
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE BW 30/73

Jac.M. ANTHONISSE
A GRAPH-DEFINING LANGUAGE

~
MC

DECEMBER

2e. boerhaavestra_at 49 amsterdam

PJunte.d a.t :the. Ma.thema.Uc.al. Ce.ntJLe., 49, 2e. BoeJtha.a.ve6.tJta.a.t, Amo:teJtdam.

The. Ma.thematic.al. Ce.ntJLe., 6ou.nde.d :the. 11-;th 06 Fe.bJc.u.aJr.y 1946, .l6 a. non­
pll.o6U .lY1J.iti:tr.Ltlon cum-lng a.t :the. pll.omoilon 06 pWLe. ma.thema.UC-6 a.nd -l:t6
a.ppUc.a.Uont:- .. I;t .l6 .opoYll.ioJc.e.d by :the. Ne.:th<Vli.a.nd6 GoveJtnme.nt ;thll.ough :the.
Ne.:th<Vli.a.nd6 0Jc.ga.n-lza.Uon 6oJc. :the. Adva.nc.eme.nt 06 PWLe. Re6e.Mc.h (Z.W.O),
by :the. Mun-lupa.U:ty 06 Am6:teJtdam, by :the. Un-lve.MUy 06 Am.o:teJtdam, by
:the. FJc.e.e. Un-lve.MUy a.t Am.6:teJtdam, a.nd by -lnda.o.tlue6.

AMS (MOS) subject classification scheme (1970): 05C99, 94A20
ACM - Computing Reviews - category: 4.22, 5.32

Summary

A language for the definition of graphs and networks is introduced. In

this language the vertices of a graph are identified by alphabetical

or numerical identifiers. The vertices and arcs can be provided with

numerical or non-numerical information. Subsets of vertices and arcs

can be defined, these subsets are also identified by alphabetical, or

numerical identifiers. Moreover, subsets of vertex-informations and

subsets of arc-informations can be defined which are also identified by

alphabetical or numerical identifiers.

An implementation is available in the form of a set of Algol-60 procedures

to read a graph and to store it for future analysis. These procedures are

used in several programs.

Contents

1 • Introduction

2. Fundamental Concepts 2

3. Networks 4
4. Definitions of Graphs 6

5. Informal Description 7
6. Formal Definition 12

7. Implementation 16

8. Coding 22

9. Example 23

1. Introduction

In applications of graph theory, graphs and networks are used as models,

and are analysed to derive conclusions about the phenomenon that is the

proper subject of research. The graphs are generated from a set of data,

analysed, and then the results of the analysis are interpreted in terms

of the proper subject of research.

The analysis is defined as a program or procedure to be performed on the

graph, in most cases the analysis will be performed by a computer. In

order to make the analysis available for many applications the program or

procedure should be defined independent of a specific application.

However, the graph itself and the results of the analysis should be

available in a form which is very close to each particular application.

In the present report a language for the definition of graphs and net­

works is introduced. In this language the vertices of a graph are iden­

tified by arbitrary alphabetical or numerical identifiers; thus, in each

application, the 'natural' identifiers can be used. The vertices and arcs

can be provided with numerical or non-numerical information. Numerical

information consists of a sequence of real numbers, non-numerical infor­

mation consists of a sequence of symbols. Subsets of vertices, arcs and

informations can be defined, which are also identified by arbitrary

alphabetical or numerical identifiers.

The laguage described in this report certainly is not the most general or

the most powerful language for the definition of graphs and networks,

that can be imagined. Many extentions and generalisations are possible.

The present form, however, is sufficiently general and handy for a large

number of applications. Moreover, the costs of the implementation are not

excessive with respect to the programming effort, the storage requirements

and the running time of the programs,

2

2. Fundamental Concepts

A graph is an (abstract) object, consisting of two ty:pes of elements,

called vertices and edges respectively, where each edge is incident to

one or two vertices.

More formally a graph G can be defined as a quadruple G = (V,E,t,h) where

V denotes a set of elements called vertices, E denotes a set of elements

called edges and both t and h denote a mapping of E into V. Then edge

e EE is incident to t(e) EV and h(e) EV.

Only finite graphs, i.e. graphs with a finite number of elements, will

be considered.

If an edge is incident to only one vertex, i.e. t(e) = h(e), that edge

is called a loop on that vertex. If an edge is inaident with two vertices

these vertices are said to be adjacent to each other. Consequently, a

vertex is not adjacent to itself, A vertex is isolated if it is not

adjacent to any vertex.

The term multiple edges (or multiple loops) is used to denote the

situation that the incidences of two or more edges coincide, i.e.

e 1 # e2 and {t(e1), h(e 1)} = {t(e2), h(e2)}. A graph which contains

multiple edges is called a multigraph.

A digraph (or directed graph) is a graph in which an orientation (or

direction) has been assigned to each edge.

An edge of a digraph, together with its orientation, is called an arc.

It may be assumed, without loss of generality, that arc e is oriented

from t(e) to h(e). Then t(e) and h(e) are called the tail and head of

the arc respectively.

The term multiple arcs is used to denote the situation that the tails and

heads of two or more arcs coincide, i.e. e 1 # e2 , t(e1) = t(e2) and

h(e 1) = h(e2).

Figure 1 gives a pictorial representation of a graph and a digraph.

A pictorial representation, or any other representation, should not be

confused with the graph itself.

X y

u V u

(a) (b)

Figure 1 : pictorial representation of a graph and a digraph.

The graph (a) has multiple loops on vertex y, two edges are incident to

both vertex x and vertex u.

The digraph (b) has multiple loops on vertex y, and has multiple arcs

between x and u; the arcs between y and v are not multiple ones as they

are oriented in opposite directions.

Both graph and digraph have 12 elements, consisting of 4 vertices and 8

edges.

In the discussion of digraphs it is sometimes necessary to ignore the

orientation of arcs. In such cases the term edge will be used to stress

the fact that not the digraph but the 'underlying' graph is considered.

Graphs in which both orient~d and non-oriented edges occur will not be

considered.

3

4

3. Networks

In many applications a graph or digraph as defined above is only part of

the model. In order to obtain a realistic model the elements of the graph

are often provided with information describing characteristic properties

of the objects corresponding to the elements of the graph. Thus the exis­

tence of a relation between two objects could be described by the existence

of an edge between two vertices whereas the contents of the relation could

be described by the information associated with that edge.

In fact, the orientation of an arc should be interpreted as information

associated with an edge. But the many applications of digraphs and the

fundamental concepts which apply to digraphs only lead to the separation

of orientation from the other types of information and to the introduction

and study of digraphs as a specific type of graph.

A graph, together with the information associated with its elements, is

called a network. As the orientation of edges is not interpreted as infor­

mation, directed and non-directed networks can be distinguished.

The type and amount of information associated with vertices and edges (or

arcs) depends upon the specific application, In many cases the information

consists of one or more numerical values, but non-numerical information

occurs in several applications.

Figure 2 gives a pictorial representation of two networks, they are equi­

valent to the multigraphs of figure 1, if the information associated with

each edge (or arc) is interpreted as the multiplicity of that element.

2

X y

2 2
U V

(a) (b)

Figure 2 pictorial representation of two networks.

5

6

4. Definitions of Graphs

Before a graph can be analysed it must be defined. The definition consists

of the identification of the vertices, the identification of the edges (or

arcs) and the definition of the incidence relations between vertices and

edges. The most extensive definition would consist of a list of identifiers

denoting the vertices, a list of identifiers denoting the edges and a list

of incidence relations (i.e. a list of pairs, each pair consisting of a

vertex-identifier and an edge-identifier).

If it is not necessary to have specific identifiers for the edges then each

edge can be identified by two vertex-identifiers, i.e. the identifiers of

the vertices the edge is incident to. The definition of a graph then consists

of a list of vertex-identifiers and a list of pairs of vertex-identifiers,

each pair corresponding to an edge. If a pair consists of two identical

identifiers the edge is a loop. If the graph is a directed one the first

identifier of a pair is the tail of the arc, the second one is the head.

The list of vertex-identifiers could be deleted if the graph is without

isolated vertices, in such cases the list can be derived from the pairs.

In practice, however, it is convenient to have such a list because it is a

user-defined ordering of the vertices, which can be applied in the presenta­

tion of results of computations.

Another practical requirement is that of defining the set of vertices as the

union of several subsets of vertices. In such cases the list of vertex-iden­

tifiers is replaced by several lists of vertex-identifiers, and each list

is provided with an identifier denoting that list.

It should also be possible to replace the list of edges by several lists

of edges, where each list is provided with an identifier denoting that list.

This option permits the assignment of a specific identifier to each edge,

by defining a list for each single edge.

In practice it is often convenient to define several lists of vertex­

informations and several lists of edge- (or arc) informations, and to

provide each list with an identifier denoting that list.

5. Informal Description

This section is an introduction to the formal definition of the graph­

defining language,

In combination with the section on implementation this section could

serve as a manual for the preparation of input for a program that reads

a graph.

Throughout this, and the next sections, the terms arc, head and tail will

be used, even if the graph is a non-directed one.

From the above it will be clear that identifiers are essential in the

definition of graphs and networks. As mentioned above, two type of iden­

tifiers are distinguished.

A numerical identifier is a signed or unsigned integer-valued number.

An alphabetical identifier is a sequence of symbols. The available sym­

bols are:

the letters,

the digits,

blank,

the (decimal) point,

the lower ten (10) '
the plus (+)

'
the minus (-)

By inclusion of the point, lower ten, plus and minus it becomes possible

to interprete numerical identifiers as alphabetical identifiers if

necessary.

Blanks can not occur as the first or last symbols of an alphabetical

identifier.

As mentioned above two types of information are distinguished.

Alphabetical information consists of a sequence of symbols, the available

symbols are the same as for alphabetical identifiers.

7

8

Numerical information consists of a sequence of real numbers.

Each number is required to be preceded by its sign to separate it from

the preceding number. Numerical information can be interpreted as

alphabetical information if necessary.

The definition of a graph or network can consist of six parts:

the title

the lists of vertex-informations

the lists of arc-informations

the lists of vertices

the lists of arcs

the end

The title consists of:

e.g.

graph

the proper title

a semicolon

graph xy05 : relations of type 5 between set x and set y;

The proper title should not contain a semicolon.

Each list of vertex-informations consists of:

vinfos

the list-identifier

an equal

the proper list

a semicolon

The proper list consists of vertex-informations, subsequent informations

are separated by a comma,

e.g.

vinfos type= a,ab,z;

Each list of arc-informations consists of:

e.g.

ainfos (or einfos)

the list-identifier

an equal

the proper list

a semicolon

ainfos 300 = 301,333,317;

Each list of vertices consists of:

vertices

the list-identifier

an equal

the proper list

a semicolon

The proper list consists of vertex-identifiers, subsequent identifiers

are separated by a comma,

e.g.

vertices set x = x1, x2, x3, x4;

Information associated with a vertex should be given between the parenthe­

ses (and) immediately after the identifier of that vertex,

e.g.

vertices set x = x1(12), x2(17), x3(9), x4(5);

9

10

Each list of arcs consists of:

arcs (or edges)

the list-identifier

an equal

the proper list

a semicolon

In the straightforward form the proper list consists of single arcs, sub­

sequent single arcs are separated by a comma.

A single arc consists of:

e.g.

the tail

a colon

the head

arcs rel5 = x1 : y2, x2 : y4, x2 : y2, x1

Both tail and head are vertex-identifiers.

y3, x3 y3;

A vertex-identifier can occur several times as the tail, of several arcs,

in the straightforward form of the proper list. In such cases the first

abbreviated form can be used:

arcs rel5 = x1 (y2,y3), x2 (y4,y2), x3: y3;

A vertex-identifier can occur several times as the head, of several arcs,

in the straightforward form of the proper list. In such cases the second

abbreviated form can be used:

arcs rel5 = (x1,x2): y2, x2: y4, (x1,x3): y3;

Information associated with an arc should be given between the parentheses

(and) immediately after the tail or head of that arc.

If both tail and head are followed by information the second information

supersedes the first.

E.g.

arcs rel5 = x1 y2 (3), x2 : y4 (5), x2 y2 (7),

x1 y3 (11), x3: y3 (1) ;

arcs rel5 -= x1 (3) y2, x2: y4 (5), x2 (7) y2 (7),

x1 (3) y3 (11), x3 : y3(1)

arcs rel5 = x1 (y2(3),y3(11)),

x2 (y4(5) ,y2(7)),

x3 (y3(1)) ;

arcs rel5 = x1 (3) : (y2,y3(11)),

x2 : (y4(5),y2(7)),

x3(1) : y3 ;

arcs rel5 = (x1 (3) ,x2(7)) y2,

(x2(5)) : y4,

(x1(11),x3(1)) : y3;

The end of the graph definition consists of:

fini

The definition of a graph or network may be interspersed with comments,

each comment consists of:

e.g.

a quote

the proper comment

a quote

"This list contains 7 elements"

The proper comment should not contain a quote.

11

12

If the definition of a graph contains two or more lists of vertices then

their list-identifiers are required to be unique, i.e. a list-identifier

identifies a single list. A vertex, however, may occur in several lists of

vertices, i.e. the lists are not required to be disjoint.

A list of vertices may be defined as an empty one: e.g.

vertices nodes= ;

The list of arcs may contain vertices which do not occur in a list of ver­

tices and the arcs incident to them are ignored, unless the last list of

vertices was defined as an empty one. In the latter case such new vertices

are added to the last list of vertices.

Similar remarks hold for the vertex-informations, arc-informations and

arcs.

6. Formal Definition

This section contains the formal definition of the syntax of the graph

defining language. Neither examples nor semantics are included, these are

found in the preceding and next section respectively.

<digit> :: = ol1l2!314l5l617l8l9

<unsigned integer> :: = <digit>l<unsigned integer><digit>

<signed integer> :: = +<unsigned integer>l-<unsigned integer>

<integer> :: = <signed integer>l<unsigned integer>

<decimal fraction> :: = .<unsigned integer>

<exponent part> :: = 10<integer>

<decimal number> :: = <unsigned integer>l<decimal fraction>!

<unsigned integer><decimal fraction>

<unsigned numbers> ··=<decimal number>l<exponent part>

<decimal number><exponent part>

<signed number> :: = +<unsigned number>l-<unsigned number>

<number> :: = <signed number>l<unsigned number>

<letter>::= alblcldlelflglhliljlklllmlnlolplqlrlsltlulvlwlxlylz

<numerical symbol> :: = -1 10 1+1-

<id symbol> :: = <letter>l<digit>l<numerical symbol>l<blank>

<numerical identifier> :: = <integer>

<alphabetical identifier> :: = <id symbol>!

<alphabetical identifier><id symbol>

<identifier> :: = <numerical identifier>l<alphabetical identifier>

<vinfos list identifier> ··=<identifier>

<ainfos list identifier> ··=<identifier>

<vertex list identifier> ··=<identifier>

<arc list identifier> :: = <identifier>

<vertex identifier> :: = <identifier>

<numerical information> :: = <number>

<numerical information><signed number>

<alphabetical information> :: = <id symbol>!

<alphabetical information><id symbol>

<information> :: = <numerical information>l<alphabetical information>

<vertex information> :: = <information>

<vinfo list> :: = <empty>I

13

<vertex information>l<vinfo list>,<vertex information>

<single list of vertex information> :: =

vinfos <vinfos list identifier>= <vinfo list> ;

14

<lists of vertex informations> :: = <empty>j

<single list of vertex informations>!

<lists of vertex informations><single lists of vertex

informations>

<arc information> :: = <information>

<ainfo list> :: = <empty>!

<arc information>l<ainfo list>,<arc information>

<single list of arc information> :: =

ainfos <ainfos list identifier>=<ainfo list>; I

einfos <ainfos list identifier>=<ainfo list>;

<lists of arc informations> :: = <empty>!

<single list of arc informations>!

<lists of arc informations><single list of arc

informations>

<single vertex> :: =

<vertex identifier>l<vertex identifier>(<vertex information>)

<vertex list> :: = <empty>!

<single vertex>l<vertex list>,<single vertex>

<single list of vertices> :: =

vertices <vertex list identifier>=<vertex list>

<lists of vertices> :: = <empty>\

<single list of vertices>l<list of vertices><single list of

vertices>

<tail> : : =

<vertex identifier>l<vertex identifier>(<arc information>)

<head> : : =

<vertex identifier>l<vertex identifier>(<arc information>)

<list of tails> :: =

<tail>l<list of tails>,<tail>

<list of heads> :: =

<head>l<list of heads>,<head>

<primary arc list> =

<tail>:<head>I

<tail>:(<list of heads>)!

(<list of tails>): <head>

<arc list> : : = <empty>I

<primary arc list>l<arc list>,<primary arc list>

<single list of arcs> :: =

edges <arc list identifier>=<arc list>;!

arcs <arc list identifier>=<arc list>;

<lists of arcs> :: = <empty>j

<single list of arcs>l<list of arcs><single list of arcs>

<Other symbol> :: = ,I ;j (j)j[j]j=

<Symbol> :: = <id symbol>j<other symbol>

<proper comment> :: = <Symbol>!

<proper comment><Symbol>

<Comment>

<graph> ..

= graph <identifier>;

= fini

= "<proper comment> II ..
= <title>

<lists of vertex information>

<lists of arc information>

<lists of vertices>

<lists of arcs>

<end>

15

16

7. Implementation

The graph-defining language, as described and defined in the preceding

sections, has been implemented in ALGOL-60, as available on a Control Data

CYBER 73 computer.

As underlining is not available, the symbols

graph, vinfos, ainfos, einfos, vertices, arcs, edges, fini are punched as

1 graph 1 , 1vinfos 1 , 1 ainfos 1 , 1 einfos 1 , 'vertices' , 1 arcs 1 , 1 edges 1 , 1 fini 1 ,

respectively.

Instead of the lower ten (10) the quote(") is punched, instead of the

quote(") two subsequent apostrophes ('')are punched.

The term entity will be employed to denote an identifier or an

information. Four classes of entities are distinguished:

the vertex-informations and the identifiers denoting lists of vertex­

informations,

the arc-informations and the identifiers denoting lists of arc-informations,

the vertex-identifiers and the identifiers denoting lists of vertices,

the identifiers denoting lists of arcs.

The length of ~1 alphabetical identifier or information is equal to the

number of symbols it contains, e.g. aba has length 3, whereas + 1 +2+ 1 has

length 6.
The length of a numerical information is equal to the number of elements

it contains, e.g. +1+2+1 has length 3.

The length of a numerical identifier is 1.

Before a graph can be read a number of parameters are to be specified.

These parameters describe, for each class, the type and number of

entities in that class, and are used to reserve sufficient storage for

the graph.

The parameters are specified with the help of a number of keywords.

If a parameter is used to describe the number of entities in a class then

its keyword is followed by the symbol= and an integer, e.g.: ivm = 15.

17

The value assigned to the parameter is an upper bound for the number of en­

tities.

If a parameter describes the type of a class of entities then several key­

words are available and the right keyword must be selected to define the

type.

If a parameter is not specified explicitly then a default value is selected

automatically.

The list of keywords is preceded by

'parameters'

subsequent keywords are separated by a comma, a semicolon closes the list.

The keywords concerning the vertex-informations are:

ivm, ivnum, ivalph, ivin, ivnin, ivfl, ivr, ivl, ivlm, ivlfl, ivll.

ivm

is an upperbound for the number of vertex-information. The specifications

ivm = 15 means that the definition of the graph contains at most 15 dif­

ferent vertex-informations.

Default: ivm = O, with the effect that all vertex-informations, if

present, are ignored.

ivnum, ivalph

The specification ivnum means that the vertex-informations and their

list-identifiers are of type numeric. The specification ivalph means that

they are of type alphabetic.

Default: ivnum.

18

1 vin, 1 vnin

The specification ivin means that blanks occurring within vertex-informa­

tions or their list-identifiers should be considered as symbols, with the

result that a a and aa will be considered as different informations or

identifiers. The specification ivnin means that blanks occurring within

these entities should be skipped, with the result that a a will be recog­

nized as the entity aa.

Default: ivnin.

ivfl

is an upperbound for the sum of the lengths of the different vertex-in­

formations, plus the length of the longest vertex-information.

Default: ivfl = ivm + ivm + 2 if ivalph, ivm + 1 if ivnum.

ivr, ivl

These parameters are used for the presentation of results of computations.

The specification ivr means that the entities will be right-justified in

an appropriate field, the specification i vl means that they will be lef't­

justified. If there are three entities aaa, aa, a then they will be

printed as

aaa, aa, a in case of ivr, or as

aaa,aa , a 1.n case of ivl.

Default: i vl.

ivlm

is an upperbound for the number of lists of vertex-informations.

Default: ivlm = O, with the effect that the list-identifiers are ignored.

The informations are not ignored, but stored into a single list with 1 as

its identifier.

ivlfl

is an upperbound for the sum of the lengths of the list-identifiers, plus

the length of the longest one.

{
i.vlm +

Default: ivlfl =
ivlm + ivlm + 2

if ivnum,

if ivalph.

19

ivll

is an upperbound for the sum of the sizes of the lists of vertex-informa­

tions.

Default: ivll = ivm.

The keywords concerning the arc-informations are:

ia.rn, ianum, iaalph, iain, ia.nin, iafl, iar, ial, ialm, ialfl, iall.

Their interpretation is completely a.naloguous to the interpretation of the

vertex-informations-keywords.

The keywords concerning the vertex-identifiers are:

vm, vnum, valph, vin, vnin, vfl, vr, vl, vlm, vlfl, vll.

Their interpretation is completely a.naloguous to the interpretation of the

vertex-informations-keywords.

The keywords concerning the list-identifiers of the lists of arcs are:

alm, alnum, alalph, alin, alnin, alfl, alr, all.

alm

is an upperbound for the number of list-identifiers.

Default: alm = O, with the effect that the list-identifiers are ignored,

and that the arcs are stored into a single list with 1 as its identifier.

alnum,alalph

The list-identifiers are of tYPe numeric or alphabetic respectively.

Default: alnum

alin, alnin

Blanks within these list-identifiers are considered as symbols or are ig­

nored respectively.

Default: alnin.

20

alfl

is an upperbound for the sum of the lengths of the list-identifiers, plus

the length of the longest one.

if alnum, __ { alm +
Default: alf'l

alm + alm + 2 if alalph.

alr, all

The list-identifiers will be right-justified or left-justified respec­

tively.

Default: all.

The options of' coding will be described in the next section, the keywords

concerning the use of these options are:

codedvinf, vinf

In the lists of vertices the vertex-informations are coded or not coded

respectively.

Default: vinf.

codedainf, ain:f

In the lists of arcs the arc-informations are coded or not coded respec­

tively.

Default: ainf.

codedvert, vert

In the lists of arcs the vertex-identifiers are coded or not coded respec­

tively.

Default: vert.

The remaining keywords are:

am, tl, directed, nondirected, test, real.

am

is an upperbound for the number of arcs in the graph.

Default: am= O, with the effect that all arcs are ignored.

tl

21

is an upperbound for the number of symbols constituting the proper title

of the graph.

Default: tl = 80

directed, nondirected

The graph is a directed one or nondirected one respectively.

Default: nondirected.

test, real

Probably unimportant errors in the definitionsof the graph are counted or

ignored re:specti vely.

Default: real.

22

8. Coding

In the course of reading the lists of vertex-informations a label is

assigned to each information. The label is a natural nUID.ber, the first in­

formation obtains label 1, the second information obtains label 2, etc.,

the label of an information that corresponds to the order in which the in­

formations are encountered.

If, in the course of reading the lists of vertices, a vertex-information is

encountered, the label of that information is determined and associated

with the vertex-identifier. The information associated with a vertex is

then available by means of the label associated with the vertex-identifier,

the label serves as a pointer to the information.

The specification codedvinf in the set of parameters means that the option

of coding the vertex-informations has been used. In this case the lists of

vertices do not contain the proper vertex-informations, but their labels.

Thus

'vinfos I zz

'vertices' x

ie equivalent to

'vinfos I zz

'vertices' x

xyz, pqrs, a, b;

x1(xyz), x2(xyz), x3(pqrs), x4(b);

xyz, pqrs, a, b;

x 1 (1) , x2 (1) , x3 (2) , x4 (4) ;

provided the list of vertex-informations zz is not preceded by any other

non-empty list of vertex-informations.

The specification codedainf means that the arc-informations are coded, i.e.

the lists of arcs do not contain the proper informations, but their labels.

The specification codedvert indicates that the vertex-identifiers are coded,

i.e. the lists of arcs do not contain the vertex-identifiers, but their

labels.

Both cases are handled similar to the case of coded vertex-informations.

9. Example

1 parameters '

ivm = 5, ivlm = 1,

vm = 6, valph, vlm = 4, vlfl = 15, vll = 12,

alm = 3, am= 15;

'graph' example;

'vinfos' 0 =

'vertices' all= a, b, c, d, e, f;

'vertices' odd= a(1), c(2), e(3);

'vertices' even= b(1), d(2), f(3);

'arcs' 1 = b : a;

'arcs' 12 =a: (c,d), b: (c,d);

'arcs' 123 = (a,c,e) : f, b : (a,c,e);

'fini'

23

