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GENERALIZED MARKOV PROGRAMMING WITH A FINITE STATE 
SEMI MARKOV PROCESS AS NATURAL PROCESS*) 

P.J. Weeda 

ABSTRACT 

The principles of generalized Markov programming 

were developed by DE LEVE( 4) to solve continuous 

time Markov decision problems under the long run 

average return criterion. Here we investigate the 

generalized Markov decision model that arises if 

the natural proces is given by a finite state semi 

Markov process and actions are restricted to the 

points in time just after a state transition. 

The iteration method induced by the general itera-
(4) . ·a1· t" tion scheme of DE LEVE for this speci iza ion 

distinguishes three operations at each iteration 

step which are called respectively: the value 

determination-, the policy improvement - and the 

cutting operation. The first two are related to 

similar operations in the iteration methods of 

HOWARD( 2 ) and JEWELL( 3 ) and are directly amenable 

for computation. This, however, is not true for the 

third one. For this cutting operation new algorithms 

are developed which are based upon the relationship 

between the cutting operation and optimal stopping. 

Some computational results with computer implemen­

tations of these algorithms are presented. 

INTRODUCTION 

In generalized Markov programming 
(4) 

the state of 

the system is described by a point in a finite di­

mensional Cartesian space at each point of time. 

For each initial state the evolution of the system 

is described by a stochastic process which is 

called the natural process. This natural process is 

assumed to be a strong Markov process. The decision­

maker may interrupt the natural process in each 

state by an interV'ention which implies an instan­

taneous (possibly random) change of the state of 

the system. In each state the decisionmaker has a 

set of feasible interventions at his disposal. The 

only alternative to interventions is to leave the 

natural process untouched. This alternative is 

called the nulld.eaision in that state. Except for a 

(nonempty) subset of states the nulldecision is 

feasible in each state. After an intervention the 

evolution of the system is again described by the 

natural process until the next intervention is ef­

fectuated. It is assumed that a finite number of 

interventions is taken in each finite period of 

time. A general iteration scheme is presented in 

(4) which approaches a strategy, which is optimal 

within the class of stationary deterministic strat­

egies, arbitrarily close. The optimality criterion 

is to maximize the expected average return per time 

unit in the long run. Some applications of the 
(5) method are presented in In this paper we con-

sider the special model that arises if the natural 

process is given by a finite state semi Markov pro­

cess. The decisionmaker is only allowed to inter­

vene at the points of time a state transition in the 

natural process has just occurred. The iteration 

method induced by the general iteration scheme for 

this special model is formulated. Like the general 

scheme this iteration method distinguishes three 

operations per iteration step: the value determina­

tion-, the policy improvement - and the cutting 

operation. The main interest in this paper is 

focussed on the cutting operation of generalized 

Markov programming. New is the relation between the 

cutting operation and optimal stopping which is 

stated here and proved in (6) for this special 

model. A second new idea is to replace the original 

cutting operation by a more simple operation which 

is called suboptimal cutting. A proof that the ite­

ration method for this special model with suboptimal 

*) This paper is not for review; it is meant for publication in the 
Proceedings of the IFAC symposium on "Stochastic Control", Budapest, 
September 25-21', 1974. 



cuttj ng converges within a finite number of steps 

to an optimal strategy will be given in a coming 

report. In this :paper the suboptimal cutting algo­

rithm, which is the most simple from a computa­

ti6nal point of Yiew, will be presented. Finally 

the computational. performance of the algorithms 

will be compared. 

THE MODEL 

Natural process 

The natural process of this generalized Markov de­

cision model is irnpposed to be given by a finite 

state semi Markov process. Such a stochastic pro-

cess makes random transitions among a finite number 

where A0 is a nonempty subset of states. Further A0 
has to satisfy the requirement that the inverse 

exists of the matrix (I-Q)A- with entries o .. -q .. 
- 0 1.J 1.J 

for i,j E A0 • To each intervention x E X(i) is as-

sociated a probability distribution pim(x) of the 

state~ into which the intervention leads and an 

expected cost gi(x), a finite real number. After 

the intervention the evolution of the system is de­

termined by the natural process at least until just 

after the first future state transition. 

The nulldecision x0(i) can be viewed as an inter­

vention satisfying 

P· (xo(i)) = {1 
lm O 

if i=m 

otherwise 

of states J. Let J denote also the set of states. and 

If a transition to some state i E J has just oc­

curred at time t the system remains in state i un-
. . . *) 

til the next transl tion to a random state .J. oc-

curs at a random time t+.!j_ where 2-j_ is the sojourn 

time in state i. Sufficient information for our 

purposes about the behaviour of the process is pro­

vided by the triple (Q,u,h) where Q denotes the 

JxJ-matrix of transition probabilities q .. , i and 
lJ 

j E J satisfying O $ q .. $ 1 and L· J q •. = 1, 
lJ JE 7.J 

u denotes the J-climensional vector of the expected 

sojourn times and h denotes the J-dimensional vec­

tor of the expected returns. Each element hi repre­

sents the expected return of the process.during the 

sojourn time in state i including the transition to 

the next state. 

Interventions and nulldecisions 

In each state i ,, J the decisionmaker has a finite 

set of actions X(i) at his disposal consisting of 

interventions and at most one nulldecision, denoted 

by x0 ( i). The nuJ.ldeci s ion leaves the state of the 

system unchanged,, which implies here that the natu­

ral process remains untouched during the sojourn 

time in that state, including the next state tran­

sition. The nullclecision satisfies 

for i E A0 

*) Random variables are underlined in this paper. 
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o. 

Strategies 

A stationary deterministic strategy z applies the 

same action z(i) E X(i) each time a transition to 

state i has just occurred. By a strategy of this 

type the state space is dichotomized into a set Az 

defined by 

and its complement Az The definitions of A0 and Az 

imply 

THE ITERATION METHOD 

Preliminary computations 

Compute: 

a. The J-dimensional vector k0 defined by 

b. The J-dimensional vector t 0 defined by 

(to)A := (I-Q):1 (u)-
0 AO AO 

(tO)A . - o . 
0 



c, The numbers k(i,x) defined for each x € X(i) and 

i € J by 

d. The number t(i,x) defined for each x € X(i) and 

i € J by 

The interpretation of the vectors k0 and t 0 is that 

each element k0(i) (t0(i)) represents the expected 

return (expected time elapsed) in the natural pro­

cess with initial state i € A0 until the first 

state in A0 is assumed. The elements k0{i) and 

t 0(i) for i € A0 vanish. The numbers k(i,x) 

(t(i,x)) represent the difference in expected re­

turn {expected duration) between two stochastic 

walks. The first walk applies action x € X(i) in 

initial state i and is subsequently described by 

the natural process until the first state in A0 is 

taken on, The second walk is completely described 

by the natural process from initial state i until 

the first state in A0 is taken on. The definitions 

of k(i,x) and t(i,x) imply k(i,x0(i)) = 

= t(i,x0(i)) = o. 

After these preliminary computations the iteration 

cycle is entered with an arbitrarily chosen initial 

strategy. During each iteration step three opera­

tions are performed. 

Value determination operation 

Compute: 

a. The IA I-dimensional vector k(z) with elements 
z 

k(i,z(i)), i € Az. 

b. The IA I-dimensional vector t(z) with elements 
z 

t(i,z(i)), i € AZ. 

c. The IA lxlA I-matrix S(A) defined by z z z 

S(Az) := (I-Q)i1 (Q)A A 
z z z 

where (Q)A- A is the IA Ix IA I-matrix with en-z z z z 
tries q .. , i € A , j €A. The existence of the 1J Z Z 
matrix (I-Q)i1 is implied by the existence of 

-1 z 
(I-Q)Ao and AZ 2 Ao. 
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d. The IA lxlA I-matrix R(z) defined by z z 

R(z) := P(z) S(A ) 
z 

where P(z) denotes the IA lxlA I-matrix with z z 
entries p. (z(i)), i €A, m €A. R(z) is the im z z 
matrix of transition probabilities of the im-

bedded process defined by the states i € Az. 

e. The subvectors (y{z))A and (v(z))A from the 
z z 

following set of equations 

(y(z))A = R(z) (y{z))A 
z z 

(v(z))A = k(z) - (y(z))A Ot(z) +R(z)(v(z))A 
z z z 

where the notation aDb stands for the vector 

with elements aibi. A unique solution to this 

set is obtained by choosing in each ergodic set 

K(l), 1=1, .•. ,L(z) of the imbedded process an 

arbitrary state i(l) € K(l) for which we put 

vi(l)(z) = O, 1=1, ... ,L(z). 

f. The subvectors (y(z))A and (v(z))A from 
z z 

The policy improvement operation 

Compute: 

a. The J-dimensional vector y' with elements yi 

defined by 

y! := max [ l p .. (x) y.(z)J. 
1 X€X(i) j€J iJ J 

b. The subset x1(i) of X(i) defined by 

x1(i) = {x € X(i) : l p .. (x) y.(z) = YI}· 
j€J 1J J 

c. The J-dimensional vector v' whose elements vi 

are defined by 

v! := 
1 

max [k(i,x)-y!t(i,x)+ l p .. {x)v.(z)J. 
X€X1(i) 1 j€J iJ J 

d. The subset x2(i) of x1(i) defined by 

+ l p .. (x) v.(z) = v!}. 
j€J 1J J 1 



e. Strategy z' defined by the following rule: Take 

z'(i) = z(i) if z(i) E x2(i); otherwise take 

z'(i) equal to an arbitrary action from x2 (i). 

We note that at the computation of y' the null­

decision for a state i E Az n A0 yields 

L p .. (x0 (i)) y. (z) = y. (z) 
j EJ iJ J i 

while the intervention z(i) yields 

p .. (z(i)) y.(z) = y. (z). 
iJ J i 

The same holds for the determination of v'. Because 

the policy improvement operation implies z'(i) = 

= z(i) if yi = yi(z) and vi= vi(z) we conclude 

that in any case z'(i) # x0 (i) for i E Az implying 

Cutting operation 

Let A be an arbitrary set of states satisfying 

A0 ~A~ Az,· Define the J-dimensional vectors 

y"(A) and v"(A) by 

{
(y" (A) )A .­

(y" (A)) A:= 

S(A) 

(y' )A 

{
(v"(A) )A := S(A) (v') A} 

(v"(A))A := (v')A 

resp. 

Let M be the collection of sets A satisfying either 

yi(A) > yi or y'-l_(A) = yi and vi(A) c: vi for each 

i E AZ,, 

Compute: 

a. The set A* defined by 

b. The strategy z" defined by 

for i E A* 

* for i EA. 

If z" = z then the iteration cycle has terminated. 

Otherwise the value determination operation is re­

entered with z := z". 

While the value determination and policy improve­

ment operation are directly amenable for computa­

tion, this is not true for the cutting operation. 

This gap is removed in the next section. 

THE CUTTING OPERATION AND OPTIMAL STOPPING 

In this section we state the relationship between 

the cutting operation of the preceding section and 

optimal stopping of a Markov chain. Primarily opti­

mal stopping of a Markov chain is briefly reviewed. 

For a more extensive treatment see ( 1). 
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An optimal stopping problem in a finite Markov 

chain is a Markov decision problem with at most two 

feasible actions x0 and x 1 in each state i E J, 

where J denotes the set of states of the chain. If 

action x0 is applied in state i then the original 

chain is continued at least until the next transi­

tion occurs. If action x 1 is applied in state i 

then the chain is stopped and a return wi is ob­

tained. An optimal stopping problem in a finite 

Markov chain is completely defined by the quadruple 

(As,Ac,Q,w) where As is the nonempty subset of 

states in which only action x 1 is feasible; Ac is 

the (possibly empty) set of states, Ac~ As' con­

taining all the states in which only action xO is 

feasible; Q is the matrix of transition probabili­

ties of the original chain and w is the [A \-dimen-
c 

sional vector with elements -00 < wi < "'· We require 

the existence of the matrix (I-Q)i1. 
s 

A strategy which maximizes the expected return for 

each initial state is called optimal. It is well-
k (1) . . 

nown that there exists an optimal strategy 

within the class Z of stationary deterministic 

strategies. Each strategy dichotomizes the set of 

states J into a stopping set B defined by 

and its complement B. To each stopping set Bis as­

sociated an expected return vector f(B). Obviously 

there is a 1-1 correspondence between strategies of 

the class Zand the class of feasible stopping sets 

B satisfying As~ B ~ Ac. An optimal stopping set 

(notation Bm) can be computed by a simplified form 

of the policy iteration method of HOWARD (2 ). 

Next we state the cutting operation in terms of op­

timal stopping. 



Compute: 

a. An optimal stopping set Bm(y') to stopping prob­

lem (A0 ,Az' ,Q,y') by the method of HOWARD. 

b. The smallest and the largest optimal stopping 

set (notation respectively Bs(y') and B1 (y')) 
m m 

defined by 

B (y')\{iEB (y')nA0 :}: q .. y'!(B (y'))=y!}. 
m m jEJ l.J J m i 

Bl(y') := 
m 

B (y')u{iEB (y')nA, 
m m z 

q .. y'!(B (y')) =y!}. 
l.J J m l. 

c. An optimal stopping set Bm(v') to stopping prob­

lem (Bs(y'),B1 (y'),Q,v') by the method of 
m m 

HOWARD, 

d, The smallest optimal stopping set (notation 

Bs(v')) defined by 
m 

e. The strategy z" defined by 

:-- {z'(i) z"(i) 
x0 (i) 

for i E Bs(v') 
m 

for i E B6 (v'). 
m 

This cutting algorithm is based upon the following 

theorem. 

Theorem 1: * - A • 

A proof is given in (6). We note that the iteration 

method also converges if Bs(v') is replaced by 
m 

Bm(v'). A stopping set which is optimal to stopping 

problem (B!(y'),B!(y'),Q,y') will be called an op­

timal, autting set. 

SUBOPTIMAL CUTTING 

In this section we introduce more simple algorithms 

for the cutting operation which are based upon the 

computation of a suboptimal cutting set rather than 

an optimal cutting set. 
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Definition: A preferable stopping set B to stopping 

problem (As,Ac,Q,w) is a feasible stopping set 

satisfying either (f(B))Ac > (w)Ac or B = Ac iff Ac 

is optimal to (As,Ac,Q,w). 

Let B(y') be a preferable stopping set to 

(A0 ,Az' ,Q,y') and let Bs(y') and B1 (y') be respec­

tively the smallest and the largest set satisfying 

f(B1 (y 1 )) = f(Bs(y')) = f(B(y')), Let B(v') be a 

preferable set to stopping problem 

(Bs(y') ,B1 (y') ,Q,v'). 

Definition: A suboptimal, autting set C is defined 

by 

1) if B(y') f Az' then C := B(y') or C := B(v') 

2) if B(y') - Az 1 then C := B(v'), 

Note that the definition of suboptimal cutting set 

includes optimal cutting sets. The following theo­

rem justifies the use of suboptimal cutting sets in 

computing optimal strategies. 

Theorem 2: The iteration model induced by the gen­

eral scheme for this special model with the cutting 

operation replaced by suboptimal cutting converges 

to an optimal strategy within a finite number of 

steps. 

A proof of this theorem can be given and will be 

presented in a coming report. 

There are several ways to compute suboptimal cutting 

sets. One way is to stop the computation of Bs(y') 
m 

and/or Bs(v') by the policy iteration method of 
m 

HOWARD after the nth step, n=1,2, .•.. Here we pre-

sent the algorithm which requires the least compu­

tational effort to obtain a suboptimal cutting set 

c. 

Compute: 

a. The set B(y') defined by 

l q .. y! > Y:1_}· 
jEJ l.J J 

b. If B(y') $A, and/or y' > y(z) then take z 
C := B(y'); otherwise continue with computation c. 

c. The set C defined by 

q .. v!>v!}. 
l.J J l. 



COMPUTATIONAL PERF'ORMANCE 

In this section two versions of the iteration 

method are compared. In the first version the set 

A* and in the second version the set C is computed 

at each iteration step. The computational perfor­

mance is tested on randomly generated problems as 

well as three numerical versions of a production 

problem. The randomly generated problems arise by 

generating the mat.rix Q and the vectors u and h of 

the natural process, defining the set of actions 

X(i) for each i E J and the set A0. We restrict 

ourselves here to problems satisfying: 1) each in­

tervention x E X(i), i E J implies a deterministic 

change of the state of the system, 2) the state 

space is an ergodic set for each strategy and 

3) the set A0 consists only of the state J. 

Each row of the matrix Q is generated by ta.king J 

random numbers and dividing them by their sum. The 

vectors u and h consists of random numbers multi­

plied by a suitable factor (here 1000 in both 

cases). Because interventions are deterministic we 

may denote each intervention x by the state m it 

leads into. For X(i) we take 

X(i) 
·- {{m =, .-

{m =' 

1 ' •.. ,J} 

1, ... ,J-1} 

i t, J 

i J. 

The JxJ-matrix with entries gim i E J, m E X(i) is 

generated by ta.king ,J random points in the unit 

square and taking gim equal to the distance between 

point i and point m. After that the matrix may be 

multiplied by a suitable positive factor. The num­

bers gim are generated in this way because they 

have to satisfy the triangular inequality. This 

condition should be satisfied to prevent the itera­

tion method of generating strategies with sequences 

of interventions in zero time, see ( 6 l. Two series 

of problems were generated: 

1. 65 problems with 10 states and 10 actions per 

state. 

2. 5 problems with 50 states and 50 actions per 

state. 

The results were: 
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Series 1: 

Method Average comp. time Average number of steps 

with * 5.87 (+.75) 4.64 A sec. 

with C 3.46 (+.75) sec. 3.77 

Series 2: 

Method Average comp. time Average number of steps 

with A* 161.49 (+20.31) sec. 5.4 

with C 106. 07 ( +20. 31 ) sec. 5.0 

The numbers between parenthesis are the average 

computation time for the vectors k0 and t 0 . 

A production problem 

A product can be produced at m+1 production rates, 

r=O, ... ,m, r=O corresponds with the situation that 

the production is switched off and r > 0 with a 

production rate of r units of product per unit of 

time. The demand is Poisson distributed with a mean 

of A units of product per unit of time. The demand 

is supplied immediately from the available stocks. 

If the demand exceeds the available stock then the 

shortage is replenished by an emergency purchase. As 

soon as the maximum stock level is reached the pro-

duction is switched off. The production is con-

trolled by changing the production rate. 

Stockholding costs are c 1 per unit of time and per 

unit of product in stock at the end of the unit time 

period. The emergency purchase expenses are c2 per 

unit of product. Production costs are proportional 

to the production rater and given by c3r. Changing 

the production rate from r 1 to r 2 costs an amount 

a(r 1 ,r2 ). 

Find a strategy that minimizes the average cost per 

unit time in the long run. 

The continuous version of this problem is 

( 5). The problem stated above can also be 
- ( 2) . 

the method of HOWARD . Three numerical 

solved 

solved by 

versions 

were solved by generalized Markov programming. Again 

the computational implications of computing the set 

A* at each step have been compared with computing 

the set Cat each step. 



Numerical version 

M = 20, m = 3, c 1 
and 

Method Computation time 

with A* 391 (+17) sec. 

with C 364 (+17) sec. 

Numerical version 2 

M = 20, m = 3, c1 = .2, c2 
and 

[l 
3 3 

Il 
0 3 a = 3 0 
3 3 

Method Computation time 

with A* 441 (+17) sec. 

with C 268 (+17) sec. 

Numerical version 3 

M = 25, m = 3, c1 .2, c2 
and 

[! 

5 5 

!] 
0 5 a = 5 0 
5 5 

Method Computation time 

with A* 822 (+22) sec. 

with C 453 (+22) sec. 

CONCLUSIONS 

Number of steps 

5 

5 

15, A 1.7, c3 

Number of steps 

6 

4 

15, A 1.9, c3 = 

Number of steps 

7 

4 

The relationship between the cutting operation and 

optimal stopping is interesting because it relates 

a fundamental aspect of generalized Markov program­

ming to a wellknown problem in probability theory. 

Moreover, known algorithms for solving optimal 
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stopping problems can be used. In this way the cut­

ting operation becomes an efficient standard proce­

dure which can be applied to any problem satisfying 

the special model in this paper. 

The concept of suboptimal cutting is computational­

ly more simple than the computation of the set A* 

and does not disturb the pleasant property in this 

model of convergence within a finite number of 

steps to an optimal strategy. Moreover the experi­

ments show that suboptimal cutting even reduces the 

number of iteration steps. In all problems solved 

the number of iterations using suboptimal cutting 

has been less than or equal to the number of itera­

tions required if the set A* is computed at each 

step. Further the results of this paper may be use­

ful in obtaining computational solutions to the 

more general type of problems covered by general­

ized Markov programming. Because any problem satis­

fying the model considered in this paper can also 

be solved by the iteration method of JEWELL ( 3), 

a comparison between the two techniques is inter­

esting and will be carried out in the near future. 

NOMENCLATURE 

page 

A 4 
A* 4 

AO 2 

A 4 
C 

A 4 s 
A 2 z 
B 4 

B 4 m 
Bm(v') 5 

Bm(y') 5 

Bs(v') 
m 5 

Bs{y') 
m 5 

Bl(y') 
m 5 

cutting operation 4 

C 5 
8 .• (Kronecker delta) 2 
1J 

f(B) 4 

h 2 

gi (x) 2 

gim 6 



I (unit matrix) 

intervention 

J 

kO 
k(i,x) 

K(l) 
m 

M 

natural process 

null decision 

optimal stopping 

policy improvement operation 

preferable stopping set 

P(z) 

qij 
Q 

R(z) 

S(Az), S(A) 

stationary deterministic strategy 

suboptimal cutting 

to 
t(i,x) 

t(z) 

u 

value determination operation 

v' 

v"(A) 

v(z) 

w 

X 

y' 

y"(A) 

y(z) 

z 

z' 

z" 

z 
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