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The Asymptotic Behaviour of the Minimal Total Expected Cost for the 

Denumerable State Markov Decision Model*) 
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This paper considers the discrete time Markov decision model with a 

denumerable state space and finite action space. Under certain conditions 

it is proved that the minimal total expected cost for a planning horizon 

of n epochs minus n times the minimal long-run average expected cost per 

unit time has a finite limit as n ➔ 00 for each initial state. 

*) This paper is not for review; it is meant for publication in a journal. 





I. INTRODUCTION 

This paper considers a discrete time Markov decision model with a de

numerable state space and a finite action space. We shall prove that under 

certain conditions the minimal total expected cost for a planning horizon 

of n epochs minus n times the minimal long-run average expected cost per 

unit time has a finite limit for each initial state. 

For the finite-state Markov decision model convergence results of this 

type were established in Bather (1973), Brown (1965), Denardo (1973), 

Lanery (1967), Lembersky (1973) and Schweitzer (1965 and 1974). The proofs 

in this paper are based on the papers of Lanery (1967) and Schweitzer 

(1974). 

In section 2 we formulate the model. The convergence result will be 

proved in section 3. An application of this result to the dynamic inventory 

model can be found in Hordijk and Tijms (1974). 

2. MODEL 

We are concerned with a dynamic system which at times t~I,2, ... is 

observed to be in one of a possible number of states. The set of all pos

sible states is assumed to be denumerable and will be denoted by I. After 

observing the state of the system, an action must be chosen. It is assumed 

that the set A(i) of possible actions in state i is finite for all i. If 

the system is in state i at time t and action a is chosen, then, regardless 

of the history of the system, two things happen: (i) we incur an (expected) 

cost c(i,a) and (ii) at time t+I the system will be in state j with proba

bility p .. (a). The costs c(i,a) and the transition probabilities p .. (a) 
1J 1J 

are assumed to be known. We suppose that there is a finite number B such 

that c(i,a) ~ B for all i and a, i.e., the costs c(i,a) are bounded below. 

Denote by Xt and ~t' t=I,2, ... the sequences of states and actions. 

A policy R for controlling the system is any (possibly randomized) rule 

which for each t specifies which action to take at time t given the current 

state Xt and the history (X1 ,~ 1, ... ,Xt-l'~t-l). A stationary policy f is 
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a rule that for each i selects an action f(i) E A(i) such that always 

action f(i) is taken whenever the system is in state i. Denote by F the 

class of all stationary policies. 

When policy f E Fis used the process {Xt} is a Markov chain with 

stationary transition probabilities p .. (f) = p .. (f(i)). Denote by p~~)(f) 
1J 1J 1J 

then-step transition probabilities of this Markov chain, and for n ~I, 
(n) (I) (n) . 

let 1r .. = {p .. (f) + ••• + p .. (f)}/n. It is 
1J 1J 1J 

well known from Markov chain 

{1r~~)(f)} has a limit 1r .. (f) theory that (see Chung (1960)) the sequence 
1J 1J 

(say) for all i,j EI. 

For any i EI and policy R, let 

n 
(]) ~(i,R) = lim inf n I ER{c(Xt,~t) I x1 = i}, 

n-+m t= I 

where ER denotes the expectation under policy R. Observe that ~(i,R) exists 

(+00 is admitted) since the costs c(i,a) are bounded below. When the limit 

in (I) exists ~(i,R) represents the long-run average expected cost per 

unit time when the initial state is i and policy R is used. A policy R* is 

said to be average cost optimal if ~(i,R*) ~ ~(i,R) for all i and all pol

icies R. 

Let v0 (•) be any function such that LPij(a)v0 (j) is finite for all i 

and a and is bounded below in i and a. For n=I,2, •.. , define 

(2) V (i) 
n 

= min {c(i,a) + 
aEA(i) 

' p .. (a)v 1(j)}, l 1J n-
jd 

for i EI. 

Observe that for any n ~ I the function v (•) exists and is bounded below. n 
The quantity v (i) can be interpreted as the minimal total expected cost 

n 
for a planning horizon of n epochs when the initial state is i and a sal-

vage cost of v0 (j) is incurred when the final state is j. 

We now introduce a number of assumptions. 

Assumption 1. There is a finite number g and a finite function v(•) such 

that 

(i) I 
jd 

p .. (a)v(j) is absolutely convergent for all i and a, and 
1J 



(3) g + v(i) = min {c(i,a) + L 
aEA(i) jEI 

p .. (a)v(j)} 
1. J 
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for all 1. E I . 

(ii) ER{v(Xn) j x1 = i} is finite for all i,R and n, and n- 1ER{v(Xn) j x1 = i} 

converges to zero as n ➔ 00 for all i and R. 

Let F* - {f E F: f(i) minimizes the right side of (3) for all i EI}. 

By the remark following the proof of Theorem I in Ross (1968) we have under 

assumption I that g = infR ~(i,R) for all i and ~(i,f) = g for all i and 

* f E F . That is, the minimal average expected cost is independent of the 

initial state and equals g, and any policy f E F* is average cost optimal. 

Assumption I (ii) will be needed only for these statements. 

Assurrrption 2. The function v 1(·)-v(·) 1.s bounded. 

Assurrrption 3. For any f E F, the Markov chain {X} 1.s non-dissipative, 
t 

that is, l· I TT •• (f) = I for all i E I. 
J E 1.J 

* Assurrrption 4. For any f E F holds that each state which is positive re-

current under policy f is aperiodic. 

Assurrrption 5. For any average cost optimal stationary policy the associated 

Markov chain {Xt} has no two disjoint closed sets. 

We note that the assumptions l(ii) and 2 hold when the functions 

v O(·) and v(·) are bounded. However, we make these assumptions in view of 

applications, cf. Hordijk and Tijms (1974). 

In the next section we shall prove that under the assumptions l(i) 

and 2-4 the sequence {v (i) - ng - v(i)} has a finite limit for all i EI. 
n 

Moreover, if in addition the assumptions !(ii) and 5 hold the limit is in-

dependent of i EI. 

3. THE ASYMPTOTIC BEHAVIOUR OF THE MINIMAL TOTAL COST 

For any n ~ l, let 

e (i) = v (i) - ng - v(i) 
n n 

for 1. E I 
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Lemma 1. Suppose that the assumptions 1 (i) and 2 are satisfied. Then there 

is a finite number N such that le (i) I ~ N for all i EI and n ~ 1. n 

Proof. By assumption 2, there is a finite number N such that e 1(•) is 

bounded by N. Assume now that lek(i) I ~ N for all i. Observe that together 

the induction hypothesis and part (i) of assumption I imply that 

LP• .(a)vk(j) converges absolutely for all i and a. Let f E F*, and let 
1J 

fk E F be such that fk(i) minimizes the right side of (2) with n = k+l for 

all i E I. It now follows from (2) and (3) that, for all i EI, 

(4) 

From these inequalities and the induction hypothesis we get ek+1 (•) is 

bounded by N which completes the proof. D 

The following letmna is well known (e.g. p.232 in Royden (1968)). 

Lemma 2. For any n ~ I, let {a (i),i EI} be a probability distribution. 
n 

Suppose that {a(i), i EI} is a probability distribution and that a (i) 
n 

converges to a(i) as n ➔ 00 for all i EI. Then, for any sequence {h (•)} 
n 

of bounded functions which converge pointwise to the function h(•) on I, 

h (j)a (j) = 
n n , 

h(j)a(j). 

Theorem 1. Suppose that the assumptions I (i), 2 and 3 are satisfied. Let 

* f E F, and, for the Markov chain {Xt} associated with f, let C be a class 

of positive recurrent states. Assume that the states of Care aperiodic. 

Then the sequence {e (i)} has a finite limit for all i EC, and, moreover, 
n 

this limit is independent of i EC 

Proof. The reasoning of this proof parallels to that in Lanery (1967) and 

Schweitzer (1965). Fix some stater EC. Let a and S be two limit points 

of the sequence {e (r)}. By the well-known diagonalization method and the n 
boundedness of the sequences {e (i),n ~ l}, i EI, we can get two sequences n 
{nk} and{~} with nk ➔ 00 and~ ➔ 00 such that, for all i EI, e°k (i) 
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converges to a.(i) (say) ask ➔ 00 with a.(r) =a.and e (i) converges to 
mh 

S(i) (say) ash ➔ 00 with S(r) = S. Observe that a.(i) and S(i) are bounded 

in i EI. Since r was arbi,t:rarily chosen in C and a.(i) is a limit point of 

{e (i)}, the theorem follows when we have proved that, for some constant 
n 

c, 

a.(i) = S(i) = C for all 1. E C. 

To prove this, observe that e 1 (i) s IP- .(f)e (j) for all i E I and n 2 1 
n+ l.J n 

(see relation (4)). Applying this inequality repeatedly and using lemma 1, 

we get 

(6) for all 1. EI and n,m 2 I. 

Next we observe that from Markov chain theory (see Chung (1960)) it follows 

that, for all i,j EC, the sequence {p~1:)(f)} has a limit TT.(f) (say) which 
l.J J 

is independent of i. Moreover, 

(7) TT.(f) > 0 
J 

for all j E C and TT.(f) = l, 
J 

Also, for all i E C and n 2 I, LP~:1) (f) = 
l.J 

where the sum 1.s over J EC. 

We shall now prove that, for all i EC, 

(8) S(i) s a.(j)TT.(f) 
J 

and a.(i) s S(j )TT. (f). 
J 

For reasons of symmetry it suffices to prove the first part of (8). To do 

this, choose for each integer k 2 a positive integer h(k) such that tk 
where tk = ~(k) - nk. Taking n = ~ and m = tk l. n (6), letting k ➔ 00 and 

> k, 

using lemma 2, we get the first part of (8). Substituting the first inequal-

ity of (8) into the second one and the second one into the first one, and 

using the second relation in (7), we have, for all i EC, 

(9) s (i) s S(j)TT.(f) 
J 

and Cl. (i) s a.(j )TT• (f) • 
J 
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Multiplying both sides of each inequality in (9) by n.(f), summing over 
l. 

i EC and using (7), we find that the equality signs in (9) hold for all 

1. EC. Together this and (8) imply (5) which completes the proof. D 

Lemma 3. Suppose that the assumptions 1, 3 and 5 are satisfied. Assume that 

d(•) is a bounded function on I such that, for all i EI, 

(10) g + v(i) + d(i) = min 
aEA(i) 

{c(i,a) + p .. (a)[v(j) + d(j)J}. 
l.J 

Then, for some constant d, d(i) = d for all i EI. 

Proof. The reasoning of this proof is similar to that used to prove 

* Theorem 2.4 in Schweitzer (1969). Choose f E F, and let h E F be such 

that h(i) minimizes the right side of (10) for all i EI. Since d(•) is 

bounded it follows from assumption 1 that n- 1ER{v(Xn) + d(Xn) I x1 = i} ➔ 0 

as n ➔ 00 for all i and R. Now, by the remark following Theorem 1 in Ross 

(1968), we have ¢(i,h) = g for all i. Hence policy h 1.s average cost opti

mal. Since f and hare average cost optimal, we have by the assumptions 

3 and 5 that, for any j EI, TI •• (£) and TI •• (h) are independent of i EI 
l.J l.J 

and are equal to n.(f) and n.(h) (say), cf. Chung (1960). 
J J 

By (3) and (10), d(i) ~ LP• .(f)d(j) for all i EI. Iterating this n 

times and averaging over n, yie~Js d(i) ~ In~~)(f)d(j) for all i EI and 
l.J 

n ~ 1. By assumption 3, In.(£)= 1. It now follows from lemma 2 that 
J 

(11) d(i) ~ I 
jd 

d(j)n.(f) 
J 

Similarly, using the fact that d(i) 

(12) d(i) ~ I 
jd 

d (j) TI. (h) 
J 

for all i E 1. 

~ LP• .(h)d(j) for all 1., we get 
l.J 

for all 1. E 1. 

Denote by R(f) and R(h) the set of states that are positive recurrent under_ 

policy f and h, respectively. Multiplying both sides of (II) by ni(f), sum

ming over i, and using that n.(f) > 0 for i E R(f), it follows that the 
l. 

equality sign holds in (11) for all i E R(f). Similarly, the equality sign 

holds in (12) for all i E R(h). By assumption 5 we have R(f) n R(h) 
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is not empty. Together these facts, (II) and (12) imply the lemma. □ 

We are now in a position to prove the main result. 

Theorem 2. Suppose that the assumptions I ( i) and 2-4 are satisfied. Then 

the sequence {e (i)} has a finite limit for all i E I. This limit 1S in-n 
dependent of i E I if in addition the assumptions l (ii) and 5 are satisfied. 

Proof. Since the sums in (2) and (3) converge absolutely (cf. lemma 1), it 

follows from (2) that, for all i EI and n ~I, 

(13) 

where 

(14) 

min 
aEA(i) 

{b(i,a) + 

b(i,a) = c(i,a) - g + L 
jd 

By assumption l(i), 

min b(i,a) = 0 
aEA(i) 

I 
jd 

p .. (a)e (j)}, 
1J n 

p .. (a)v(j) - v(i). 
1J 

for all 1 E I. 

Let M(i) = lim sup e (i), and let m(i) = lim inf e (i) for i E I. n-+oo n n➔00 n 
By lemma l, the functions M(•) and m(•) are bounded. To prove that 

m(i) = M(i) for all i, we shall first show that 

(16) m(i) ~ min {b(i,a) + I p .. (a)m(j)} 
aEA(i) jd 1J 

for all 1 EI, 

( I 7) M(i) :', min {b(i,a) + I p .. (a)M(j)} 
aEA (i) jd 1J 

for all 1 E I. 

We only prove (16). The proof of (17) is very similar. To prove (16), fix 

some state 1 0 EI. By the diagonalization method and lemma I, we can get 

a sequence{~} with~ ➔ 00 such that the sequence {enk (i 0)} has the limit 

m(i 0 ) and, for all i EI, the sequence {e 1 (i)} has a finite limit y(i) 
nk-

(say). Choose~> 0. Since A(i 0) is finite there is an integer k0 such that, 

for all a E A(i 0) and k ~ k0 , 



8 

From these inequalities, (13) and the fact that y(j) 2 m(j) for all j we 

easily get that m(i 0) + 2E is larger than or equal to the right side of 

(16) with i = i 0 . This proves (16) since E and i 0 were chosen arbitrarily. 

Let f E F be such that f(i) minimizes the right side of (16) for all 

i E I. By (16) and (17), for all i EI, 

(19)b(i,f(i)) + L 
jd 

p .. (f)m(j) ~ m(i) ~ ~ M(i) 
iJ 

~ b(i,f(i)) + I 
jd 

p .. (f)M(j). 
iJ 

Multiply both sides of the first inequality in (19) by TT •• (f) and sum over ii 
i EI. We have lTT .. (f)p .. (f) = rr •• (f) for all j where the sum is over 

ii iJ JJ 
i E I, see Chung (1960). Using this, we get after an interchange of the 

order of summation, 

(20) I 
id 

TT •• (f)b(i,f(i)) ~ o. ii 

The summation operations used to derive (20) are justified by the bounded

ness of m(·) and the nonnegativity of b(·,·) (see (15)). Let R(f) be the 

set of states which are positive recurrent under policy f. Then, by assump

tion 3, R(f) is not empty. Since b(·,•) is nonnegative and rr .• (f) > 0 for ii 
i E R(f), the inequality (20) implies b(i,f(i)) = 0 for all i E R(f). Hence, 

by (14), 

g + v(i) = c(i,f(i)) + I 
jd 

p .. (f)v(j) 
iJ 

for all i E R(f), 

so, f(i) minimizes the right side of (3) for all i E R(f). Choose f* E F* 

such that f*(i) = f(i) for all i E R(f). Then R(f) is contained in the set 

of states which are positive recurrent under policy f*. Now, by theorem 1, 

m(i) = M(i) for all i E R(f). To prove m(i) = M(i) for all i, we observe 

that, by (19), 

0 ~ M(i) - m(i) ~ L 
jd 

p .. (f){M(j) - m(j)} 
iJ 

for all i E 1. 



Iterate the latter inequality n times and average over n. Letting n + 00 , 

and using assumption 3 and lemma 2, we get 

(21) 0 ~ M(i) - m(i) ~ 2 
jd 

1r •• (f){M(j) -m(j)} 
1.J 

for all i E I. 

Now, for any i EI, 1r •• (f) = 0 when j l R(f), cf. Chung (1960). Since 
1.J 

m(j) = M(j) for j E R(f) it now follows from (21) that m(i) = M(i) for 
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all i. This proves the first part of the theorem. To prove the second part, 

observe that, by (16) and (17), 

m(i) = min 
aEA(i) 

{b(i,a) + 2 
jd 

p .. (a)m(j)} 
l.J 

for all i EI. 

Substituting into this equality the expression for b(i,a) (see (14)), we 

find that lennna 3 applies with d(•) = m(•). This ends the proof. D 

Remark. Supp~se that the assumptions l-5 are satisfied. For any n ~ l, let 

f E F be such that f (i) minimizes the right side of (2) for all i. 
n n 

Assume that, for some f E F f = f for infinitely many values of n. Using ' n 
( ) * f . theorem 2 and lennna l, we easily derive from 2 that f E F . Hence 1.s 

average cost optimal. 
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