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Abstract 

Recursive algorithms for enumerating various types of combinatorial 

configurations are presented. We consider lexicographic as well as 

minimum-change methods. The algorithms are defined as ALGOL 60-

procedures. Their correctness and their efficiency are discussed. 

Finally we indicate some applications in the field of mathematical 

programming. 
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1. Introduction 

In this report we present algorithms for enumerating various types of 

combinatorial configurations. We distinguish between lexicographic and 

minimum-change methods. Lexicographic methods generate the configurations 

in a "dictionary" order, while minimum-change methods produce a sequence 
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in which successive configurations differ as little as possible. The latter 

methods have two important advantages. First, the entire sequence is gener­

ated efficiently, since each configuration is derived from its predecessor 

by a simple change. Secondly, in some applications each configuration has 

to be evaluated, and a minimum-change algorithm "may permit the value of 

the current arrangement to be obtained by a small correction to the imme­

diately previous value, rather than ab initio" [15]. 

Our algorithms are defined as ALGOL 6O-procedures. They are based 

on recursive procedures, they contain no labels, and after one call they 

generate the entire sequence of configurations. Each time a new configura­

tion has been obtained, a call of a procedure 'problem' is made. Parameters 

of this procedure are the configuration, and, for minimum-change enumera­

tion, the positions in which it differs from its predecessor. It has to be 

defined by the user to handle each configuration in the desired way. 

This construction is unlike what has become usual in the literature. 

Most of the published procedures are organised in such a way that each call 

generates the next configuration in the sequence (see [2; 3; 4; 16; 19]; 

[1] is an exception). Then in each call it is necessary to recompute the 

point which has been reached in the sequence [151. This is inherent to an 

iterative description of essentially recursive algorithms. A mechanism for 

reducing this kind of computations has recently been devised by Ehrlich [5]. 

To us, a recursive description seems more appropriate and more transparent. 

The following four paragraphs discuss algorithms for the minimum-change 

enumeration of subsets, lattice-points, combinations and permutations, re­

spectively. Appendix A contains four algorithms for lexicographic enumera­

tion, appendix B four faster versions of our minimum-change methods, and 

appendix C three previously published minimum-change procedures. In§ 6 we 

compare the running times of these fifteen algorithms on a computer. Some 

applications to integer programming and scheduling problems are indicated 

in§ 7, 
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2. Subset:;; 

In this paragraph we discuss a method for the minimum-change enumeration of 

all subsets af a set, S = {e1 ,e2 , ... ,en}. A subset X c S will be repre­

sented by an integer n-vector with components O and 1: 

x[i] = 1 

x[i] = 0 

if e. € X, 
1 

if e. 4 X. 
1 

These vectors correspond to the vertices of then-dimensional cube. A 

ha.m.iltonian path on this n-cube defines a minimum-change sequence of sub­

sets in which each subset is derived from its predecessor by adding OP re­
moving one eZement. Such a sequence is called a binary Gray code [6; 7; 21]. 

The particular sequence which is generated by our algorithm is the 

refZected binary Gray code. For n elements (n ~ 1), it is produced in the 

following way. First, list the sequence for n-1 elements and add O's as the 

n-th components. Secondly, list the (n-1)-sequence in reversed order, adding 

11 s as then-th components. Obviously, the sequence for O elements consists 

only of the empty eonfiguration. 

As an illustration we present then-cubes for n = 1,2,3 and the re­

flected binary Gray codes for n = 1,2,3,4. 

n = 1 n = 2 n = 3 n = 4 

1 0 1 00 1 000 1 0000 
2 1 2 10 2 100 2 1000 

3 11 3 110 3 1100 
4 01 4 010 4 0100 

5 011 5 0110 
6 111 6 1110 
7 101 7 1010 
8 001 8 0010 

9 0011 
01 II OIO ,,. 

10 1011 

□ 
11 1111 
12 0111 
13 0101 
14 1101 

0 00 10 15 1001 
001 IOI 16 0001 
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In the description, given above, we can replace 11 0 11 and 11 111 by "x0[n]" and 

"1-xin]" respectively, where x0 denotes an arbitrary starting configura­

tion. In this way a more general reflected binary Gray code is obtained. 

The last configuration in the sequence is adjacent to the first one, since 

they differ only in their n-th component. It follows that this Gray code 

constitutes a hamiltonian airauit on then-cube. 

If the rules are written down in a more formal way, the following al­

gorithm for enumerating subsets results: 

procedure brute force mo (problem,n,x); value n,x; 
integer n; in~r arnq; x; p~oedure problem; 
conaen't min3m117iange enumeration of subsets; 
begin 

mcedure node(n); value n; intefer n; 
egin if n > 1 then node(n - 1 ; 

x["n] :• 1 - x[n]; problem(x,n); 
if n > 1 then node( n - 1 ) - -

problem(x,o); node(n) 
end brute force mo; -

If x0 and y0 are adjacent vertices, differing in their last component, then 

a call 

'brute force me (problem,n,x0 ) 1 

has the following effect: 

- A hamiltonian path on then-cube, starting from x0 and ending in y0 , is 

traversed. 

- In vertex x0 a call 'problem(x0 ,o)' is made. 

- In each vertex x, reached by a change of the k-th component, a call 

'problem(x,k)' is made. 

The latter two assertions are clear from inspection. To prove the first one, 

it suffices to show that a call 'node(k)' accomplishes the following: 

Starting from a configuration x, all x' for which 

x' f x, x'[l] = x[l] for k+1 ~ 1 ~ n 

are reached, each exactly once, while no other vertices are reached. The 
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final vertex y is given by 

y[k] = 1-x[k], y[l] = x[l] for 1 + k . 

. The proof, which is by induction on k, is clear from the following diagram: 

node(k) 

{ ( xl1],, ,x[r2], x[r 1], xr] ,x[r1],, ,xrl) 
(x[1],.,x[k-2],1-x[k-1], x[k],x[k+1],.,xCnJ) 

x[k]:= 1-x[k]{(x[1],.,x[k-2],1-x[k-1],1-x[k],x[k+1],.,x[n]) 

node(k-1) 

{ l l l l J l 
(x[1],.,x[k-2], x[k-1],1-x[k],x[k+1],.,x[n]) 

node(k-1) 

= X 

= y 

Here a broken arrow means that the component is changed; an unbroken arrow 

indicates that it remains unchanged. 



3, Lattice-points 

Ann-dimensional lattice is defined by two integer n-vectors 1 and u. Its 

vertices are given by the integer n-vectors x for which 

l[i] ~ x[iJ ~ u[i] for 1 ~ i ~ n. 
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Then-cube is a lattice with l[i] = 0 and u[i] = 1 for 1 ~ i ~ n. Corre­

spondingl~", an algorithm for the minimum-change enumeration of lattice­

points is obtained as a straightforward generalization of 'brute force me'. 

Each vert~ix is derived from its predecessor by increasing or decreasing 

exactiy one component by one. However, not each lattice contains a hamil­

tonian circuit, as can be seen by taking n = 1, 1[1] < u[1J+1 or n = 2, 

1[i] = O, u[i] = 2 for i = 1,2. So the property that we can start in an 

arbitrary vertex has been lost. 

As an illustration of this method we present two examples in which 

n = 4, l[i] = 1 and u[i] = i,5-i respectively. 

i 

l[i] 
u[i] 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1 2 3 4 

·1 1 1 
1 2 3 4 

1 1 1 1 
1 2 1 1 
·1 2 2 1 
1 1 2 1 
1 1 3 1 
1 2 3 1 
1 2 3 2 
1 1 3 2 
1 1 2 2 · 
1 2 2 2 
1 2 1 2 
1 1 1 2 
1 1 1 3 
1 2 1 3 
1 2 2 3 
1 1 2 3 
1 1 3 3 
1 2 3 3 
1 2 3 4 
1 1 3 4 
1 1 2 4 
1 2 2 4 
1 2 1 4 
1 1 1 4 

. + .. 

.. +. 

. -.. 

. . +. 

. + .. 
••• + 
. -.. 
. . -. 
. + .. 
. . -. 
. -.. 
... + 
• + •• 
.. +. 
. -.. 
.. +. 
• + .. 
. • • + 
. -.. .. -. 
• + •. 
.. -. 
. -.. 

l 

l[i] 

utiJ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

2 3 4 

1 1 1 
4 3 2 

1 1 1 1 
2 1 1 1 
3 1 1 
4 1 1 
4 2 1 1 
3 2 1 1 
2 2 1 1 
1 2 1 
1 3 1 1 
2 3 1 1 
3 3 1 
4 3 1 
4 3 2 1 
3 3 2 1 
2 3 2 1 
1 3 2 

2 2 
2 2 2 
3 2 2 1 
4 2 2 1 
4 1 2 
3 1 2 
2 2 

2 

+ .•• 
+ ... 
+ ..• 
• + .• 
-... 
-... 
-... 
• + •• 
+ ... 
+ •.• 
+ ... 
.. +. 
-... 
- ... 
. - .. 
+ ... 
+ .•• 
+ ..• . -.. 
-... 
--... 
-... 
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Our algorithm for generating lattice-points is presented below. 

e;ocedure brute force lp me (problem,n,l,u)J value n,l,uJ 
inte~ nJ integer arra;y l,uJ mcedure problemJ 
C01111lJen minimum-change enumeraton ot iattice-pointsJ 
begin 

g;edure node(n)J value nJ intepr n; 
be n integer dn, in, un; · 

un:= u[n]; u[n]:= ln:= l[n]J 
dn:= if 1n < un then 1 else -1 J 
if n >1 then noa;fn - 11T 

endJ 

?or 1n: = Iii+ dn step dn until un do 
begin l[n] := ln; problem(i,n,dn)J 

if n > 1 then node(n - 1) 
end - --

problem(l,01 0); node(n) 
end brute force lp me; -

One can check easily that a call 

'brute force lp me (problem,n,l,u)' 

has the following effect: 

- A ham.iltonian path in the lattice, starting from 1, is traversed, 

- In vertex 1 a call 'problem(l,O,O)' is made. 

- In each vertex x, reached fr-0m y with x[k] f y[k], a call 

'problem(x,k,x[k]-y[k])' is made. 
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4. Combinations 

The algorithm, presented in§ 2 and generalized in§ 3, will now be used to 

derive a method for enumerating combinations. 

A combination C of m out of n elements e 1 ,e2 , ... ,en is represented by 

a binary n-vector x: 

x[i] = 1 

x[i] = 0 

if e. E C, 
l 

if e. Ej: C. 
l 

We define an undirected graph G(n,m) whose vertices are given by these vec­

tors; (x,y) is an edge of G(n,m) iff x and y differ in exactly two compo­

nents. A hamiltonian path in G(n,m) corresponds to a minimum-change sequence 

of combinations in which each combination is derived from its predecessor 

by adding one element and removing one element. 

From the reflected binary Gray code with the empty set as starting 

configuration we take the subsequence consisting of those subsets which 

contain exactly m elements. We prove that this subsequence constitutes a 

hamiltonian path in G(n,m) from 

to 

= (1, ... ,1,1,0, ... ,o,o) 
~ .._____., 

m n-m 

= (1, ... ,1,0,o, ... ,o,1) 
'ni:-1'~ 

(note that y0 and x0 are adjacent) if 1 ~ m ~ n-1; if m = 0 or m = n the 

path clearly consists of only one vertex. 

The proof proceeds by induction on n, the case n = 1 being obvious. 

For n > 1, 1 ~ m ~ n-1, the sequence consists of two parts: first, the 

quence in G(n-1,m), with O's added as then-th components, and secondly, 

the sequence in G( n-1 ,m-1) in reversed order, with 1 's added as the n-th 

components. By the induction hypothesis these two parts are hamiltonian 

paths which look like: 

form > 1 : 1 ... m-2 m-1 m m+1 ... n-2 n-1 n 
(1, ... ,1, 1 ' 1 ' o, ... ,o, o, o) . 

*(1, ... ,1, 1 ' o, o, ... ,o, 1 ' 0) 
(1, ... ,1, o, o, o, ... ,o, 1 , 1 ) 

(1, ... ,1, 1 ' o, o, ... ,o, 0, 1 ) ' 
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for m = 1: 1 2 ••• n-2 n-1 n 
( 1 , o, ••• ,o, o, o) . . . . 

*(o, o, ••• ,o, 1 , o) 
(0, o, .•• ,o, o, 1 ) • 

Inspection shows that the transitions* are edges in G(n,m), so the total 

sequence is a hamiltonian path, as was to be proved. 

As an illustration we present the reflected binary Gray code for n = 5 

and its subsequences for O ~ m ~ 5, 

n = 5 m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 

1 00000 00000 
2 10000 10000 
3 11000 11000 
4 01000 01000 
5 01100 01100 
6 11100 11100 

.7 10100 10100 
8 00100 00100 
9 00110 00110 

10 10110 10110 
11 11110 11110 
12 01110 01110 
13 01010 01010 
14 11010 11010 
15 10010 10010 
16 00010 00010 
17 00011 00011 
18 10011 10011 
19 11011 11011 
20 01011 01011 
21 01111 01111 
22 11111 11111 
23 10111 10111 
24 00111 00111 
25 00101 00101 
26 10101 10101 
27 11101 11101 
28 01101 01101 
29 01001 01001 
30 11001 11001 
31 10001 10001 
32 00001 00001 
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Combining the recursion scheme of 'brute force me' (cf. § 2) and the 

results, presented above, we obtain the following algorithm for enumerating 

combinations: 

procedure brute choose me (problem,n,m); value n,m; 
integ,e!. n,m; procedure problem; 
comment minimum-change enumeration of combinations; 
begfn integer k; integer array x[1 :n]; 

procedure over(n,m); value n,m; integer n,m; 
if n > m /\ m > O then 
begin integer xn, xk; 

xn:= x[n]; xk:= 1 - xn; 
over(n - 1,m - xn); 

end• _, 

k:= {if m = 1 then n else m) - 1; 
x[n]:';"""xlq x[k~xn;-
if xn = O then problem{x,n,k) else problem(x,k,n); 
over(n - 1-;iii= xk) -

for k: = 1 step 1 until m do x[k] := 1; 
for k:= m + 1 step 1 until n do x[k] := o; 
problem{x,o,o); over(n,m) -

~ brute choose me; 

A call 

'brute choose me (problem,n,m)' 

has the following effect: 

A hamiltonian path in G(n,m), starting from x0 and ending in y0 , is 

traversed. 

In vertex x0 a call 'problem(x0 ,o,O)' is made. 

In each vertex x, reached by adding ek and removing e1 , a call 

'problem(x,k,l)' is made. 

These assertions are proved along the same lines as those for 'brute force 

me'. Note that in the body of 'over(n,m)' the components in positions n and 

(if m = then n else m) 1 are changed; this corresponds to the transi-

tions * in the diagrams, given above. 
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Another minimum-change method for generating combinations has been proposed 

by Chase [4] and Ehrlich [5]. Still another method has been suggested by 

Wells [21,Ch,5,1,ex.7], 

A minimum-change sequence for combinations of m1 ~ m ~ m2 out of n elements 

in which each combination is derived from its predecessor by adding one 

element and/or removing one element, is given by the subsequence of the 

reflected binary Gray code consisting of those subsets which contain 

m1 ~ m ~ m2 elements. The construction of a recursive algorithm for enumer­

ating these configurations is left as a challenge to the reader. 



5. Permutations 

We next consider the minimum-change enumeration of all permutations of n 

different elements. Ann-permutation is defined as an n-vector whose com­

ponents are these elements in some order. 
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We define an undirected graph G(n) whose vertices are given by then! 

n-permutat:i.ons; (x,y) is an edge of G(n) iff x and y differ only in two 

neighbouring positions. A hamiltonian path in G(n) corresponds to a mini­

mum-change sequence of permutations in which each peY1111Utation is derived 

from its predecessor by transposing two elements in adjacent positions. 

Denoting then elements by 1,2, ... ,n, we can construct such a sequence 

inductively as follows. For n = 1, it consists of the only 1-permutation. 

Let the sequence for (n-1)-permutations be given. Placing n at the right 

of the first (n-1)-permutation, we obtain the first n-permutation. The n-1 

next ones are obtained by successively interchanging n with its left neigh­

bour. After that, n is found at the left of the first (n-1)-permutation, 

which remained unchanged. Replacing this (n-1)-permutation by its successor 

in the (n-1)-sequence gives us the (n+1)-th n-permutation, and the n-1 next 

ones arise from successive transpositions of n with its right neighbour. 

Then n is found at the right of the second (n-1)-permutation, which now is 

replaced by the third one, and the process starts all over again. 

As an illustration of this method we present the sequences and the 

graphs for n = 1,2,3,4. We note that G(4) lS the edge graph of a solid 

truncated octahedron, replicas of which fill entire 3-space. Analogous 

statements hold for all n. 

n = n = 2 n = 3 

1 1 1 2 1 1 2 3 
2 2 2 1 3 2 

3 3 1 2 
4 3 2 
5 2 3 1 
6 2 1 3 

G( 1 ) G(2) G(3) 

•, , • 

"'Q"' 
, ... Z.I 

·UI 'l'tl 
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n = 4 G(4) 
134Z. 143~ 

1 1 2 3 4 13 4 3 2 1 
2 1 2 4 3 14 3 4 2 1 
3 1 4 2 3 15 3 2 4 1 
4 4 1 2 3 16 3 2 1 4 
5 4 1 3 2 17 2 3 1 4 
6 1 4 3 2 18 2 3 4 1 
7 1 3 4 2 19 2 4 3 1 
8 1 3 2 4 20 4 2 3 1 l'Z.14 

9 3 1 2 4 21 4 2 1 3 
10 3 1 4 2 22 2 4 1 3 
11 3 4 1 2 23 2 1 4 3 
12 4 3 1 2 24 2 1 3 4 

'U41 1431 

The following algorithm generates the l)ermutations in the order 

above: 

hlocedure brute permute me (problem.,n.,x); value n.,x; 
teger n; an:& x; procedure problem; 

connent minimum-change enumeration of permutations; 
begin E.!:!!:! xk; integer k., 1., q; integer arra.y d[l:n]; 

procedure node(1); value 1; integer 1; 
begin integer di, ti., u1., xi; 

end; 

di:= d(i]; if di = 1 then 
begin t1:-:-1; u1 := r=-1; q:= q - 1 
end else 
b tin ti:= 1; u1:= r-
en I 

x1 := x[q + ti]; 
if i < n·then node(i + 1); 
for ti : = ti step di until u1 do 
begin k:= q + ti; l:= k + arr 

x[k]:= xk:= x[l]; x[l]:= XiJ 
if di= 1 then problem(x,k.,xk1 x1) 
- else problem(x.,l.,xi,xk); 
if 1 < n tiieii"' node( 1 + 1 ) 

end; - -
· d[i] := -di; if di = -1 then q:= q + 1 - -

fork:= 1 step 1 until n do d[k]:= -1; q:= O; 
problem(x.,o.,o,o); if n > ~then node(2) 

end brute permute me; - - --

+1-u 

4i/3 

described 



If {x0[1], ... ,x0[n]} is then-set to be permuted, then a call 

'brute permute me (problem,n,x0 ) 1 

has the following effect: 

If n = 1, then a call 'problem(xo,0,0,0) 1 is made, and else 

17 

- A hamiltonian path in G(n) is traversed, starting from x0 and ending in 

y0 such that 

In vertex x0 a call 1problem(x0 ,0,0,0)' is made. 

In each vertex x, reached by transposition of the elements in positions 

k and k+1, a call 'problem(x,k,x[k],x[k+1])' is made. 

The latter two assertions are clear from inspection. The proof of the first 

one may be left to the reader. As a hint, we note that just before a call 

'node(i)' and immediately after its execution, x, d and q satisfy the fol­

lowing conditions: 

{jli ~ j ~ n, d[j] = 1} has exactly q elements, and if we index them 

such that j 1 > j 2 > ••• > jq, then x[k] = x0[jk] for ~ k ~ q, 

and if {jli ~ j ~ n, d[jJ = -1} = {j 1, ... ,j~}, where j 1 > j~ > ••• > j;, 

r+q = n-i+1, then x[n+1-k] = xn[j~J for 1 ~ k ~ r. 

Using the variabele q to determine the place of the transpositions is more 

efficient than keeping track of the inverse permutation for that purpose 

(cf. [5]) .. 

Generation of permutation sequences has received much attention in the 

literature. 

The algorithm for enumeration by adjacent transposition, presented 

above, was discovered independently by Trotter [19] and Johnson [9J. A 

different minimum-change method was found by Wells [20]; Boothroyd gives 

recursive [1] and iterative [2; 3] ALGOL 60-procedures for this algorithm. 

Methods for generating permutations are surveyed by Lehmer [11], 

Ord-Smith [15] and Wells [21,Ch.5.2]. Ord-Smith [16] presents a time com­

parison between six algorithms, including three minimum-change procedures 

[19; 2; 3]. 
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We make one final observation. 

Let an undirected graph H(n) on n vertices be given. Define an 

undirected graph GH(n) on the set of n-permutations, by drawing an edge 

between x and y iff x can be obtained from y by a single transposition 

of the elements in positions k and 1, where (k,l) is an edge of H(n). One 

can prove the following: 

GH(n) contains a hamiltonian circuit if and only if 

H(n) contains a spanning tree. 

The "only if"-part is obvious; the "if"-part follows by an inductive 

argument. 

In the Johnson-Trotter algorithm, discussed above, the "transposition 

graph" H(n) is the tree which looks like: 

2 3 n 
•---•~--1•---•---•--..j•----· 

The transposition graph of the Wells algorithm contains the above one 

properly. 
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6. Computations 

In this paragraph we give computer results for the algorithms presented in 

this report. We include also results for three algorithms which have been 

published; 

these are 

Chase's algorithm acm 382 [4], which implements a minimum-change method 

for generating combinations, different from ours (cf. § 4). 
Trotter's algorithm acm 115 [ 19; 16 J which generates permutations by ad­

jacent transposition (cf. § 5). For a number of years it remained the 

fastest permutation procedure. 

Boothroyd's algorithm bcj 30 [3;16] which implements Wells' method for 

generating permutations by transposition [20J(cf. § 5). Ord-Smith [16] 

found this procedure to be the fastest of six published permutation 

algorithms. 

These algorithms have been modified slightly in order to make a fair com­

parison; Bee appendix C for details. 

The procedures have been tested on the Electrologica XS-computer of 

the Mathematisch Centrum. When making time comparisons, we chose for the 

actual para.meter, corresponding to the formal para.meter 'problem' , a pro­

cedure with an empty body; its declaration reads 'procedure empty (x ... );;' 

with the appropriate number of formal para.meters. 

The results are given in table 1. It is surprising that the Trotter 

algorithm is slower than our truly brute lexicographic method for gener­

ating peTinutations. As for minimum-change enumeration, it seems advanta­

geous to use recursive algorithms. This may be explained by the discussion 

in § 1. 

Very fast PL/1 procedures for generating various types of combinato­

rial configurations have been announced by Ehrlich [5]. It will be inter­

esting to compare these "loopless" algorithms with our recursive ones, 

using the same programming language and the same computer. 
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ENUMERATION OF seconds configurations/second 

SUBSETS brute force brute force ---------------- ---------------
n lex me me b lex me me b 

14 26.8 19.5 18.5 611 839 887 

LATTICE-POINTS brute_force_lp __ brute_force_lp_ 

n 1. 
1. 

u. lex 
1. 

me me b lex me me b 

14 0 1 46.7 28.7 26.3 351 571 623 

7 1 1. 20.8 12.6 10.6 242 399 475 

7 1 8-i 7.4 4.9 4.4 682 1020 1145 

COMBINATIONS brute choose acm brute choose acm ---------------- ---------------
n m lex me me b 382b lex me me b 382b 

14 4 3. 1 2.6 1.3 3.0 327 379 782 338 

14 7 10. 1 9.0 5.3 9.7 341 380 643 356 

14 10 3. 1 2.6 1.8 2.9 325 379 550 349 

14 ~0,~14 48.9 43.4 25.5 46.8 

PERMUTATIONS brute_permute ___ acm bcj brute permute __ acm bcj 

n lex me me b 115b 30b lex me me b 115b 30b 

8 97.6 58.9 51.4 101. 0 75.6 413 685 785 399 534 

Table 1 Computer results for 15 algorithms. 

--- lex lexicographic enumeration, see appendix A. 

--- me minimum-change enumeration, see§§ 2-5. 

--- me b faster minimum-change enumeration, see appendix B. 

acm 382b Chase [4], see appendix C. 

acm 115b Trotter [19;16], see appendix C. 

bcj 30b Boothroyd [3;16], see appendix C. 



21 

7. ApPlications 

The enumeration algorithms may be applied to optimization problems in two 

ways. First, by generating and evaluating each feasible solution to a prob­

lem, one obtains an optimal solution. Secondly, one can try to improve upon 

a given solution by checking a limited set of local changes. If such a 

change in the solution proves to be advantageous, one starts anew, proceed­

ing from the improved solution. A locally optimal solution has been obtain­

ed as soon as the entire set of changes has been enumerated unsuccessfully. 

While the former method yields optimal solutions to small problems only, 

the latter enables us to solve "real" problems in a suboptimal but often 

satisfactory way. 

Some examples of each of these approaches are given below. In every 

case, the minimum-change character of the enumeration should be exploited 

(cf. § 1). 

Our procedure 'brute force me' can be used to enumerate the solutions to 

0-1 programming problems. Krol [10] reports that for small problems of this 

type, explicit enumeration surpasses several methods based on implicit 

enumeration. His use of a lexicographic method and his unability to describe 

it raised our interest in the present subject. 

Similarly, 'brute force lp me' can solve small integer programming 

problems. 

By explicit enumeration of permutations one can solve scheduling prob­

Zems P of the form 

where x = (x[1], .•• ,x[n]) runs through all n! permutations. An example is 

the quadratic assignment problem (Q,AP) [14,Ch.8]: 

zQ,AP(x) = l~ 1I~ 1 c [·J [.Jd .. 1= J= X 1 X J 1J 

where c and dare non-negative nxn-matrices. A special case of the Q,AP is 

obtained if we define 
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d •• = 1 
l.J 

d •• = 0 
l.J 

for i > j, 

for is j. 

It is called the aayalia subgraph problem (ASP) [12; 14,Ch.8.4.1]: 

,n ,i-1 
ZASP = li=1lj=1 cx[i]x[j]" 

Another choice of d: 

d. = 1 for 1 s i s n-1, 
l. i+1 

dn1 = 1 ' 
d .. = 0 otherwise, 

l.J 

leads to the well-known travelling-salesman problem (TSP) [14,Ch.6,8.4.2]: 

A symmetria TSP is characterized by c .. = c .. for 1 s i,j s n. 
1.J Jl. 

We define the refZeation x and the rotations~ of a permutation x by 

x = (x[nJ,x[n-1], •.. ,x[2],x[1J), 

~ = (x[k+1], ..• ,x[nJ,x[1], •.• ,x[k]) for Os ks n-1. 

One easily proves 

zASP(x) = l·.e· c.: - zASP(x)' l. J 1.J 
zTSP(x) = zTSP(x) for a symmetric TSP, 

zTSP(~) = zTSP(x) for 0 s k s n-1. 

It follows that, when we attack a symmetric TSP or an ASP by brute force, 

it suffices to enumerate a refleation-free set of permutations (cf. [12, 

§ 10]). Further, when solving a TSP, we can fix one of the components of x, 

say x[n], and permute only the elements x[1], .•• ,x[n-1]. 

If the minimum-change algorithm, discussed in§ 5, is used to generate 

all permutations of a given arrangement x0 = (x0[1J, ••• ,x0[n]), then the 

elements x0[1] and x0[2] are transposed half-way. Let x = ( .• x0[1] •. x0[2].) 

be a permutation which is generated before this transposition. Its reflec­

tion x = (.x0[2] •. x0[1] .. ) occurs in the second half of the enumeration. 



It follows that the first n!/2 arrangements form a reflection-free set 

(cf. [18]). 

In general, the n!/(m-1}! permutations in which the original order 

of the elements x[1], ... ,x[m-1] is preserved, can be enumerated using a 

simple modification of 'brute permute me': 

procedure brute permute m me (problem,n,m,x); .•• ; 
begin 

... ; if n ~ m then node(m) 
end brute permute m me; 
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The above discussion shows that QAPs, ASPs and TSPs may be solved by calls 

of the form 

'brute permute me (qap,n,x)', 

'brute permute m me, (asp,n,3,x)', 

'brute permute m me (tsp,n-1,if sym then 3 else 2,x)', 

where 'qap', 'asp' and 'tsp' are procedures which compute the cost changes 

occurring in the Q,AP, ASP and TSP, respectively. 

The n!/2 solutions which are checked in an ASP correspond to the 

hamiltonian paths in a complete directed graph. The (n-1)!/2 solutions to 

a symmetric TSP are the hamiltonian circuits in a complete undirected 

graph; they are called rosary permutations [8; 17; 18]. 

Finally, we indicate some examples of the second approach. These are sub­

optimal methods, based on the enumeration of all combinations of m elements 

out of n, so we are dealing with applications of 'brute choose me'. For 

practical purposes, it is advisable to construct special versions of 'brute 

choose me' for fixed m, using a set of m nested for-loops. Further, in each 

application the calls of the procedure 'problem' should be replaced by its 

actual body. 

A solution x to the ASP is said to be relatively optimal [12,§ 9] if 

I1=j+1 (cx[j]x[i] - cx[i]x[.i]) ~ 0 
for 1 ~ j,k ~ n. z:~- ~ (c x[i]x[kl - cx[k]x[i]) ~ 0 

i=J 
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Such a solution can be constructed by enumeration of all pairs ( j ,k) wit,h 

1 ~ j,k ~ n. This can be done efficiently with a special version of 'brute 

choose me' form= 2. In the phase o:f·verification, when no further improve-

_ment is found, this method checks each element of the matrix c exactly once. 

A solution x to the TSP is called m-opt if it is impossible to obtain 

a solution with smaller cost by replacing m of its links (x[i],x[i+1]) by 

a different set of m links [13; 14,Ch.6.6.2]. A 3-opt method, based on the 

m = 3-version of 'brute choose me', turns out to be more efficient than 

the algorithm presented by Lin [13]. 

Similarly, suboptimal solutions to the QAP can be obtained by ex­

changing elements instead of links [14,Ch.8.3.2]. 

This approach might be applicable also to other types of complex 

optimization problems. 



Appendix A Algorithms for lexicographic enumeration 

A lexicographic enumeration method generates the configurations x in such 

a way that the number x[n] x[n-1] x[2] x[1] is increasing. Note that 

this is a binary number for subsets, a mixed-radix number for lattice­

points, etc. 
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The reader will have no difficulty in fathoming the algorithms for 

lexicographic enumeration, presented in this appendix. They are even more 

simple than the minimum-change algorithms, and they are constructed in the 

same way. We indicate the following main differences: 

The array x in which the configuration is stored, is always declared 

within the procedurebody. 

At each level of recursion exactly one component of x is defined. 

The procedure 'problem' is called when the configuration has been com­

pleted, i.e. at the bottom of the recursion. 

The sole parameter of the procedure 'problem' is the array x. It is of 

no use to include here the T_)ositions in which x differs from the pre­

ceding configuration. 
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procedw:-e bnrte force lex (problem,n); value n; 
integer n; ~~ocedw:-e problem; 
comment lexic:ographic enumeration of subsets; 
begin _:integer arre;y x [ 1 m] ; 

(n); value n; integer n; 
= O then problem(x) else 

for x[n] :~ 1 do node(n -=--T); ......... ....... 
node(n) 

~ brute fo1~ce lex; 

procedure brute force lp lex (problem,n,l,u); value n; 
integer n; in er arre;y l,u; procedure problem; 
comment 1 phic enumeration of lattice-points; 
begin intet%er arral x [ 1 : n]; 

procE~dure node(n); value n; integer n; 
if n "':"'o""then problem(x) else 
beSp integ'er un, m; -

• un:= u[n]; m:= n - 1; 
!£!. x[n) := l[n] step 1 until un ~ node(m) 

end• _, 
node(n) 

~ brute force lp lex; 

procedure bn1te choose lex (problem,n,m); value n,m; 
integer n,m; procedure problem; 
comment lexi<:ographic enumeration of combinations; 
beSn inte~aer arre;y x [ 1 : n] ; . 

procE~ over(n,m); value n,m; integer n,m; 
if m = 0 then bottom(n,O) else 
il m = n tlien' bottom( n, 1) else 
be'gp_ xTnT:"= O; over(n - 1,m); 

x[n]:= 1; over(n - 1,m - 1) 

J?FOCE~d.ure bottom(n,d); value n.,d; intefer n,d; 
beSr~ for n:= n step -1 until 1 ~ x n] := d; 

problem(x) 
end· _, 
over(n,m) 

end brute choose lex; -



lntcedure brute permute lex (problem,n); value n; 
in eger n; procedure problem; 
coment lexicographic enumeration of permutations; 
begin integer h; integer an:& x[ 1 :n]; 

wcedure node(n); value n; integer n; 
i n = 1 then problem(x) else 
begin ~er k; -

end; 

node n - 1); 
fork:• n - 1 kjep -1 until 1 do 
begin h:= x[ ; x[k] := x[n];x[n) := h; 

node(n - 1) 
end; 
h:= x[n]; 
for k:= n step -1 until 2 do x[k) := x[k - 1 ]; 
xtTl:• h -

~ h:= n step -1 until 1 ~ x[h]:= n + 1 - h; 
node(n) 

end brute permute lex; -

27 
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Appendix B Faster algorithms for minimum-change enumeration 

The following two considerations enable us to speed up the algorithms, 

discussed in§§ 2-5, 

First, we note that each of these algorithms contains one recursive 

procedure which handles two types of changes simultaneously, e.g. increas­

ing or decreasing the value of a component, or transposing an element and 

its left or :right neighbour. This procedure can be split up in two proce­

dures, each handling one type of change, and calling themselves and each 

other. 

Secondly, one can obtain faster algorithms by explicitly writing out 

the deepest level of recursion. This clearly reduces the number of checks 

if the bottom of the recursion has been reached already. This device 

enables us a:Lso to deal separately with those elements which are involved 

in a considerable part of the changes. For example, in 'brute force me 1 

half of the changes occur in the first position, and in 'brute permute me' 

then-th element is transposed in (n-1)/n of the cases. Also, in 'brute 

choose me' the case m = 1 deserves a special treatment. 

Following these lines, we can easily construct faster algorithms for 

minimum-change enumeration. They are presented below. Some minor differ­

ences are indicated if necessary. We emphasize the point that, in each 

case, the speeded-up algorithm is equivalent to the original one, in the 

sense that the same sequence of successive change positions is generated. 

Both methods can be applied for all n ~ 1. 



procedure brute force me b (problem.,n); value n; 
integer n; procedure problem; 
comment mi.nimum-change enumeration of subsets; 
besip integer k; integer 8:'£1"& x[l:n]; 

mcedure rise(n); value n; integer n; 
1fn=1then 
be~gin xTTl:= 1; problem(x, 1., 1) 
end else 
!?_e~gin rise(n - 1); 

x[n]:= 1; problem(x.,n.,1); 
fall(n - 1) 

end; 

E:ocedure fall(n); value n; integer n; 
Iln=1then 
'.§'e, xTfT:'= O; problem(x.,n.,-1) 
end else 
b'ei!-n rise(n - 1); 

x[n]:= O; problem(x.,n.,-1); 
fall(n - 1) 

end• ............ , 
for k:= 1 ste} 1 until n do x[k) := O; 
problem(x.,o.,o; rise(n) -

~ brute :force me b; 

We note two additional points of difference with 'brute force me': 

29 

- The array x is declared within the procedure body, and initiated by 

x[k]:= O, 1 ~ k ~ n. 

- The procedure'problem' has a third parameter, which equals O after 

initialization, and +1 (-1) after an element has been added (removed). 
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procedure brute force lp me b (problem.,n,l.,u); value n; 
integer n; inte , ;;;;;;;;,;;;.;;;~ 10 u; ~rocedure problem; 
comment miA e enumeraTon of lattice-points; 
begip in k, x1, 11 9 u1; 

____ array even [ 1 : n]; integer array x [ 1 :n); 

procE~ rise(n); value n; integer n; 
if n = 1 then 
begi.p_ f'o'rx i : = 11 + 1 step 1 until u 1 do 

x[1]:= x1; problem(x,1,1J 
en 
"'ei'se 
boo'iean rm; integer xn., un, m; 
un:= u[n]; m:= n - 1; 
rm:= true; rise(m); 
f2::. xn:= l[n] + 1 ste;R 1 until un ~ 
~ x(n]:= xn; problem(x,n,1); 

rm:= lrm; if rm then rise(m) else fall{m) - - -end 
end• _, 
~~ fall( n); value n; integ n; 
if n = 1 then 
begin forxl := u1 - 1 step -1 until 11 do 

- b'e'szi x[ 1] := x1; problem(x, 1 ,-1J 
end 

end• _, 

ttlse 
boo'Iean rm; integ r xn, ln, m; 
Iii:= I[n]; m:= n - 1; 
rm:= even[n]; if rm then rise(m) else fall{m); 
for xn:= u[n] =-1 step -1 until 1.ii"'cto 
begin x[n]:= xn; problem(x,n,-1); ....... 

rm:= lrm; if rm then rise(m) else fall{m) 
, --- ~ -end 

fork:= 2 s1ep l until n do 
begin x[k := 11 := f[k];u1 := u[k] - 11; 

- even(k] := (u1 :2) x 2 + ul 
end; x[1]:= 11:= 1T1]; ul:= u[1]; 
problem(x,o,o); rise(n) 

end brute force lp me b; 



:grocedure brute choose me b (problem,n,m); value n,m; 
integer n,,m; procedure problem; 
conunent minimum-change enumeration of combinations; 
begin _!!1teger k; integer a.rra;y x[ 1 :n]; 

12~oced.ure over(n,m); value n,m; integer n.,m; 
if n = m then else 
1'fm>1then-
begin over(n - 1,m); 

x[n]:= 1; x[m - 1]:= O; problem(x.,n,m - 1); 
revo(n - 1,m - 1) 

e11d else 
form:= 2 sjp 1 until n do 
~~gin x[m := 1; x[m - fl:= O; problem(x,m,m - 1) 
end• _, 
p.rocedure revo( n,m); value n,m; integer n,m; 
if n = m then else 
Il'm>lthen-
begin over(n - 1 .,m - 1); 
- x[n]:= o; x[m - 1]:= 1; problem(x,m - 1.,n); 

revo(n - 1,m) 
end else 
form:= n s1ep -1 until 2 do 
b,tn x[m := O; x[m - 1 ]7= 1; problem(x,m - 1,m) 
en • __ , 
!2!. k:= 1 step 1 until m .9:2. x[k] := 1; 
!2£. k:= m + 1 step 1 until n .9:2. x[k] := o; 
problem(x,o,o); if m > o the11 over(n,m) 

e11d brute choose me b; - --

31 



32 

:procedure b:nrl;e permute me b (problem..,n); value n; 
integer n; ~:>cedure problem; 
comment minimum-change enumeration of permutations; 
begin integc~ h., k., 1., q; integer array x[O:n]; 

~~ regs(i); value i; integer i; 
ITT= n then 
begin q-;;;-o; 

for l:= 2 str 1 until i do 

end 
begin 

end• _, 

begin k:= - 1; x[kJ:=h:= x[l]; x[l]:= i; 
problem.(x.,k,h,i) 

end 
'"else 
bo""oi'ean rj; integer ti, j; 
q:= q - 1; 
j:= i + 1; 
rj:= x[q] = jj if rj then regs(j) ~ linx(j); 
£2! ti:= 2 step 1 unt'IT'T ~ 
begin l:= q + ti; 

k:= 1 - 1; x[k]:= h:= x[l]; x[l]:= i; 
problem.(x,k,h,i); 
rj:= 7rj; if rj then regs(j) else linx(j) - - -end 

~~ linx(i); value i; integer i; 
ITT= n then 
begin for l: = i stfp -1 until 2 ~ 

be&1,n k:= - 1; x[lJ:= h:= x[k]; x[k]:= i; 
problem.(x,k,i,h) 

end 
begin 

end; 

end• _, 
q:= 1 
else 

bo"'oiean rj; integer ti, j; 
j:= i + 1; 
rj:= x(q] = j; if rj then regs(j) else linx(j); 
£2! ti:= i step-=1 unt1T'2 ~ -
begin 1:= q + ti; 

k:= 1 - 1; x[l]:= h:= x[k]; x[k]:= i; 
problem.(x,k,i.,h); 
rj := 7rj; !£ rj ~ regs(j) ~ linx(j) 

end· _, 
q:= q + 1 

~ k:= 0 step 1 until n do x[k] := k; q:= O; 
probl«~m(x,o.,o,o); if n > ~then linx(2) 

end brute permute me b; - - --



There is one additional point of difference with 'brute permute me': 

- The array x is declared within the procedurebody, and initialized by 

x[k]:= k, 1 S k Sn. 

This is exploited by noting that, in 'regs(i)' or 'linx(i)' the element 

i+1 is waiting at the left iff x[q] = i+1, where q, as usually, equals 

the number of elements j (j > i) waiting at the left. So we dispense with 

the array d which indicated the type (direction) of the paths. 

33 
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Appendix C The algorithms of Chase, Trotter and Boothroyd 

This appendix contains the text of the three previously published algo­

rithms for which computer results are given in§ 6. 
Originally, these procedures are organized as is usual in the liter­

ature, i.e. each call generates the next configuration in the sequence. 

We define new procedures each of which contains the declaration and a 

series of calls of the original procedure. Of course, just before these 

successive calls it is the right moment to initialize the necessary 

auxiliary variables and arrays. 

The proeedures, obtained in this way, generate all configurations 

after each call and are comparable to our algorithms. Inspection will 

reveal some additional minor modifications. 



procedur1::, acm 382b (problem.,n.,m); value n.,m; 
integer :n.,m; procedure problem; 
comment chase., c.acm 13(1970)368; 
begin :boolean busy;integer x., y; integer arra;y b[O:n]., p[O:n + 1 ]; 

procedure twiddle(x.,y); integer x.,y; 
'.begin integer 1., j., k; 

j:= O; 
11: j:= j + 1; !f p[j] ~ 0 ~ ~ 11; 

if p[j - 1] = 0 then 
begin for 1:= :r=-1 step -1 until 2 ~ p[i] := -1; 

p[j]:= O; p(1]:= x:= 1; y:= j; ~ 14 
end; 
lij > 1 then p[j - 1] := O; 

12: J:"= j + 1; !! p[j] > O ~ goto 12; 
1:= k:= j - 1; 
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13: i:= i + 1; g p[i] = O ~ begin p[i]:= -1; goto l3 end; 
if p[i] = -1 then ?1n p[i] := Ii['k"J'; x:= 1; y:= k; p[k] := -1; ~ 14 end; 
1 1 = p [ O] then begin busy:= false; ~ 14 end; 
p["j]:= p[i];p['I]:= O; x:= j; y:= 1; 

14: 
end twiddle; ·-
:y:=n-m; 
for x:= 1 step 1 until y do b[x]:= p[x]:= O; 
:!£!_ x:= y + 1 step 1 untirn !!2_ begin b[x]:= 1; p[x]:== x - y end; 
y:== n + 1; 
p[O]:= y; p[y]:= ---2; if m = O then p[1]:= 1; 
x:= y:= O; busy:= true; -

next: 'b[x] := 1; b[y] := o; 
problem(b,x.,y); twiddle(x.,y); if busy then ~ next 

end acm 382b; ...... --
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ccedure acm 115b (problem,n,x); value n,x; 
:teger n; !!:'!!:l. x; procedure problem; 

comment trotter, c.acm.2_( 1962)43ti-435. 
ord-smith, comput.j. 14(1971)136-139; 

begin boolean busy; !!!;! s,~; integer cu integer an:& p, d[2:10h 

~cedure pem(x,n)J value n; integer n; array x; 
egin inteeer k; 

k ·= • . ., 
index: p[n]:= q:= p[n] + d[n]; 

if q = n then~ d[n] := -1; ~ loop end; 
I? q + O tJim ~transpose; 
d'.[°n] : = 1 J ""'1t':": ~ 1 J 

loop: _g: n > 2 ~ ~ n:= n - 1; E:!:2, index end; 
q:= 1; busy:=~ 

transpose: q:= q + kJ ~ + 1; 
t:= x[q]; x[q]:= s:= x[k]; x[k]:= t 

end perm; -
!2::, q:= 2 TP 1 until n do begin p[q] := OJ d[q] := t end; 
q:= OJ s:= := OJ busy:= trl.ie• 

next: problem{x,q,s,t); perm(x.,n); !,! busy~ £'!:2. next 
end acm 115b; -



kocedure bcj 30b (problem;n,x); value n,x; 
teger ni1 x; procedure profilem; 

comment boo d, comput@j. 10(1967)311. 
Ol:'d-smi th, co:mput. j • 14( 1971 ) 136-139; 

begin boolean busy; real x1;-" x2, x3, x4; integer 1; 
integer arraz m-;710]; 

exit: 

s1: ...,, . ;::w_. 
s3: 
8'4-: 

for i : = 5 stef 1 until n do d[ i ] : = 0; 
GO; x1 := x 1 ]; x2:= x[m"; x3:= x[3]; x4:= x[4]; busy:= true; 

next: problem( x); perm( x.,n); .f! busy ~ ~ next 
end bcj 30b; -

37 
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