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A control policy for a priority queue with removable server

H.C. Tijms

ABSTRACT

This paper studies a control policy for an M/G/1 non-preemptive priority
queueing system with removable server and two priority classes. This policy
turns off the server when the system is empty and turns on the server when
a given linear combination of the numbers of class 1 and class 2 customers
in the system exceeds a certain value. Expressions for the long-run average

numbers of class 1 and class 2 customers in the system are derived.

This paper is not for review; it is meant for publication in a journal.






Consider a service station with a single server at which customers of
classes 1 and 2 arrive in accordance with independent Poisson processes
with rates K1 and Xz, respectively. Customers of class 1 have non-preemptive
priority over customers of class 2. The order in which customers of a given
priority class are served i1s immaterial in our considerations assuming that
this order i1s independent of the service times. A customer of class i will
be called an i-customer, i=1,2. Let the service times of different customers

be independent random variables with finite first moment M and finite

second moment ugg) for i-customers. Let pi=Xiui. It is assumed that p<i,
where P=P1*05- The policy for controlling the system is to turn off the
server only when the system is empty and to turn on the server at the first
time when the sum of o, times the number of 1-customers present and Oy times

the number of 2-customers present exceeds B, where 0, O, and R are non-

2
negative constants with o +a2>0. We call this policy an (a1,a2,6)—policy.

1

For a single class of customers, such a policy was studied by
BALACHANDRAN[ 1], BELL[2], HEYMAN[L], YADIN AND NAOR[10J, and others. The
(a1,a2,6)—policy for the priority model was studied by Bell[3]. Assuming
that the service time distributions do not differ for the two classes of
customers and that there is a linear cost structure, he proved that an
average cost optimal policy exists which is of the (a1,a2,8)—type.

The purpose of this paper is to derive an expression for the average
number of i-customers in the system, i=1,2. Our derivation will be based on
the theory of regenerative processes, cf. STIDHAM[T7]. Finally, we super-
impose a linear cost structure and determine the best (1,1,B8), (1,0,8) and
(0,1,B)=policies with respect to the average cost criterion.

The results in this paper can be extended without difficulty to cover

set-up times and close-down times as in Yadin and Naor[10].



1. NOTATION AND PRELIMINARY RESULTS

For convenience we assume throughout this paper that the server is
turned off at epoch 0, so no customers are present at epoch 0. Let X be the
next epoch at which the server is turned off. For any t20 and i=1,2, let

Li(t) be the number of i-customers in the system at time t (including the
t

i-customer being served at time t, if any). Observe that J Li(s)ds repres-—
0
ents the total time spent by i-customers in the system during (0,t]. By the

memoryless property of the Poisson process, any epoch at which the server
is turned off is a regeneration epoch for the process {Li(t),tzo},i=1,2.

Let a cycle be the time interval between two successive epochs at which the
X
server is turned off. We shall see in section 3 that both X and J Li(s)ds
‘ 0
have a finite expectation. Hence, by the theory of regenerative processes

(p.99 in ROSS[6] and Theorem 1 of Stidham[T]),
t

(1) _ ..
L = llmt+w(1/t) E{ Li(s)ds}
0
t
exists and is finite for i=1,2. Also, the random variable (1/t)J Li(s)ds
. 0
converges with probability 1 to L(l) as to®, Furthermore, for i=1,2,
(1) X
L' = E{| L;(s)ds}/EX , (1)
0

i.e., the long-run average number of i-customers in the system is equal to
the quotient of the expected total time spent by i-customers in the system
during one cycle and the expected length of one cycle.

Remark. Let the average wait of an i-customer in the system be defined by
W(i)=1imn+w(1/n)E{ZE=1Wki}, where wki denotes the time spent by the kth
i-customer in the system (including his service time). Since the expected
number of i-customers served during one cycle is finite, we have by Theorem
(i)

2 of Stidham[T] that W is well defined and finite for i=1,2. Similarly,



we may define Lél) and W(l), where L(l) represents the average number of

represents the average wait of an i-cust-

) )

i-customers in the queue and W

(1)

(i)
q

=AiW(l) and Lél for i=1,2 (see

JEWELL[5] and Stidham[8]). Since wéi)=w(i)

omer in the queue. We have L =XiWél

i i .
—ui, we have Lé )=L( )—pi, 1=1,2.

Let X=A1+A2. Observe that if we lump the two separate arrival processes
together, the superimposed process is a Poisson process with rate A. For
i=1,2, let pi=ki/A, so that p. is the probability that an arbitrary customer
is an i-customer. Let the probability distribution function F(x) be defined

as follows: in case u1#a2 the points o, and a, are points of increase of F

with weights P, and Pys otherwise, the point a1(=a2) is a point of increase

of F with weight 1. Denote by F*(x) the n-fold convolution of F with itself,

and let M(x)=). _ F?(x), x20. The renewal function M(x) is the unique solution

n=1
which is bounded on finite intervals to

X
Mu)=Fuijuqmmy), 20 | (2)
0

(p.35 in Ross[6]). For any t20, let Ni(t) be the number of i-customers

arriving in (0,t]. For any x>0, let

5 . T(x)
n()=ine (6] 12 000 (805, vy G (000, Wy (0=]  n(edas  (3=1,2).
0

Given that an (a1,a2,x)—policy is used, vi(x) represents the number of
i-customers in the system at the first epoch at which the server is turned
on, and Wi(X) represents the total time spent by i-customers in the system

up to that epoch. Let V(x)=v1(x)+v (x), x=0. For any x>0, let

2
ai(x)=Evi(x), bi(x)=E{vi(x)(Vi(X)—1)}, Wi(X)=EWi(X) (i=1,2),

a(x)=Ev(x), b(x)=E{v(x)(v(x)-1)}, c(x)=E{V1(x)V2(x)}.

THEOREM 1. For ©=1,2, let ai(u)=0 for u<0, and let gi(x):pi+2piai(x—ai) for

x20. Then, for any x20,



a,(x) = pi{lﬁW(x)} for i=1,2, (3)
2
bi(x) = gi(x)+[09i(x-y)dl{(y)—ai(:c) for i=1,2, (4)
alz) = 1+M(x), b(x) = 2M(x)+2J¢M(x—y)dM(y), (5)
0
elx) = (1/2){b(x)—b1(ac)—b2(x)}. (6)

Let a(u)=0 for u<0, and let hi(x):(l/)\)pia(x—oci) for x20 and ©=1,2, Then,

x
wi(x) = hi(x)+J h.(x=y)dM(y) for x=0 and i=1,2. (7)
0 ¢

Proof. Let T be the arrival epoch of the first customer and fix i. We can
write Vi(x)=M+N, where M=1 if the first customer is an i-customer and M=0
otherwise, and N denotes the number of i-customers arriving in (T,T(x)J].
Clearly, under the condition that the first customer is an j-customer, the
random variable N has the same distribution as vi(x-aj), where vi(u)=0 for

< = . .
uO.Nw3aﬁx%pfp@ﬁxﬁﬂf%%ﬁpay,so
X
a.(x) = pi+JOai(X-y)dF(y), x20.
This is a renewal equation whose unique solution is given by (3). Let

di(x)=E[vi(x)]2. Using [vi(x)]2=M +2MN+N2, we obtain

X
(0 = 00+ a;emant), 0.

The unique solution of this renewal equation is given by the sum of the first
two terms from the right side of (4). In the same way the relation (5) can be
derived, while (6) follows from [v(x)]2=[v1(x)]2+2v1(x)v2(x)+[v2(x)]2.

By ET(y)=(1/X)Ev(y), we have ET(y)=(1/A)a(y) for y>0. Using this and
considering the waiting time of the first customer and that of the next
customers separately, if follows as above that Wi(x) satisfies the renewal
equation Wi(X)=hi(X)+J:Wi(x-y)dF(y) for x20, so Wi(x) is given by (7). This
ends the proof.

We note that, by (2) and (5), h,(x)+h,(x)=M(x)/A for x=0.



2. BASIC RESULT

In this section we shall give a result which will be basic in our

derivation of an expression for L(l), i=1,2.
Denote by S(n1,n2) the time elapsed from the start of a service when

n, 1-customers and n, 2-customers are in the system until the next epoch at

which the system is empty. Let s(n1,n2)=ES(n1,n2), and let ui(n1,n2) be the
expected total time spent by i-customers in the system during the time

S(n1,n ), i=1,2 and ny,n,=0,1,...

2
It is routine to prove the next theorem (see pp.6-T, 9-11 in Tijms[9]).

THEOREM 2. For nashyg =0,1,... with n.ty>0,

s(ny,n,) = tbn1+{n2+lztbn1}tb2,
ul(nl,nz) =wm +(1/2)tbn (n =1)+{\ PLIE L tu (0,1),
Ug(nisng) = &y (1+d,ty 0)nn 2+{K tbn1+n }u (0,1)+
(2)
+(1/2){\ +A2tb2}{t n1+tb ,(n =1 }+(1/2)¢ patta(Ms=1),

(2) _.(2),, . 3 _ _

v, = ul/(z—p1)+x1u§2)/2(z-p1)2,
u0,1) = (1-0) " T BN /2010 )l 2e0 0o,

ug(0,1) = (1-p)~ [u(Z)K 02/2(1-91)(1-p)+u(2)'/\ /2(1-p)+(1-p,)U, 1.

3. THE AVERAGE NUMBER OF i-CUSTOMERS IN THE SYSTEM

THEOREM 3. For i=1,2, let C,=p,#\.[2(1-p)(1-6,) 1 0 ul®wa 0?1, where
61:0 and 62:p. Then, for any (al,uZ,B)-poZicy,
1Y = ¢ an(1-p) t2#u(8) T Do (B)+u b 1 (B) /20 1-p,) 1, (8)

(% - CZ+A(1-p)[1+M(B)]—1[w2(6)+ulc(8)/(1-p)+u2b2(8)/2(1-p)+
gl 1 (8)/2(1-p ) (1-0) 1. (9)



Proof. Using the Theorems 1 and 2, it is readily verified that the expected

length of one cycle equals
(1/20)01+M(8) 1+Es(v, (B),v,(B)) = [A(1-p)17"[14M(B) 1.
The expected total time spent by i-customers in the system during one cycle
equals w,(B)+Eu, (v (B),v,(B)), i=1,2. Now, by (1),
) 2 A(1-0)014(B) 17 o, (B)+Bu, (v (8),v,(8))T  for i=1,2.
Using the Theorems 1 and 2, we obtain (8) and (9) after some algebra.

4. SPECIAL CASES OF THE (a,,a,,B)-POLICY

We consider the following three cases.

Case 1. a1=a2=1 and B is a non-negative integer. Then v1(B) has a binomial

distribution with parameters B+1,p1. Using this, we find
M(B)=B, b, (B)=p;B(B+1), c(B)=p,p,B(B+1), w;(B)=(1/20)p;B(B+1).
From (8) and (9) we obtain after some algebra
(1) _ -1 (2) _ -1
L = C1+[2A(1-p1)] A1(1—p)8, L = 02+[2A(1_p1)] A B.

=0 and B is a non-negative integer. Then V(RB) has a negative

Case 2. o,=1, q

1 2

binomial distribution with parameters B+1, D, Using this, we find

1(B)=(B+1) /Dy, by(B)=B(B+1),  b,(B)=(A/AT)(B+1)(B+2),
c(B)=(p/A,)(B+1)%, w,(B)=(1/2X,)B(B+1), wy(B)=(1,/205)(B+1)(B+2).

Next we find after some algebra
101 2 ¢oara(1-p.) 17 (12008, 182) = c+02n, (12p. )17 CAB+2A (1=p. )]
1~ 1 ? 2 1 1 2 2 17°°
Case 3. a1=0, a2=1 and B is a non-negative integer. Then we find

2)

(1) _ -1 (2) _ -1
L = C1+[2A2(1-p1)] [11(1-p)(s+2)], L = 02+[2(1-p1)] [B+2p1].



Consider now the following cost structure. There is a holding cost of
hi>0 per unit time per i-customer in the system and a fixed cost of K>0 per
cycle for turning the server off and for turning it on. Then, the long-run

average cost per unit time equals h L(1)+h2L(2)+KX(1-0)[1+M(B)]-1. Routine

1
analysis shows that for Case j the long-run average cost is convex in B and
is minimal for B one of the integers [B;] and [63]—1, where B;=(A1/X)BT and
* * .

83—()\2/)\)61 with

8% = [20%(1-p) (1-p) n A, (1-0) 10,2 1112,

If we put A2=O in the expression for B? we obtain the well known formula

(3L4) in Yadin and Naor[10].
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