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ON THE RELATIONSHIP BETWEEN THE CUTTING OPERATION OF GENERALIZED MARKOV
PROGRAMMING AND OPTIMAL STOPPING:

by

P.J.Weeda

ABSTRACT

The principles of generalized Markov programming were developed by
DE LEVE [4] to solve continuous time Markov decision problems under the
long run average return criterion. Here we investigate the generalized
Markov decision model that arises if the natural process is given by a
finite state semi Markov process and interventions are restricted to the
points of time just after a state tranmsition.
The iteration method induced by the general iteration scheme of DE LEVE
for this special model distinguishes three operations at each iteration
step which are called respectively: the value determination-, the policy
improvement - and the cutting operation. The first two are related to sim-
ilar operations in the iteration methods of HOWARD [2] and JEWELL [3] and
are directly amenable for. computation. This however is not true for the
third one. In this report the relationship between the cutting operation
and optimal stopping for this special model is stated and proved. This re-

lationship yields a useful algorithm for this operation.

KEY WORDS AND PHRASES: Generalized Markov programming. Finite state Markov

decision problems. Cutting operation. Optimal stopping.






INTRODUCTION

In generalized Markovian decision processes, DE LEVE [4], the state of
the system is described by a point in a finite dimensional Cartesian space
at each point of time. For each initial state the evolution of the state
of the system is assumed to be described by a homogeneous strong Markov
process, called the natural process. The decisionmaker may interrupt the
natural process in each state by an intervention which implies an instan-
taneous (possibly random) change of the state of the system. In each state

the decisionmaker has a set of feasible interventions at his disposal,
which may be uncountable. The only alternative to interventions is to leave

the natural process untouched. This alternative is called the nulldecision
in that state. With the exception of a nonempty subset of states, the null-
decision is feasible in each state. After an intervention the evolution

of the system is again described by the natural process until the next inter-
vention is effectuated. It is assumed that at most a finite number of inter-—
ventions is taken in each finite timeperiod. Also a general iteration scheme,
to be called here generalized Markov programming, is presented in DE LEVE
[4]. It is proved there, that this scheme converges to a strategy which is
optimal with respect to the class of stationary deterministic strategies in
an infinite number of iteration steps. The optimality-criterion is to maxi-
mize the expected average return per unit of time in the long run. Some ap-
plications of the method are presented in DE LEVE, TIJMS & WEEDA [51.

In this paper we consider the special model that arises if the natural
process is given by a finite state semi Markov process and the decisionmaker
is only allowed to intervene at the points of time a state transition in
the natural process has just occurred. The iteration method induced by the
general iteration scheme for this special model is formulated. In agree-
ment with the general scheme this iteration method distinguishes three
operations per iteration step: the value determination -, the policy im-
provement - and the cutting operation. The iteration method for this model
has the pleasant property of convergence within a finite number of steps.
The attention in this paper is focused on the cutting operation. New is
the relation between the cutting operation and optimal stopping which is

stated and proved for the special model. This relation yields a method



which is directly amenable for computation and can be generally applied to
problems satisfying this special model. It is hoped that the results will
be useful in developing efficient methods for this cutting operation in the
more general type of Markov decision problems covered by the iteration
scheme of DE LEVE.

THE MODEL

Natural process

The natural process of this generalized Markov decision model is sup-
posed to be given by a finite state semi Markov process. In a finite state
semi Markov process the system makes random transitions among a finite
number of states. Let J denote the set of states. If a transition to some
state 1 ¢ J has just occurred at time t, the system remains in state i un-
til the next transition to a random state j *) occurs at a random time
t + 1i where 1 is the sojourn time in state i. Sufficient information for
our purposes about the behaviour of the process is provided by the triple
(Q, u, h) where Q denotes the |J|x|J|- matrix of transition probabilities

qij» i, j € J, satisfying 0 < qij < 1 and zj 1; u>0 denotes the

eJ 145 T
IJI— dimensional vector of expected sojourn times and h denotes the lJI—
dimensional vector with elemenFs hi (—m<hi<w) representing the expected
return of the process during the sojourn time in state i including the

transition to the next state.

Interventions and nulldecisions

In each state 1 € J the decisionmaker has a finite set of actions X(i)
at his disposal consisting of interventions and at most one nulldecision,
which is denoted by xo(i). The nulldecision leaves the state of the system
unchanged, which implies here that the natural process remains untouched
during the sojourn time in that state including the next state transition.
The nulldecision satisfies

Xo(i) ¢ X(1) for i ¢ A0

*)

Random variables are underlined.



where A0 is a nonempty subset of states. Further A0 and the matrix Q have
to satisfy the requirement that the inverse exists of the matrix (I-Q)5
with entries §,.-q..
13 1]
for j#i. To each intervention x € X(i) is associated a probability distri-

for i, j € AO’ with Gij satisfying Gii=l and Gij=0

bution pim(x) of the state m into which the intervention leads and an
expected cost gi(x). If the system assumes state m = m after an intervention
then it remains in state m until the next transition in the natural process
has occurred. The sojourn time in state m has expectation u = E . By the

foregoing the nulldecision can be viewed as an intervention satisfying

1 if i=m
p: (x,(1)) =
im0 0 otherwise

and

g; (xg(1)) = 0

Strategies

A stationary deterministic strategy Z makes use of the same action
Z(i) € X(i) each time a transition to state i has just dccurred. By a
strategy of this type the state space is dichotomized into a set A
defined by

Z

A, = {ieJ:z2() # %1}

and its complement. The definitions of A0 and AZ imply

n Az =1 Ao

THE ITERATION METHOD

Preliminary computations

*) Random variables are underlined



Compute:

a. The |J|- dimensional vector k, defined by

0

-1
(k) = (I-Qyg (h)
0 KO Ko AO
(k,) 0.
074,
b. The |J|- dimensional vector to defined by
-1
(t)z = (I-Q; (v
0”4, KO Ko
(t,) = 0.
0”4,

c. The numbers k(i,x) defined for each x € X(i) and 1 € J by
k(i,x) = -g; (%) +m;J Pin(®) kom) =~ ko().
d. The numbers t(i,x) defined for each x € X(i) and i € J by

t(i,x) ’=ng Pip(X) tom) - (i),

The interpretation of the vectors ko and to is as follows: Each element

ko(i) (to(i)) represents the expected return (expected time elapsed) in

the natural process with initial state i € KO until the first state in A0

is assumed. The elements ko(i) (to(i)) for i € Ao,vanish. The numbers

k(i,x) (t(i,x)) represent the difference in expected return (expected
duration) between two stochastic walks. The first walk applies action

X € X(i) in initial state i and is subsequently described by the natural
process until the first state in the set A0 is taken on. The second walk
is completely described by the natural process from initial state i until
the first state in A0 is taken on. The definitions of k(i,x) and t(i,x)
imply k(i,xo(i)) = t(i,xo(i)) = 0.

After these preliminary computations the iteration cycle is entered



with an arbitrarily chosen initial strategy. During each iteration step

the following three operations are executed.

Value determination operation

Compute
a. The IAZI~ dimensional vector k(Z) with elements k(i, Z(i)), 1 € AZ.

b. The IAZI- dimensional vector t(Z) with elements t(i, Z(i)), i € Az.
c. The |K,| x |AZ|- matrix S(A,) defined by

-1
S(A) = (I-Qf (Q
YA Ei AiAz

where (Q); , denotes the IK | = |a,]- matr1x with entries q, T ieh,
j e A Th% %x1stence of the matrix (I - Q)A is implied by the existence
of (I - Q)A and relation (1).

0

d. The [A,] x |AZ]— matrix R(Z) defined by
R(Z) := P(Z) S(A,)

where P(Z) denotes the |A | x ]A |- matrix with entries ;. (Z2(1)),
ie AZ’ m e K *l R(Z) is the matrix of transition probab111t1es of the

imbedded process defined by the states i ¢ AZ.

*)

It is assumed in generalized Markov programming that pim(z(i))=0 for

i, m e AZ for each stationary deterministic strategy Z.



e. The subvectors (y(Z))A and (v(Z))A by solving the following set of
equations z z

(y(2)), = R(Z) (y(2))
Ay Az

(v(Z)) k(z) - (y(2)), 0O t(Z) + R(Z) (v(Z))
A A A
Z Z Z
where the notations a [J] b stands for the vector with elements a. bi
A unique solution to this set is obtained by choosing in each

ergodic set K(£), £=1,...,L(Z) of the imbedded process an arbitrary state
i(L) € K(£) for which we put vi(z)(z) =0, £=1,...,L(2Z).

f. The subvectors (y(Z))K and (V(Z))K from
Z Z

(y(2)); = 8(A) (y(2))
A, z A,

W@z =5M,) w@),

Z Z
Policy improvement operation

Compute

a. The |J|- dimensional vector y' with elements yi, i € J defined by

y! := max [} p::(x) y.(D]
. xeX(1) jeJ 1 J
b. The subset Xl(i) of X(1i) defined by

X () = {x e X(@) : %eJ P (X ¥5(2) =y}



c. The |J|- dimensional vector v' with elements v{, i € J defined by

v! := max [k(i,x) - yi t(i,x) + 2 p..(x) v.(2)]
xeX, (1) jeg J

d. The subset Xz(i) of Xl(i) defined by

Xz(i) 1= {XeX](i) : k(i,x) - yi t(i,x) + Z pij(x) Vj(Z) = vi}.
jed
e. Strategy Z' defined by the following rule: Take Z'(i) = Z(i) if
Z(1) € Xz(i); otherwise take Z'(i) equal to an arbitrary action from
X2(1).

We note that at the computation of y' the nulldecision for a state

ie Az n Ko yields

§€J pi; (%)) y,(2) = y;(2)

while the intervention Z(i) yields

§€J py; (21 ¥, (@) = y; @),

The same holds at the computation of v'. Because the policy improvement

operation implies Z'(i) = Z(i) if yi yi(z) and vi = vi(z) we conclude

that in any case Z'(i) # xo(i) for i € A, or equivalently

(2) A, 2A

Z' =7Z
Cutting operation

Let A be an arbitrary set of states satisfying Ao cAc AZ" Define

the |J|- dimensional vectors y"(A) and v'(A) respectively by

(y"(A)) - :=S(A) (¥y")
3) K A

@A), = ),



and

(v"(A))g = S (v,

(4)
(v'(A)), := (V')A

Let M be the collection of sets A satisfying either yz(A) > yi or y{(A) =vy.

1" 1 .
and vi(A) > 4 for each 1 € AZ"

Compute:

a. The set A* defined by

AeM

b. The strategy Z" defined by

Z' (1) for ieA*
Z"(1i) :=
xo(i) for ieA¥*,
If Z" = Z then the iteration cycle is terminated. Otherwise the value

determination operation is reertered with Z := Z".
The following lemma is implied by a result of DE LEVE (see [4], page
57, lemma 3.2)

LEMMA 1. If Al’ A, € M are two subsets of states then

2

A, n A

i 9 € M.

The following corollary to lemma 1 is not true in the general model

considered in DE LEVE [4].

COROLLARY 1.

A¥ ¢ M.

1
1



PROOF. The assertion follows directly from lemma | and the fact that M con-

tains a finite number of sets.. [

In the next section it will be shown that the set A¥ of the cutting
operation is identical to the solution of the second of a sequence of two
optimal stopping problems. The numerical solutions of these two optimal
stopping problems are easily obtained by a specialized version of the policy
iteration method of HOWARD [2].

THE CUTTING OPERATION AND OPTIMAL STOPPING

In this section we state and prove the relationship between the cutting
operation of the preceding section and optimal stopping in a finite Markov
chain. Primarily optimal stopping is reviewed.

Suppose that a finite Markov chain with set of states J is given. In
each state i ¢ J at most two actions X and x, are feasible. If action X,
is applied in state i then the original chain is continued at least until

the next transition has occurred. If action x, is applied in state i then

the chain is stopped and a return v, is obtai;ed. An optimal stopping prob-
lem in a finite Markov chain is completely defined by the quadruple (AS, Ac,
Q, w) where As is the (nonempty) subset of states in which only action X,

is feasible; Al is the (possible empty) set of states satisfying KCD As

and containing all the states in which only action X is feasible; Q is the
matrix of transition probabilities qij of the original chain and w is an
|Kc|- dimensional vector with elements -»<w, <». The matrix Q and the set
As are required to imply the existence of the matrix (I - Q)il.

The optimal stopping problem defined above can be considéred as a finite
state Markov decision problem if action X, in each state i € KC is inter-
preted as to make i an absorbing state with a return LA received at each
transition i - i. Because a stationary deterministic strategy is optimal
for a finite state Markov decision problem (see DERMAN [1] by example) the’
computation of an optimal strategy can be restricted to the class Z of this
special type of strategies. Each strategy Z ¢ Z in an optimal stopping

problem dichotomizes the set of states J into a feastible stopping set B
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defined by

B:={ieJ:2z2({)= xl}
and its complement. Clearly there exists a 1-1 correpondence between the
collection of feasible stopping sets Asg]&g Ac and the class of strategies
Z. To each feasible stopping set B an expected return vector f(B) is asso-—
ciated, whose elements fi(B) represent the expected return for each initial
state 1 € J. The vector f(B) is calculated by solving the following set of

equations

(£(B))g (W)B

C))

()5 = @5 (B + Qg (EB),

The set (5) possesses a unique solution because the existence of (I - Q)%1
is implied by the existence of (I - Q)%l for each set B satisfying

AcBc J. If we write S(B) for the |B| £ |B|-matrix (1 —,Q)%1 Q)
the solution of (5) is given by

B then

(£(B))p = (wy

(6)
(£(B))g = S(B) (W

An optimal stopping set (notation : Bm) satisfies for each feasible stopping
set B

7 f(Bm) 2 £(B)

An optimal stopping set can be calculated by a specialized version of the
policy iteration method of HOWARD [2]. The iteration starts with an arbi-
trary feasible stopping set (strategy). At each step the following two

operations are executed:
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1. Value determination operation

Let B be the feasible stopping set (strategy Z) obtained at the preceding
step. Solve the set of equations (5) in £(B).

2. Policy improvement operation

Compute:

a. The |J|- dimensional vector f' with elements f{ defined by

>

max [w,, ) q..
f! := N jed 1

i .
fi(B) for i € AS U Ac.

£.(B)] fori e A n
j s c

b. The feasible stopping set B' (strategy Z') by taking

z'(i) # 2(1) if fi > fi(B)

Z'(i) = z(i) if fi = fi(B)

These two operations are repeated until B' = B. This idéntity is obtained
within a finite number of steps and implies the optimality of the feasible
stopping set satisfying B' = B. The proofs of HOWARD and others imply the

following lemma for an optimal stopping problem in a finite Markov chain.

LEMMA 2. If B and B' are two feasible stopping sets, obtained at two succes-
sive steps of the policy iteration algorithm above, then we have either

f' > £(B) = £(B') > £(B)
or

B' =B & B 7s optimal

By the policy improvement operation we have that for an optimal stopping

set (notation : B ) f.(B ) satisfies
m i m

fi(Bm) = ZeJ q]._j fj (Bm) > LA for i e Em n Kc
(8) J _
£,(B) =w, 2 y a; £ (3) for i e B n A_.

jed
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Define:
s __ . . -
9) B =B \{ieB nk : Z 9 ; fj(Bm) w.}
jed
and
(10) B =B v{iecB nk :] £.(B) = w,}
m° m m c ’ qij j i m i

jeJ
The following lemma specifies the collection of optimal stopping sets.

LEMMA 3.
. . s £ . L8 ¥a
(a) The feasible stopping sets B and Bm satisfy f(Bm) = f(Bm) = f(Bm).

(b) Each optimal stopping set A satisfies B; cAcB..

PROOF .

(a) By definition f(B;) satisfies (5). By (8) and (9) f(Bm) satisfies

_ . _s

fi(Bm) = Z qij fj(Bm) for i € Bm
Jed

- . )

fi(Bm) LA for i € Bm

Because the solution to (5) is unlque we have f(B ) = f(B ).

By a similar argument: f(B ) = f(B ).

(b) Relation (8) and the definitions (9) and (10) imply that the sets

E nBland X n B2 are disjunct. Hence
s m c m

(11) By={ick nk : Z 9 ; fj (B) < w;} uA
and JjeJ

L. ]
(12) B =1ieK nk :] q;; £5 (B < w;lou A

jeJ
Because A is optimal, Bm may be replaced by A in (8), (11) and (12). With

this modification these relations imply B: cAc Bﬁ. O



13

In the sequel the expected return vector of a feasible stopping set B to
(AO, KZ" Q, y') will be denoted by y'"(B) in agreement with its definition
(3) and relation (6). The vector v'"(B) represents the same for a feasible
stopping set B to (B; ", Bﬁ (v¥"), Q, v'). At this point we are able to

state the algorithm to compute A* based upon optimal stopping.

An algorithm for the cutting operation

Compute:
a. An optimal stopping set to (AO, Kz,, Q, v') (notation: Bm(y')) by the
method of HOWARD.

b. The sets B;(y') and Bﬁ(y') defined respectively by

BS (y') =B (y) \ {i e B (y') n A& : JZEJ a5 7§ B G") =y}
and
B (') =BG v e B n Ay, 2] a v GO = v

jed %J

c. An optimal stopping set to (B:(y'), Bﬁ(y'), Q, v') (notation: Bm(v'))
by the method of HOWARD.

d. The set B; (v') defined by

s 1y o= .l . ' Sc, 1y . n 1YY=yl

B (v') =B (v)\ {i eB (v) nB_(y') : Z 9 5 vj(Bm(y ))=v!}
jeJ

Next we prove two lemmas which are required to prove the main result (theo-

rem 1), on which this cutting algorithm is based.

LEMMA 4. Let A and B, A>B, be two feasible stopping sets to (AO, AZ" Q,
y') as well as to (A,, KZ" Q, v'). Let y'i' (B) >yi for i e AnB. Then a state
k € A satisfying yg(B) = yﬁ(A) also satisfies VE(B) = vﬁ(A).

PROOF. The assumptions A >B and yg(B) = yﬁ(A) imply

yp(8) =] S

" (A) yj(B) = yp(a) =] Sk (A) v

jeA
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Because yg(B) > yi for i € A n B we have
(13) ) _
jeB Skj (4) I

Because AoB, (13) and V;(B) = v;(A) vi for i ¢ B we have

v (B) = ) skj(A) vg(3>

jea L s @ Vi) =

jeB
= Z ‘s, .(A) v! = z s, . (A) v! = v!"(A). O
jeB kj J jeA kj J k
LEMMA 5.

S, 1
Bm(v ) € M.

PROOF. By the optimality of B;(v') to (Ao, AZ" Q, v') and by lemma 3 we

have
y?(BS(v')) > y! for i € Bz(y') n A
it m i m z'
and
y"BS(v')) = y! for i ¢ B(y")
i m i m

By the optimality of B;(v') to (B;(y'), Bﬁ(y'), Q, v') we have
v'(BE(v'")) = v! for i e BE(y")
iv'm R m
These relations imply the assertion. 0

The main result is now proved.

THEOREM 1.

* = RS (v’
A Bm(v ).

PROOF. Suppose A* is not optimal with respect to (A,, AZ" Q,y') then the

method of HOWARD entered with A* would yield a stopping set B after one iter-
ation step which would satisfy y"(B) > y"(A*) by lemma 2. Because A¥* ¢ M
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implies y"(A*) y for i e AZ" we have y"(B) y"(A*) yi for i € AZ,.

Also we have B c A* because otherwise there would be at least one state
ie Ay, satisfying yi(a%) = 2 q; "( *) < y contradicting A¥ € M. For
each state k € B n AZ' satlsf}lng y (B) = yk(A*) we have by lemma 4

n "eak * . = " (AX U .
k(B) k(A ) and because A¥ ¢ M : k(B) vk(A ) 2 Vi For i € B we have

y;(B) = y! and v?(B) = v!. By these arguments B ¢ M. However, B c A¥ and

B € M contradict the def1n1t1on of A*, Hence A* is optimal to (A Z" qQ,
y') and by lemma 3 we have B° (y ) ¢ A* ¢ B (y ).

Now suppose that A* is optlggl_go (A,, Z" Q, y') as is proved but that A¥
is not optimal to (B:(y'), Bﬁ(y'), Q, v'). Then the method of HOWARD applied
to (B;(y'), Bm(y'), Q, v') and entered with A* would yield a stopping set C
after one iteration step satisfying C c¢ A* by the same argument as used
above for B. Lemma 2 implies now v"(C) > v'"(A¥*) and the optimality of C to
(AO’ AZ" Q, y') implies y"(C) = y'"(A¥). Hence because A* ¢ M also C ¢ M.
But C ¢ A¥ and C ¢ M contradict the definition of A*. Hence A¥* is optimal
to (B;(y'), Bﬁ(y'), Q, v') implying A* > B:(v') by the definition of

B:(v') and lemma 3b. On the other hand the definition of A¥ and lemma 5
imply A* ¢ B;(v'). So we have the identity A* = B;(v'). -0
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