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ON THE RELATIONSHIP BETWEEN THE CUTTING OPERATION OF GENERALIZED MARKOV 

PROGRAMMING AND OPTIMAL STOPPING; 

by 

P.J.Weeda 

ABSTRACT 

The principles of generalized Markov programming were developed by 

DE LEVE [4] to solve continuous time Markov decision problems under the 

long run average return criterion. Here we investigate the generalized 

Markov decision model that arises if the natural process is given by a 

finite state semi Markov process and interventions are restricted to the 

points of time just after a state transition. 

The iteration method induced by the general iteration scheme of DE LEVE 

for this special model distinguishes three operations at each iteration 

step which are called respectively: the value determination-, the policy 

improvement - and the cutting operation. The first two are related to sim­

ilar operations in the iteration methods of HOWARD [2] and JEWELL [3] and 

are directly amenable for. computation. This however is not true for the 

third one. In this report the relationship between the cutting operation 

and optimal stopping for this special model is stated and proved. This re­

lationship yields a useful algorithm for this operation. 

KEY WORDS AND PHRASES: Generalized Markov programming. Finite state Markov 

deaision problems. Cutting operation. Optimal stopping. 
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INTRODUCTION 

In generalized Markovian decision processes, DE LEVE [4], the state of 

the system is described by a point in a finite dimensional Cartesian space 

at each point of time. For each initial state the evolution of the state 

of the system is assumed to be described by a homogeneous strong Markov 

process, called the natw:aaZ proaess. The decisionmaker may interrupt the 

natural process in each state by an intewention which implies an instan­

taneous (possiblr random) change of the state of the system. In each state 

the decisionmaker has a set of feasible interventions at his disposal, 
which may be uncountable. The only alternative to interventions is to leave 

the natural process untouched. This alternative is called the nuZZdeaision 

in that state. With the exception of a nonempty subset of states, the null­

decision is feasible iri each state. After an intervention the evolution 

of the system is again described by the natural process until the next inter­

vention is effectuated. It is assumed that at most a finite number of inter­

ventions is taken in each finite timeperiod. Also a general iteration scheme, 

to be called here generalized Markov programming, is presented in DE LEVE 

[4]. It is proved there, that this scheme converges to a strategy which is 

optimal with respect to the class of stationary deterministic strategies in 

an infinite number of iteration steps. The optimality-criterion is to maxi­

mize the expected average return per unit of time in the long run. Some ap­

plications of the method are presented in DE LEVE, TIJMS & WEEDA [SJ. 

In this paper we consider the special model that arises if the natural 

process is given by a finite state serrri Markov proaess and the decisionmaker 

is only allowed to intervene at the points of time a state transition in 

the natural process has just occurred. The iteration method induced by the 

general iteration scheme for this special model is formulated. In agree­

ment with the general scheme this iteration method distinguishes three 

operations per iteration step: the value determination-, the policy im­

provement - and the cutting operation. The iteration method for this model 

has the pleasant property of convergence within a finite number of steps. 

The attention in this paper is focused on the cutting operation. New is 

the relation between the cutting operation and optimal stopping which is 

stated and proved for the special model. This relation yields a method 
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which is directly amenable for computation and can be generally applied to 

problems satisfying this special model. It is hoped that the results will 

be useful in developing efficient methods for this cutting operation in the 

more general type of Markov decision problems covered by the iteration 

scheme of DE LEVE. 

THE MODEL 

Natural process 

The natural process of this generalized Markov decision model is sup­

posed to be given by a finite state semi Markov process. In a finite state 

semi Markov process the system makes random transitions among a finite 

number of states. Let J denote the set of states. If a transition to some 

state i E J has just occurred at time t, the system remains in state i un­

til the next transition to a random state i *) occurs at a random time 

t + .!_i where .!.i is the sojourn time in state i. Sufficient information for 

our purposes about the behaviour of the process is provided by the triple 

(Q, u, h) where Q denotes the IJ!x!JI- matrix of transition probabilities 

qiJ'' i, j E J, satisfying O ~ qiJ' ~ and l· J q .. = I; u>O denotes the 
JE 1] 

!JI- dimensional vector of expected sojourn times and h denotes the IJl-
dimensional v1ector with elements h. (-00<h.<00 ) representing the expected 

1 1 

return of the process during the sojourn time in state i including the 

transition to the next state. 

Interventions and nulldeaisions 

In each state i E J the decisionmaker has a finite set of actions X(i) 

at his disposal consisting of interventions and at most one nulldecision, 

which is denoted by x0 (i). The nulldecision leaves the state of the system 

unchanged, which implies here that the natural process remains untouched 

during the sojourn time in that state including the next state transition. 

The nulldecision satisfies 

x0 (i) i. X(i) for i E Ao 

*) Random variables are underlined. 



where AO is a nonempty subset of states. Further AO and the matrix Q have 

to satisfy the requirement that ~he inverse exists of the matrix (I-Q)Ao 

with entries o .. -q .. for i, j € AO, with o .. satisfying o .. =1 and o .. =O 
1J 1J 1J 11 1J 
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for j~i. To each intervention x ~ X(i) is associated a probability distri-

bution p. (x) of the state m into which the intervention leads and an 
1m -

expected cost g.(x). If the system ass\.llDes state m = m after an intervention 
1 -

then it remains in state m until the next transition in the natural process 

has occurred. The sojourn time in state m has expectation u = E •• By the 
m -m 

foregoing the nulldecision can be viewed as an intervention satisfying 

and 

Strategies 

if i=m 

otherwise 

A stationaryjdeterministic strategy Z makes use of the same action 

Z(i) € X(i) each time a transition to state i has just occurred. By a 

strategy of this type the state space is dichotomized into a set AZ 

defined by 

and its complement. The definitions of AO and Az imply 

THE ITERATION METHOD 

PreZimina.ry aomputations 

*) Random variables are underlined 
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Compute: 

a. The IJI- dimensional vector k0 defined by 

:= o. 

b. The IJI- dimensional vector t 0 defined by 

:= o. 

c. The numbers k(i,x) defined for each x € X(i) and i € J by 

k(i,x) := -g. (x) + l P· (x) k0 (m) - k0(i). J 
1 m€J 1m 

d. The numbers t(i,x) defined for each x € X(i) and i € J by 

t(i,x) := l p. (x) t 0 (m) - t 0(i). 
m€J 1m 

The interpretation of the vectors k0 and t 0 is as follows: Each element 

k0(i) (t0(i)) represents the expected return (expected time elapsed) in 

the natural process with initial state i € ! 0 until the first state in A0 
is assumed. The elements k0(i) (t0(i)) for i € A0 .vanish. The numbers 

k(i,x) (t(i,x)) represent the difference in expected return (expected 

duration) between two stochastic walks. The first walk applies action 

x € X(i) in initial state i and is subsequently described by the natural 

process until the first state in the set A0 is taken on. The second walk 

is completely described by the natural process from initial state i until 

the first state in A0 is taken on. The definitions of k(i,x) and t(i,x) 

imply k(i,x0(i)) = t(i,x0(i)) = O. 

After these preliminary computations the iteration cycle is entered 



with an arbitrarily chosen initial strategy. During each iteration step 

the following three operations are executed. 

VaZue detennination operation 

Compute 

a. The IAzl- dimensional vector k(Z) with elements k(i, Z(i)), i € AZ. 

b. The IAzl- dimensional vector t(Z) with elements t(i, Z(i)), i € AZ. 

, . -
' .-
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where (Q)A A denotes the IAzl x IAzl- matrix with entries qij' i € AZ, 
. A_ Thz Z. f h ' (I Q)-l . ' 1' db h ' J € --z• e existence o t e matrix - A is imp ie y t e existence 

-1 Z of (I - Q)A and relation (J). 
0 

d. The IAzl x IAzl- matrix R(Z) defined by 

R(Z) := P(Z) S(Az) 

where P(Z) denotes th~ IAzl x IXzl- matrix with entries pim (Z(i)), 

i € AZ, m € AZ *). R(Z) is the matrix of transition probabilities of the 

imbedded process defined by the states i € AZ. 

*) It is assumed in generalized Markov progranming that p. (Z(i))=O for im 
i, m € AZ for each stationary deterministic strategy z. 
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e. The subvectors (y(Z))A and (v(Z))A by solving the following set of 
z z 

equations 

(y(Z))A = R(Z) (y(Z))A 
z z 

(v(Z))A = k(Z) - (y(Z))A O t(Z) + R(Z) (v(Z))A 
z z z 

where the notations a Db stands for the vector with elements a. b. 
]. ]. 

A unique_ solution to this set is obtained by choosing in each 

ergodic set K(l), l=l, ••• ,L(Z) of the imbedded process an arbitrary state 

i(l) € K(l) for which we put vi(l)(Z) = 0, l=l, ••• ,L(Z). 

f. The subvectors (y(Z))A and (v(Z))A from 
z z 

PoZiay impPovement opePation 

Compute 

a. The IJI- dimensional vector y' with elements y!, i € J defined by 
]. 

y! := max 
]. 

X€X(i) 
[I p .. (x) y.(Z)] 
j€J 1.J J 

b. The subset X1(i) of X(i) defined by 

:= {x € X(i) I 
j€J 

P·. (x) y. (Z) = y!} 
1.J J ]. 



c. The IJI- dimensional vector v' with elements v!, i E J defined by 
1 

v! := max 
1 

[k(i,x) - y! t(i,x) + l p .. (x) v.(Z)] 
1 jEJ 1J J 

d. The subseit x2 (i) of x1 (i) defined by 

x2 (i) := {xEX 1(i): k(i,x) - y! t(i,x) +}: p .. (x) v.(Z) = 
1 . J 1J J JE 

e. Strategy Z' ~efined by the following rule: Take Z'(i) = Z(i) if 

7 

v!}. 
1 

Z(i) E x2(i); otherwise take Z'(i) equal to an arbitrary action from 

x2 (i). 

We note that at the computation of y' the nulldecision for a state 

i € AZ n Ao yields 

while the intervention Z(i) yields 

P·. (Z(i)) y. (Z) = y. (Z). 
1J J 1 

The same holds at the computation of v'. Because the policy improvement 

operation im1plies Z' (i) =. Z(i) if y! = y. (Z) and v! = v. (Z) we conclude 
1 1 1 1 

that in any case Z'(i) I x0(i) for i E Azor equivalently 

Cutting ope!'ation 

Let A be an arbitrary set of states satisfying A0 s_As_ AZ,. Define 

the jJI- dim:ensional vectors y"(A) and v"(A) respectively by 

(3) {
(y" (A)) - := 

(y" (A)): : • (y I) 
A 
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and 

{
( v" (A) ) - : = S (A) ( v' ) A A 

(4) 
(v"(A))A := (v')A 

Let M be the collection of sets A satisfying either y'.'(A) > y! or y! (A) = y! 
1 1 1 1 

and v'.'(A) ~ v! for each i 1: Az,. 
1 1 

Compute: 

a. The set A* defined by 

A* := n A 
A1:M 

b. The strategy Z" defined by 

z' (i) for i1:A* 

Z"(i) := 

for i1:'A.*. 

If Z" = Z then the iteration cycle is terminated. Otherwise the value 

determination operation i~ reentered with Z := Z". 

The following lennna is implied by a result of DE LEVE (see [4], page 

57, lennna 3.2) 

LEMMA I • If A1 , A2 1: M are two subsets of states then 

The following corollary to lemma I is not true in the general model 

considered in DE LEVE [4]. 

COROLLARY I. 

A* € M. 
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PROOF. The assertion follows directly from lemma I and the fact that M con­

tains a finite number of sets •. D 

In the next section it will be shown that the set A* of the cutting 

operation is identical to the solution of the second of a sequence of two 

optimal stopping problems. The numerical solutions of these two optimal 

stopping problems are easily obtained by a specialized version of the policy 

iteration method of HOWARD [2]. 

THE CUTTING OPERATION AND OPTIMAL STOPPING 

In this section we state and prove the relationship between the cutting 

operation of the preceding section and optimal stopping in a finite Markov 

chain. Primarily optimal stopping is reviewed. 

Suppose that a finite Markov chain with set of states J is given. In 

each state i E J at most two actions xO and x 1 are feasible. If action xO 
is applied in state i then the original chain is continued at least until 

the next transition has occurred. If action x1 is applied in state i then 

the chain is stopped and a return w. is obtained. An optimal stopping prob-
1 

lem in a finite Markov chain is completely defined by the quadruple (A, A, 
S C 

Q, w) where A is the (nonempty) subset of states in which only action x 1 s . 

is feasible; A is the (possible empty) set of states satisfying A~ A 
C - C S 

and containing all the states in which only action xO is feasible; Q is the 

matrix of transition probabilities q .. of the original chain and w is an 
1J 

IX I- dimensional vector with elements -=<w. <=. The matrix Q and the set 
C 1 

As are required to imply the existence of the matrix (I - Q)i1• 

The optimal stopping problem defined above can be considired as a finite 

state Markov decision problem if action x1 in each state i E Ac is inter­

preted as to make i an absorbing state with a return w. received at each 
1 

transition i ➔ i. Because a stationary deterministic strategy is optimal 

for a finite state Markov decision problem (see DERMAN [I] by example) the­

computation of an optimal strategy can be restricted to the class Z of this 

special type of strategies. Each strategy z E Zin an optimal stopping 

problem dichotomizes the set of states J into a fea,sibZe stopping set B 
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defined by 

and its complement. Clearly there exists a 1-1 correpondence between the 

collection of feasible stopping sets A .£B£. A and the class of strategies 
S C 

z. To each feasible stopping set Ban expected retui>n vector f(B) is asso-

ciated, whose elements f.{B) represent the expected return for each initial 
1 

state i € J. The vector f(B) is calculated by solving the following set of 

equations 

(5) 
(f{B))B = (w)B 

(f(B))B = {Q)B (f(B)B + (Q)BB (f(B))B 

The set (5) possesses a unique 

is implied by the existence of 

Ac Be J. If we write S(B) for s-
the solution of (5) is given by 

(6) 
(f(B))B = (w)B 

(f(B))B = S(B) (w)R 

solution because the existence of (I Q)i 1 

(I - Q):1 for each set B satisfying 
As -1 

the jBj x jBj-matrix (I -.Q)B (Q)BB then 

An optimal, stopping set (notation 

set B 

B) satisfies for each feasible stopping 
m 

(7) f(B) ~ f(B) 
m 

An optimal stopping set can be calculated by a specialized version of the 

policy iteration method of HOWARD [2]. The iteration starts with an arbi­

trary feasible stopping set (strategy). At each step the following two 

operations are executed: 



1 • VaZ.ue determination operation 

Let B be the feasible stopping set (strategy Z) obtained at the preceding 

step. Solve the set of equations (5) in f(B). 

2. Poi.icy improvement operation 

Compute: 

a. The jJ!- dimensional vector f' with elements f! defined by 
1 

l q •• f. (B}] 
. J 1J J J€ 

for i e: A n A 
S C 

for i e: A u A. 
S C 

b. The feasible stopping set B' (strategy Z') by taking 

Z' (i) 'F Z(i) 

Z'(i) = Z(i) 

if f! > f,(B) 
1 1 

if f! = f.(B) 
1 1 
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These two operations are repeated until B' = B. This identity is obtained 

within a finite number of steps and implies the optimality of the feasible 

stopping set satisfying B' = B. The proofs of HOWARD and others imply the 

following lemma for an optimal stopping problem in a finite Markov chain. 

LEMMA 2. If B and B' are .two feasibZe stopping sets, obtained at two suaaes­

sive steps of the poZ.iey iteration aZ.gorithm above, then we have either 

f' > f(B) .. f(B') > f(B) 

OT' 

B' = B .,. Bis optimal, 

By the policy improvement operation we have that for an optimal stopping 

set (notation B) f.(B) satisfies m 1 m 

f. (B ) = I q .. f. (B) ~ w. 1 m . J 1J J m 1 
(8) J€ 

f. (B ) = w. ~ I q .. f. (B ) 1 m 1 je:J 1J J m 

for i € B n A m C 

for i e: B n A • m s 
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Define: 

(9) B8 := B \ { i e B n K 
ni m m s 

and 

(IO) 
·t 
B - := B u { 

Dl m i € :Ir n K. 
m C 

I 
jeJ 

= I 
jeJ 

q. . f. (B ) = w. } 
l.J J m l. 

q. . f. (B ) = w.} 
l.J J m l. 

The followin~; lemma specifies the collection of optimal stopping sets. 

LEMMA 3. 

(a) The fea.si:bze stopping sets Bs and Bl satisfy f(Bs) = m m m 

s l (b) Each opti'.maZ stopping set A satisfies Bm .s. A .s. Bm. 

PROOF. 

(a) By defini.tion f (Bs) satisfies (5). By (8) and (9) f (B ) satisfies 
m .m 

f.(B) = r q .. f. (B ) for l. E BS 
l. ID jeJ l.J J m m 

f. (B ) = w. for l. E Bs 
l. ID l. m 

Because the solution to (5) is unique we have f(Bs) = f(B ). 
m m 

By a similar argument: f(Bl) = f(B ). 
m m 

(b) Relation (8) and the definitions (9) and (IO) imply that the sets 

A n Bs and P.~ n Bl are disjunct. Hence 
s m c m 

(1 I) 
s {i E A n A I f. (B) < w.} u A B = q .. 
Dl C s jeJ l.J J m l. s 

and 

(12) Bf= {i E A n A I q .. f. (B ) $; w.} u A 
Dl C s jeJ l.J J m l. s 

Because A is optimal, B may be replaced by A in (8), (II) and (12). With 
m 

this modification these relations imply Bs c Ac Bl. □ m - - m 
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In the seqmd the expected return vector of a feasible stopping set B to 

(AO, AZ', Q, y') will be denoted by y"(B) in agreement with its definition 

(3) and relation (6). The vector v"(B) represents the same for a feasible 

stopping set B to (Bs (y'), l- (y'), Q, v'). At this point we are able to m m 
state the algorithm to compute A* based upon optimal stopping. 

An aZgorithi:n for the cutting operation 

Compute: 

a. An optimal stopping set to (A0 , AZ'' Q, y') (notation: Bm(y')) by the 

method o:E HOWARD. 

b. The sets Bs(y') and Bl(y') defined respectively by 
m m 

Bs (y') := B (y') \ {i e B (y') n I 0 m m m I q .. y'.' (B (y')) 
l.J J m 

= y!} 
l. 

jeJ 

and 

lBl (y') := B (y') u {i e B (y') n A, : I q .. y'.' (B (y')) = y!} 
m m m Z • J l.J J m 1. 

JE . 

c. An optimal stopping set to (B:(y'), B~(y'), Q, v') (notation: Bm(v')) 

by the mi:!thod of HOWARD. 

d. The set lBs (v') defined by 
m 

BS (v') := B (v') \ {i EB (v') n Bs(y') 
m m m m l q .. v~(B (y'))=v!} · 

. J l.J J m l. 
JE 

Next we prove two lemmas which are required to prove the main result (theo­

rem 1), on which this cutting algorithm is based. 

LEMMA 4. LE~t A and B, A :::,B, be Wo feasible stopping sets to (A0 , AZ,, Q, 

y') as weU as to (A0 , AZ" Q, v'). Let yi (B) >yi for i eA nB. Then a state 

k e A satisfying yk (B) = yk (A) aiso satisfies vk (B) = vk (A). 

PROOF. The assumptions A:::>B and yk(B) = yk(A) imply 

y" (B) 
k 

= I sk. (A) y'.' (B) = 
jeA J J 

y" (A) 
k = I skj (A) y! 

jeA J 
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Because 

(l 3) 

y': (B) > y ! for i e: A n B we have 
J 1. 

? skJ. (A) = 1 Je:B 

Because A::iB, (13) and v'.'(B) = v'.'(A) = v! for i e: B we have 
1. 1. 1. 

LEMMA 5. 

Bs(v') e: M. 
m 

, , (A) , vk"(A). v. = l skj v. = 
J je:A J 

D 

PROOF. By the optimality of B:(v') to (AO, AZ'' Q, y') and by lennna 3 we 

have 

yi(B:(v')) > y! for i e: Bl(y I) n AZ, 
1. m 

and 

y'i_ (B: (v')) = y! for i e: Bl(y I) 
1. m 

By the optimality of B:(v') to (B:(y'), B;(y'), Q, v') we have 

~ v! 
1. 

These relations imply the assertion. D 

The main result is now proved. 

THEOREM 1. 

s A*= B (v'). 
m 

for i e: Bl(y') 
m 

PROOF. Supposei A* is not optimal with respect to (A0 , AZ,, Q,y') then the 

method of HOWARD entered with A* would yield a stopping set B after one iter­

ation step which would satisfy y"(B) > y"(A*) by lennna 2. Because A* e: M 
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implies y'.'(A*) 2: y! for i e: AZ'' we have y'.'(B) 2: y'.'(A*) 2: y! for i e: Az•· 
i i i i i 

Also we have B c A*, because otherwise there would be at least one state 

i e: AZ'' satisfying y'.'(A*) =}: q .. y'.'(A*) < y! contradicting A* e: M. For 
- i • J iJ J i 

each state k e: B n AZ, satisftfng yk(B) = yk(A*) we have by len:ana 4 

vk(B) = vk(A*) and because A* e: M: vk(B) = vk(A*) 2: vk. For i e: B we have 

y~(B) = y! and v~(B) = v!. By these arguments Be: M. However, B c A* and 
i i i i 

Be: M contradict the definition of A*. Hence A* is optimal to (A0, AZ'' Q, 
s l y') and by lemma 3 we have Bm(y') £. A* c Bm(y'). 

Now suppose tha~ A* is optimal to (A0 , AZ'' Q, y') as is proved but that A* 

is not optimal to (Bs(y'), Bl(y'), Q, v'). Then the method of HOWARD applied 
l m m 

to (Bs(y'), B (y'), Q, v') and entered with A* would yield a stopping set C m m 
after one iteration step satisfying Cc A* by the same argument as used 

above for B. Lemma 2 implies now v"(C) > v"(A*) and the optimality of C to 

(A0, Az,, Q, y') implies y"(C) = y"(A*). Hence because A* e: M also C e: M. 

But Cc A* and Ce: M contradict the definition of A*. Hence A* is optimal 

to (Bs(y'), Bl(y'), Q, v') implying A* .2 Bs(v') by the definition of m m m 
Bs(v') and lemma 3b. On the other hand the definition of A* and len:ana 5 

m 
imply A* & Bs(v'). So we have the identity A*= Bs(v'). • D 

m m 
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