, we obtain the first n-permutation. The n-1
next ones are obtained by successively interchanging n with its left neigh-
bour. After that, n is found at the left of the first (n-1)-permutation,
which remained unchanged. Replacing this (n-1)-permutation by its successor
in the (n-1)-sequence gives us the (n+1)-th n-permutation, and the n-1 next
ones arise from successive transpositions of n with its right neighbour.
Then n is found at the right of the second (n-1)-permutation, which now is
repléced by the third one, and the process starts all over again.

As an illustration of this method we present the sequences and the
graphs for n = 1,2,3,4. We note that G(L) is the edge graph of a solid
truncated octahedron, replicas of which fill entire 3-space. Analogous

statements hold for all n.

n =1 n=2 n=3
1 1 1 12 1 123
2 2 1 2 132
3 312
L 321
5 231
6 213
G(1) G(2) G(3)
13 132
® L ——
1 1z 2
213 312

231 32
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The following algorithm generates the permutations in the order described

above:

%ocedure brute permute mc (problem,n,x); value n,X;
eger n; array X; procedure problem;

comment minimum-change enumeration of permutations;
Pegin  real xk; integer k, 1, q; integer array d[1:n];

procedure node(i); value 1; integer i;
begin inte er ai, ti, ui, xi;
d:= d[1]; if di = 1 then
begin ti:= 13 ul:=T = 1; q:=q -~ 1

g_n.g else
begin  ti:=i; ui:=2

end;

xi:= x[q + ti];

if i <n then node(i + 1);

for ti:= t1 step di until ui do

begin k:= q+ti, 1:= k + di;
x[k]:= xk:= x[1]); x[1]):= xi;
if di =1 'bhen problem(x,k,xk,xi)
else problem(x,1l,xi,xk);
. if 1 < n then node(i + 1)
end;
alT):= —di; if di = =1 then qi= q + 1
end; -

for k:= 1 step 1 until n do dlk]:= -1; q:= 03
problem(x,0,0,0); if n > 2 then node(2)
end brute permute mc;
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If {x0[1],...,x0[n]} is the n-set to be permuted, then a call

'"brute permute mc (problem,n,xo)'

has the following .effect:
If n = 1, then a call 'problem(xo,0,0,0)' is made, and else

- A hamiltonian path in G(n) is traversed, starting from x. and ending in

0
Yo such that

y0[1] = x0[2], y0[2] = x0[1], yo[k] = xo[k] for 3 <k < n.

- In vertex x, a call 'problem(xO,O,O,O)' is made.
- In each vertex x, reached by transposition of the elements in positions
k and k+1, a call 'problem(x,k,x[k],x[k+1])' is made.
The latter two assertions are clear from inspection. The proof of the first
one may be left to the reader. As a hint, we note that just before a call
'node(i)' and immediately after its execution, x, d and q satisfy the fol-
lowing conditions:
{jli < j <£n, d[j] = 1} has exactly q elements, and if we index them
such that j1 > j2 > .. > jq, then x[k] = xo[jk] for 1 <k < q,
and if {j|i < j < n, a[jl = -1} = {j;,...,j;}, where j% > jé > oo > 3,
r+q = n-i+1, then x[n+1-k] =’X0[j£] for 1 <k < r.
Using the variabele q to determine the place of the transpositions is more

efficient than keeping track of the inverse permutation for that purpose

(ef. [51).

Generation of permutation sequences has received much attention in the
literature.

The algorithm for enumeration by adjacent transposition, presented
above, was discovered independently by Trotter [19] and Johnson [9]. A
different minimum-change method was found by Wells [20]; Boothroyd gives
recursive [1] and iterative [2; 3] ALGOL 60-procedures for this algorithm.

Methods for generating permutations are surveyed by Lehmer [11],
Ord-Smith [15] and Wells [21,Ch.5.2]. Ord-Smith [16] presents a time com-
parison between six algorithms, including three minimum-change procedures

(19; 2; 31.
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We make one final observation.

Let an undirected graph H(n) on n vertices be given. Define an
undirected graph GH(n) on the set of n-permutations, by drawing an edge
- between x and y iff x can be obtained from y by a single transposition
of the elements in positions k and 1, where (k,1) is an edge of H(n). One

can prove the following:

GH(n) contains a hamiltonian circuit if and only if

H(n) contains a spanning tree.

The "only if"-part is obvious; the "if"-part follows by an inductive
argument.
In the Johnson-Trotter algorithm, discussed above, the "transposition

graph" H(n) is the tree which looks like:

1 2 3 oo n
¢ ——& & . g e ®

The transposition graph of the Wells algorithm contains the above one

properly.
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6. Computations

In this paragraph we give computer results for the algorithms presented in
this report. We include also results for three algorithms which have been
published;

these are

- Chase's algorithm acm 382 [L], which implements a minimum-change method
for generating combinations, different from ours (cf. § L).

- Trotter's algorithm acm 115 [19;16] which generates permutations by ad-
jacent transposition (cf. § 5). For a number of years it remained the
fastest permutation procedure.

- Boothroyd's algorithm bej 30 [33;16] which implements Wells' method for
generating permutations by transposition [201(ecf. § 5). Ord-Smith [16]
found this procedure to be the fastest of six published permutation
algorithms.

These algorithms have been modified slightly in order to make a fair com-

parison; see appendix C for details.

The procedures have been tested on the Electrologica X8-computer of
the Mathematisch Centrum. When making time comparisons, we chose for the
actual parameter, corresponding to the formal parameter 'problem', a pro-
cedure with an empty body; its declaration reads 'procedure empty‘(x...);;'
with the appropriate number of formal parameters.

The results are given’in table 1. It is surprising that the Trotter
algorithm is slower than our truly brute lexicographic method for gener-
ating permutations. As for minimum-change enumeration, it seems advanta-
geous to use recursive algorithms. This may be explained by the discussion
in § 1.

Very fast PL/1 procedures for generating various types of combinato-
rial configurations have been announced by Ehrlich [5]. It will be inter-
esting to compare these "loopless" algorithms with our recursive ones,

using the same programming language and the same computer.
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ENUMERATION OF

seconds

configurations/second

SUBSETS Erute force EEEEE_EQEEE____
n lex me me b lex mc mec b
14 26.8 19.5 18.5 611 839 887
LATTICE-POINTS brute force 1p brute force 1p
n li us lex me mec b lex mc mec b
L o0 1 46.7 28.7 26.3 351 571 623
7 1 i 20.8 12.6 10.6 2hk2 399  L75
T 1 8-1 T.4 h.o k4.4 682 1020 1145
COMBINATIONS brute choose _ acm brute choose acm
n m lex mc me b 382b lex mc me b 382b
1 L 3.1 2.6 1.3 3.0 327 379 782 338
17 10.1 9.0 5.3 9.7 341 380 643 356
14 10 3.1 2.6 1.8 2.9 325 379 550 349
14 20,<14 48.9 L43.4 25.5 L46.8
PERMUTATIONS brute permute acm beJ brute permute acm bej
n lex me me b 115b 30b lex mc me b 115b 30b
8 97.6 58.9 51.L 101.0 75.6 |413 685 1785 399 53k
Table 1 Computer results for 15 algorithms.
-—- lex : lexicographic enumeration, see appendix A.
~—— mec : minimum-change enumeration, see §§ 2-5.
——— mc b : faster minimum-change enumeration, see appendix B.
acm 382b : Chase [L4], see appendix C.
acm 115b : Trotter [19;16], see appendix C.

bej 30b

: Boothroyd [33;16], see appendix C.
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T. Applications

The enumeration algorithms may be applied to optimization problems in two
ways. First, by generating and evaluating each feasible solution to a prob-
lem, one obtains an optimal solution. Secondly, one can try to improve upon
a given solution by checking a limited set of local changes. If such a
change in the solution proves to be advantageous, one starts anew, proceed-
ing from the improved solution. A locally optimal solution has been obtain-
ed as soon as the entire set of changes has been enumerated unsuccessfully.
While the former method yields optimal solutions to small problems only,
the latter enables us to solve "real" problems in a suboptimal but often
satisfactory way.

Some examples of each of these approaches are given below. In every
case, the minimum-change character of the enumeration should be exploited
(cf. § 1).

Our procedure 'brute force mc' can be used to enumerate the solutions to
0-1 programming problems. Krol [10] reports that for small problems of this
type, explicit enumeration surpasses several methods based on implicit
enumeration. His use of a lexicographic method and his unability to describe
it raised our interest in the present subject.

Similarly, 'brute force lp mc' can solve small integer programming
problems. I

By explicit enumeration of permutations one can solve scheduling prob-

lems P of the form
min zP(x)

where x = (x[1],...,x[n]) runs through all n! permutations. An example is

the quadratic assignment problem (QAP) [14,Ch.8]:

n n
= ). . . ..d..
ZQAP(X) Z1=1ZJ=1 Cx[31x031%1j

where c and 4 are non-negative nxn-matrices. A special case of the QAP is

obtained if we define
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dij =1 for 1> j,
.. =0 for i< j.
1J

It is called the acyclic subgraph problem (ASP) [12; 14,Ch.8.Lk.11:

2 - Zn i-1
ASP ~ bi=183=1 Cx[i1x[j1°

Another choice of d:

= <3 £ n-
di S+ 1 for 1 <1 < n-1,
dn1 =1
d.. = 0 otherwise,
1J

leads to the well-known travelling-salesman problem (TSP) [14,Ch.6,8.4.2]:

_ tvn-1
2pgp(¥) = Lioy C4riTxli+1] ¥ Cxlnlx[1]"

A symmetric TSP is characterized by cij = cji for 1 £ 1,j < n.

We define the reflection x and the rotations x, of a permutation x by

(x[n]l,x[n-11,...,x[2],x[1]),
(xlx+1],...,x[n],x[1],...,x[k]) for 0 < k < n-1.

X

*x

One easily proves

ZASP(f) = zizj ¢35~ Zpgp(x)s
ZTSP(X) = ZTSP(X) for a symmetric TSP,

zTSP(xk) = zTSP(x) for 0 < k < n-1.

It follows that, when we attack a symmetric TSP or an ASP by brute force,
it suffices to enumerate a reflection-free set of permutations (cf. [12,
§ 10]). Further, when solving a TSP, we can fix one of the components of x,
say x[nl], and permute only the elements x[1]1,...,x[n-1].

If the minimum-change algorithm, discussed in § 5, is used to generate

all permutations of a given arrangement x . = (x0[1],...,x0[n]), then the

0
elements xo[1] and x0[2] are transposed half-way. Let x = (..x0[1]..x0[2].)
be a permutation which is generated before this transposition. Its reflec-

tion x = (.x0[2]..xo[1]..) occurs in the second half of the enumeration.
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It follows that the first n!/2 arrangements form a reflection-free set
(cf. [18]).

In general, the n!/(m-1)! permutations in which the original order
of the elements x[17,...,x[m-1] is preserved, can bé enumerated using a

simple modification of 'brute permute mc':

procedure brute permute m mc (problem,n,m,x);...;
begin ves

...3 if n 2 m then node(m)
end brute permute m mc;

The above discussion shows that QAPs, ASPs and TSPs may be solved by calls
of the form

"brute permute me (qap,n,x)’',
'"brute permute m me (asp,n,3,x)',

'prute permute m mec (tsp,n-1,if sym then 3 else 2,x)',

where 'gap', 'asp' and 'tsp' are procedures which compute the cost changes
occurring in the QAP, ASP and TSP, respectively.

The n!/2 solutions which are checked in an ASP correspond to the
hamiltonian paths in a complete directed graph. The (n-1)!/2 solutions to
a symmetric TSP are the hamiltonian circuits in a complete undirected

graph; they are called rosary permutations [8; 17; 181.

Finally, we indicate some examples of the second approach. These are syb-
optimal methods, based on the enumeration of all combinations of m elements
out of n, so we are dealing with applications of 'brute choose mc'. For
practical purposes, it is advisable to construct special versions of 'brute
choose me' for fixed m, using a set of m nested for-loops. Further, in each
application the calls of the procedure 'problem' should be replaced by its
actual body.

A solution x to the ASP is said to be relatively optimal [12,§ 9] if

Lijer (Curgmmcin = Caritar)) 2 ©

Zk—1 (

1= )20

Cx[17xMk1 ~ Sx[k1x[1i]



2k

Such a solution can be constructed by enumeration of all pairs (Jj,k) witi
1 < j,k < n. This can be done efficiently with a special version of 'brute
choose me' for m = 2. In the phase of :verification, when no further improve-
‘ment is found, this method checks each element of the matrix c¢ exactly once.

A solution x to the TSP is called m—opt if it is impossible to obtain V
a solution with smaller cost by replacing m of its links (x[iJ,x[i+1]) by
a different set of m links [13; 14,Ch.6.6.2]. A 3-opt method, based on the
m = 3-version of 'brute choose mc', turns out to be more efficient than
the algorithm presented by Lin [13].

Similarly, suboptimal solutions to the QAP can be obtained by ex-
changing elements instead of links [14,Ch.8.3.21].

This approach might be applicable also to other types of complex

optimization problems.



25

Appendix A Algorithms for lexicographic enumeration

A lexicographic enumeration method generates the configurations x in such
a way that the number x[nl] x[n-1] ... x[2] x[1] is increasing. Note that
this is a binary number for subsets, a mixed-radix number for lattice-
points, etc.

The reader will have no difficulty in fathoming the algorithms for
lexicographic enumeration, presented in this appendix. They are even more
simple than the minimum-change algorithms, and they are constructed in the

same way. We indicate the following main differences:

- The array x in which the configuration is stored, is always declared
within the procedurebody.

- At each level of recursion exactly one component of x 1is defined.

- The procedure 'problem' is called when the configuration has been com-
pleted, i.e. at the bottom of the recursion.

- The sole parameter of the procedure 'problem' is the array x. It is of
no use to include here the positions in which x differs from the pre-

ceding configuration.
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rocedure brute force lex (problem,n); value n;
teger n; procedure problem;

comment lexicogrephic enumeration of subsets;

begin integer axrray x[1:n];

rocedure node(n); value n; integer n;
;i__f n = O then problem(x) else
for x[n]:= 0, 1 do node(n - 1);

node(n)
end brute force lex;

procedure brute force lp lex (problem,n,l,u); value n;
integer n; integer array 1l,u; procedure problem;
comment lexicographic enumeration of lattice—points;
begﬁ integer array x[1:n];

procedure node(n); value n; integer n;
if n = O then problem(x) else

begin integer un, mj
w:= ulnl; m:=n — 13

for x[n]:= 1[n] step 1 until un do node(m)

end;

node(n)
end brute force lp lex;

procedure brute choose lex (problem,n,m); value n,m;
integer n,m; procedure problem;

comment lexicographic enumeration of combinations;
begin  integer array x[1:n];.

procedure over(n,m); velue n,m; integer n,m;
if m = O then bottom(n,0) else
if m = n then bottom(n,1) else
begin x[n]:= 0; over(n — 1,m);
x[n]:= 1; over(n - 1,m - 1)

end;

procedure bottom(n,d); value n,d; integer n,d;

begin or n:=n step -1 until 1 do xin|:= d;
problem(x)

end;

over(n,m)

end brute choose lex;
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E%cedure brute permute lex (problem,n); value n;
integer n; procedure problem;
comment le&cograpﬁic enumeration of permutations;

Ee@ integer h; integer array x[1:n];

%oced e node(n); value n; integer n;
if n = 1 then problem(x) else

‘ggﬂ integer k;
nodesn -1);

for k:=n - 1 step =1 until 1 do

begin  h:= x[k]; x[k]T= x[n]; X[n):= b;

node(n - 1

end;

ho-' X[n],

for k:=n step ~1 until 2 do x[k]:= x[k - 1];

X[T):=
end;
for h:= n step -1 until 1 do x[h]l:=n + 1 = h;
node(n)

end brute permute lex;
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Appendix B Faster algorithms for minimum-change enumeration

The following two considerations enable us to speed up the algorithms,
discussed 1n §§ 2-5.

First, we note that each of these algorithms contains one recursive
procedure which handles two types of changes simultaneously, e.g. increas-
ing or decreasing the value of a component, or transposing an element and
its left or right neighbour. This procedure can be split up in two proce-
dures, each handling one type of change, and calling themselves and each
other. '

Secondly, one can obtain faster algorithms by explicitly writing out
the deepest level of recursion. This clearly reduces the number of checks
if the bottom of the recursion has been reached already. This device
enables us also to deal separately with those elements which are involved
in a considerable part of the changes. For example, in 'brute force mc'
half of the changes occur in the first position, and in 'brute permute mc'
the n-th element is transposed in (n-1)/n of the cases. Also, in 'brute
choose me' the case m = 1 deserves a special treatment.

Following these lines, we can easily construct faster algorithms for
minimum-change enumeration. They are presented below. Some minor differ-
ences are indicated if necessary. We emphasize the point that, in each
case, the speeded-up algorithm is equivalent to the original one, in the
sense that the same sequence of successive change positions is generated.

Both methods can be applied for all n = 1.
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ocedure brute force mc b (problem,n); value n;

integer n; ocedure problem;
comment minimum—chenge enumeration of subsets H
begin  integer k; integer arrsy x[1:n];

cedure rise(n); value n; integer n;

ifn = 1 then
begin x[1]:= 1; problem(x,1,1)
end else

begin rise(n - 1);

x[n]:= 1; problem(x,n,1);

fall(n - 1)
end;
rocedure fall(n); value n; integer n;
':L_? n = 1 then
begin x[1]:= 0; problem(x,n,~1)
end else

begin rise(n - 1);

x[n]:= 0; problem(x,n,-1);
fall(n - 1)
end;

for k:= 1 step 1 until n do x[k]:= O;
problem(x,o,os; rise(n)
end brute force mc b3

We note two additional points of difference with 'brute force mec':

- The array x 1is declared within the procedure body, and initiated by
x[kl:= 0, 1 < k < n.
- The procedure'problem' has a third parameter, which equals 0 after

initialization, and +1 (-1) after an element has been added (removed).
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ocedure brute force lp mc b (problem,n,l,u); value n;
integer n; integer array l,u; procedure problem;
comment minimum-change enumera%on of lattice-points;
begin  integer k, x1, 11, ulg

olean array even[1:n]; integer array x[1:n];

rocedure rise(n); value n; integer n;
3‘.__? n = 1 then
begin  for x1:= 11 + 1 step 1 until ul do
begin  x[1]:= xT; problem(x,1,17
=d
end else
begin boolean rm; integer xn, un, m;
un:= uln]; m:=n - 13
rm:= true; rise(m);
for xn:= 1[n] + 1 step 1 until un do
begin  x[n]:= xn; problem(x,n,1);
rm:= Trm; if rm then rise(m) else fall(m)

- end
end;

procedure fall(n); value n; integer n;
if n = 1 then
begin  for x1:= ul - 1 step -1 until 11 do
begin  x[1]:= x1; problem(x,1,~1)
end
end else
Pegin boolean rm; integer xn, ln, m;
In:=1[n}; m:=n - 13
rm:= even[n]; if rm then rise(m) else fall(m);
for xn:= u[n] =71 step —1 until 1n do
begin  x[n]:= xn; problem(x,n,-1);
rm:= Trm; if rm then rise(m) else fall(m)

=
=

end
end;

for k:= 2 step 1 until n do
begin x[k]:= 11:= 1lk]; ul:= ufk] - 11;
even[k]:= (ul:2) x 2 % ul
end; x[1]:= 11:= 1T1]; ul:=u[1];
problem(x,0,0); rise(n)
end brute force lp mc bj
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%cedure brute choose mc b (problem,n,m); velue n,m;

integer n,m; procedure problem;
comment minimun-chenge enumeration of conbinations;

begin  integer k; integer array x[1:n];

cocedure over(n,m); value n,m; integer n,m;

if n = m then else

If m > 1 then

begin over{n — 1,m);
x[n):= 1; x[m = 1]:= O; problem(x,n,m — 1);
revo(n = 1,m - 1)

end else

Tor m:= 2 step 1 until n do

begin x[m]:= 1; x[m -~ 1]:= 0; problem(x,m,m — 1)

dure revo(n,m); value n,m; integer n,m;
f n = m then else
if m > 1 then
over(n — 1,m - 1);
x[n]:= 03 x[m -~ 1]:= 1; problem(x,m — 1,n);
revo(n — 1,m)
end else

o' el
0
8B, 10

for m:= n step —1 until 2 do

begin x[mf:= 0; x[m = 1]:= 1; problem(x,m — 1,m)
end;

for k:= 1 step 1 until m do x[k]:= 1

we Wo

for k:=m + 1 step 1 until n do x[k]:= 0
problem(x,0,0); if m > O then over(n,m)
end brute choose mc b
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cedure brute permute mc b (problem,n); value n;

integer n; procedure problem;
comment minimum-change enumeration of permutations;

integer h, k, 1, q; integer array x[O:n];

procedure regs(i); value i; integer i;
L i = n then
Degin = O;

for 1l:=2 step 1 until i do

begin k - 13 X[K]:= h:= x[1]; x[1]:=

problem(x,k,h,1i)
end
end “else
begin  boolean rj; integer ti, J;
Q:=q - 1;
Je= 1+ 13

= x[q] = j; if rj then regs(j) else linx(Jj);
for ti:= 2 step 1 until 1 do

begin =q + ti}
k:-: 113 x[k]:: h:= x[1]; x[1]:=
problem(x,k,h,1); ,

rj:= j; if rj then regs(j) else linx(J)
end
end;

rocedure linx(i); value i; integer i;
if 1 = n then

begin  for I:= i step —1 until 2 do
begin k:= 1 - 1; x[1]:= h:= x[k]; x[k]:= 1i;

problem(x,k,i,h)
end;
q:= 1
end else
begin boolea.n rjs integer ti, J;
=1+ 13

= x[q] = j; if rJj then regs(Jj) else linx(J);
for ti:= 1 step —1 until 2 do
begin l:=q + ti;
k:i= 1 = 13 x[1]:= h:= x[k]; x[k]:= i;
problem(x,k,i,h);
rj:= rj; if rj then regs(j) else linx(J)

end-
q:=q + 1
end;
for k:= 0 step 1 until n do x[k]:=k; q:= 03

problem(x,0,0,0); 1f n > 2 then llnx(a)
end brute permute mc b;
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There is one additional point of difference with 'brute permute mec':

- The array x 1is declared within the procedurebody, and initialized by

x[kJ:= k, 1 £ k < n.

This is exploited by noting that, in 'regs(i)' or 'linx(i)' the element
i+1 is waiting at the left iff x[ql] = i+1, where g, as usually, equals
the number of elements j (j > i) waiting at the left. So we dispense with

the array d which indicated the type (direction) of the paths.
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Appendix C The algorithms of Chase, Trotter and Boothroyd

This appendix contains the text of the three previously published algo-
rithms for which computer results are given in § 6.

Originally, these procedures are organized as is usual in the liter-
ature, i.e. each call generates the next configuration in the sequence.
We define new procedures each of which contains the declaration and a
series of calls of the original procedure. Of course, just before these
successive calls it is the right moment to initialize the necessary
auxiliary variables and arrays.

The procedures, obtained in this way, generate all configurations
after each call and are comparable to our algorithms. Inspection will

reveal some additional minor modifications.
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procedure acm 382b (problem,n,m); value n,m;
integer n,m; cedure problem;
conmen‘h chase, c.acm 13(1970)368;
boolean busy; integer X, y; integer array b[0:n], p[O n+1l1;

gocedure twiddle(x,y); integer x,y;
eg teger i, Js ks

:=j+1,ifp[,j]<0theng 113

£ plj = 1]7= O then

begin for i:=J — 1 step =1 until 2 do p[i]:= ~1;
pl3l:= 0; p[1]%= X:= 13 y.-a,@j_:glh

end;
?’3>1thenp[,j-1]

J:
11: J
i

12: =+ 13 Efp[d]>0then& 12;
i:= ki= j - 13

13: i:=1 + 13 __r; pli] = O then begin p[i]:= —1; goto 13 end;
if p[i] = -1 then  — ’ —
begin p[i]:= [K]; x:=1; y:=k; plkl:= =13 goto 1k end;
if 1 = p[O] then begin busy:= false; goto 14 end;

" pldl:= pli];7PIL1T= O x:= §; yi= 1;

end twiddles

yi=1n —m3
for x:= 1 step 1 until y do b[x]:= p[x]:= O;
For x:=y ¥ 1 step 1 until n do begin b[x]:= 13 plx]l:= x — y end;
y n+ 13
pl0):= y; plyl:i= =2; if m = O then p[1]:=
X:= y:= 03 busy:= true,
next: Db[x):= 1; blyl:= 05
problem(b,x,y); twiddle(x,y), if busy then goto next
end acm 382b;
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E‘%cedure acm 115b (problemyn,x); value n,x;

integer n; %al X3 rocedure problem;

comment trotier, c.acm 5{1962)L43L4-435.
ord-smith, comput.j. 14(1971)136~139;

begin boolean busy; real 8, ©; integer q; integer array p, d[2:10];

cedure perm(x,n); value n; integer n; array x;
E EE Tnteger k;

:= 03

index: p[n]:= q:= p[n] + d[n%;]
if 9 = n then begin d[n}:= -1; goto loop end;
if q 4 O Then ‘transpose;
dln]:= 1; K:i= k + 13

loop: if n > 2 then begin n:=n — 1; goto index end;

e
Q:= 13 busy:= ?ﬁ%?;
transpose: q:=q + k3 k:=q + 13

t:= x[q); x[a]:= s:= x[k]; x[k]:=
end perm;

for q:= 2 step 1 until n do begin plal:= 0; dlql:= 1 end;
Q:= 0; s:= G:= O; pusy:= True;

next: problem(x,q,s,t); perm(x,n); if busy then goto next

end acm 115b;




procedure bcj 30b (problem,n,x); value n,X;
integer nj; X3 cedure proEIem,
comen% boo yd, comput.g. 10(1967)311,
ord-smith, comput.j. 1(1971)136-1:139,
begin  Dboolean busy; real x1, ¥2, x3, x4; inte teger 13
ﬁe& array al5:10]3

ocedure perm(x,n); value n; integer n; array x;
Eem real xk; integer J, k., ssl, dk;
switch s:= 81,82,81,82,81,83,81,82,81,82,81,83,
31,32,51,s2,s1,sh,sl,32,s1,52,51,85;
switch s8s:= s881,882,8s3,88U;
i:=1 + 1; goto s[i];

s1: Xk:= x13 x1:= x[1]:= x2; x2:= x[2]:= xk; goto exi
52 k= x23 x2:= x[2]:= x33 x3:= x[3]):= xk; goto exi
83: Kke= x33 x3:= x[3]:= xb; xb:= x[k]:= xk; goto exi
sl : xke= xby xbe= x[B]:= x13 x1:= x[1]:= xk; QEO exi

s5: klessl:= U; k:= 53= i:= 03
count: dk:= d[k]; if dk # klessl then goto swap;
dlk]:= 0; if k 4 n then
be n klessi:= k: k:= = K 4+ 1; goto count end;
= false; goto exit;
swap: dk::d[ ~=dk.+ 1; if dk > 2 then

ct ot o ot
ws We Wwe Wwe

%ﬂifk-k 2'XZ = 0 then Kless:= — dk end;

;= x[k)3 x[k]T= x[kless1]; |kless1]--— xk3
521:0 if klessl < k4 then ss[klessl] else exit;
ss1: x1: ;:E goto exit;

s82: X2 = xk* To exit;
583: x3:= xk , g exit;
ssl: xh:= xk

exits end perm;

for i:= 5 step 1 until n do dfil:= 03

T:= 0; x1:=x[1); x2:= x[2]; x3:= x[3], xb:= x[4]; busy:=
next: problem(x); perm(x,n); if busy then goto next
end bej 30b;

true;

37
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