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Some computational experiments with a special generalized Markov 

programming model 

by 

P.J. Weeda 

ABSTRACT 

The principles of generalized Markov programming were developed by 

DE LEVE [3] to solve continuous time Markov decision problems under the 

long run average return criterion. In this report the special generalized 

Markov decision model is investigated that arises if the natural process 

1 

is given by a finite state semi Markov process and interventions are re

stricted to the points in time just after a state transition in the natural 

process. The iteration method for this model induced by the general iter

ation scheme of DE LEVE is given. Four variants on the iteration method 

are developed which all have the pleasant property in this special model of 

convergence within a finite number of steps to an optimal strategy. The re

sults of computational experience with these variants are presented. The 

problems solved include randomly generated problems as well as three numer

ical versions of a preformulat.ed problem from the field of production con

trol. The numerical results are compared with those obtained by applying 

existing policy iteration methods to these problems. 

KEYWORDS: GenemUzed Ma:Pkov programming; 

Computational; Finite state semi Markov deaision problems. 
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1. INTRODUCTION 

The principles of generalized Markov progrannning were developed by 

DE LEVE [3] to solve continuous time Markov decision problems under the 

long run average return criterion. In this report the special generalized 

Markov decision model is investigated, that arises if the natural process 

is given by a finite state semi Markov process and interventions are re

stricted to the points in time just after a state transition in the natural 

process. 

The general iteration scheme of generalized Markov progrannning 

DE LEVE, [3] induces an iteration method for this special model which 

consists of three operations to be executed at each iteration step and which 

converges within a finite number of steps to an optimal strategy. Two of 

these three operations are related to the value determination and policy 

improvement operation in the methods of HOWARD [l] and JEWELL [2]. If only 

these two operations are applied at each iteration step the iteration method 

still converges, but not necessarily, to an optimal strategy unless the 

third operation (cutting operation) is applied. This cutting operation in 

its original form is not directly amenable for computation. In a previous 

report WEEDA [6], the relation between the cutting operation and optimal 

stopping in a Markov chain has been stated and proved for this special mod

el. This result yields a useful algorithm (to be called optimal cutting) 

for this cutting operation. 

Besides optimal cutting (variant 1) three other variants are tried 

out in this report. The computational results show that the number of iter

ation steps required for convergence is reduced by weakening the importance 

of the cutting operation. This may be done either by weakening the cutting 

operation itself or by reducing its frequency of use or both. 

Weakening of the cutting operation itself can be attained by aiming 

at a suboptimal cutting set (variant 2) rather than an optimal cutting set 

or by performing the cutting operation on the values of the current strat

egy rather than on the improved values obtained by the policy improvement 

operation (variant 3). Variant 4 reduces the frequency of use of the , · 

cutting operation. 



The motivation to use this relatively simple model is primarily the 

fact that the same ALGOL 60 procedures can be used for any problem satis

fying this special model. The numerical solution of the more general type 

of problems,, covered by generalized Markov programming, requires problem

dependent numerical techniques. Yet the author has reasons to expect that 

most of the conclusions will be of value for the more general case. 

BecausE~ each problem satisfying this special generalized Markov pro

gramming model can be solved by the policy iteration method of JEWELL (or 

by HOWARD's in case the natural process is described by a Markov chain), 

these methods are also concerned in the computational comparison. 

2. THE MODEL 

Natural proeess 
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The natural process of this generalized Markov decision model is sup

posed to be given by a finite state semi Markov process. In a finite state 

semi Markov process the system makes random transitions among a finite num

ber of statEis. Let J denote the set of states. The states are numbered by 

i=I, ••• , !JI. If a transition to some state i E J has just occurred at time 

t, the systeim remains in state i until the next transition to a random 

state ,i J *) at a random time t + where is the sojourn time E occurs T. T. 
-:I.. -:I.. 

in state i. Sufficient information for our purposes about the behaviour 

of the proceiss is provided by the triple (Q, u, h) where Q denotes the 

IJI x IJI - matrix of transition probabilities q .. , i,j E J, satisfying 
l.J 

0 ~ q .. ~ I and l· J q .. = I; u > 0 denotes the !JI- dimensional vector of 
l.J J E l.J 

expected soj.ourn times and h.denotes the IJI- dimensional vector with ele-

ments - 00 < h. < 00 representing the expected return of the process during 
l. 

the sojourn time in state i including the transition to the next state. 

Random variables are underlined. 
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Interventions and nulldecisions 

In each state i E J the decisionmaker has a finite set of actions 

X(i) at his disposal consisting of interventions and at most one null

decision, which is denoted by x0(i). The nulldecision leaves the state of 

the system unchanged, which implies here that the natural process remains 

untouched during the sojourn time in the present state including the next 

state transition. The nulldecision satisfies 

for i E AO 

where A0 is a nonempty subset of states. Further A0 and the matrix Q have 

to satisfy the requirement that the inverse exists of the matrix (I-Q)Ao 
with entries o .. - q .. for i,j E A0, with o .. satisfying o .. = 

l.J l.J l.J l. l. 
and 

o .. = 0 for j Ii. To each intervention x E X(i) is associated a probabil
l.J 

ity distribution p. (x) of the state m into which the intervention leads 
i.m 

and an expect,:d cost g. (x). If the system assumes state m = m after an 
l. 

intervention then it remains in state m until the next transition in the 

natural process has occurred. The sojourn time in state m has expectation 

u = ET • By the foregoing the nulldecision can be viewed as an interven-
m -m 

tion satisfying 

( J) [O
J 

p. (x0 (i)) = 
i.m 

if i = m 

otherwise 

and 

Strategies 

A stationary deterministic strategic z applies the same action 

z(i) E X(i) each time a transition to state i has just occurred. By a strat

egy of this type the state space is dichotomized into a set A defined by 
z 



and its complement. The definitions of AO and Az imply 

(2) A :::, AO • z -

In the next section the iteration method induced by generalized 

Markov programming on this special model will be presented. It computes 

an optimal strategy, i.e. a strategy which maximizes the expected average 

return per unit of time. Because the existence of an optimal stationary 

deterministic strategy is guaranteed by the finiteness of the model, the 

computation is restricted to strategies of this class, denoted by Z. 

3. THE ITERATION METHOD 

PreZimina;py computations 

Compute: 

a. The IJI- dimensional vector kO defined by 

:= o. 

b. The IJI- dimensional vector t O defined by 

( tO)A 
-) 

(u)-:= (I-Q)A., 
0 0 AO 

(tO)A := o. 
0 

c. The numbers k(i,x) defined for each x E X(i) and i E J by 

k(i,x) := -g. (x) + 
1 

5 
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d. The numbers t(i,x) ·defined for each x E: X(i) and i E: J by 

t(i,x) := I pim(x)t0(m) - t 0 (i). 
II1€J 

The interpretation of the vectors k0 and t 0 is as follows: 

Each element k0(i) (t0 (i)) represents the expected return (expected time 

elapsed) in the natural process with initial state i E: A0 until the first 

state in A0 is assumed. The elements k0 (i) (t0 (i)) for i E: A0 vanish. The 

numbers k(i,x) (t(i,x)) represent the difference in expected return 

(expected duration) between two stochastic walks. The first walk applies 

action x E: X(i) in initial state i and is subsequently described by the 

natural process until the first state in the set A0 is taken on. The second 

walk is completely described by the natural process from initial state i 

until the first state in A0 is taken on. The definitions of k(i,x) and 

t(i,x) imply k(i,x0(i)) = t(i,x0(i)) = O. 

After these preliminary computations the iteration cycle is entered 

with an arbitrarily chosen initial strategy. During each iteration step 

the following three operations are executed. 

Value determina.tion operation 

Compute: 

a. 

b. 

c. 

The IA I- dimensional -vector k(z) with elements k(i, z(i)), i E: A • z z 

The IA I- dimensional vector t(z) with elements t(i,z(i)), i € A • 
z z 

The IA I X IA I- matrix S(A) defined by z z z 

S(A) -1 
(Q)A A := (I-Q)-z A z z z 

where (Q)A A denotes the IA I x IA 1- matrix with entries q .. , i E: A, z z . iJ z -. z z . 
J E: A. The existence of 

z -1 
the matrix (I-Q)i 1 is implied by the existence 

of the matrix (I-Q)A 
z 

tion (2). 

z -1 
is implied by the existence of (I-Q)A and rela-

0 

d. The IA I x IA 1- matrix R(z) defined by z z 



e. 

R(z) := P(z)S(A) z 

where P(z) denotes 
- *) 

the IA I x IA I- matrix with entries p. (z(i)), z z 1m 

i € A , m € A • 
z z 

R(z) is the matrix of transition probabilities of 

the imbedded process defined by the states i €A. z 

The subvectors (y(z))A and (v(z))A by solving the following set of 
z z 

equations 

(y(z))A • = R(z)(y(z))A 
z z 

(v(z))A = k(z) - (y(z))A D t(z) + R(z)(v(z))A 
z z z 

where the notation a Ob stands for the vector with elements a.b .. 
1 1 
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A unique solution to this set is obtained by choosing in each ergodic 

set K(l), l=l, ••• ,L(z) of the imbedded process an arbitrary state 

i(l) € K(l) for which we put vi(l)(z) = O, l=l, ••• ,L(z). 

f. The subvectors (y(z))A and (v(z))A from 
z z 

PoZiay improvement operation 

Compute: 

a. The IJI- dimensional vector y' with elements y'.,i € J defined by 
1 

b. 

y! := max [ I p .. (x)y.(z)] 
1 X€X(i) j€J iJ J 

The subset x1(i) of X(i) defined for each i € J by 

It is assumed in generalized Markov programming that p. (z(i)) = 0 
1m for i,m € Az for each stationary deterministic strategy z. 
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x1(i) := {x E X(i): I p .. (x)y.(z) = y!} 
jEJ l.J J l. 

c. The IJI- dimensional vector v' with elements v!,i E J defined by 
l. 

d. The 

v! := max [k(i,x) - y!t(i,x) + I p .. (x)v.(z)J 
l. XEXl (i) 

l. jEJ l.J J 

subset x2(i) of X?i) defined by 

x2(i) :7 {x E x1(i): k(i,x) - yit(i,x) + I 
jEJ 

p .. ( x) V. ( Z) = V ! } 
l.J J l. 

e. Strategy z' defined by the following rule: Take z'(i) = z(i) if 

z(i) E x2(i); otherwise take z'(i) equal to an arbitrary action from 

x2 (i). 

We note that at the computation of y' the nulldecision for a state 

i E Az n A0 yields 

L p .. (x0(i)y.(z) = y.(z) 
jEJ l.J J l. 

while the intervention z(i) yields 

p .. (z(i))y.(z) = y.(z). 
l.J J , l. 

The same holds at the computation of v'. Because the policy improvement 

operation implies z' (i) = z(i) if y! = y. (z) and v! = v. (z) we conclude 
l. l. l. l. 

that in any case z' (i) ::/: x0(i) for i E Az or equivalently 

A I :::, A z - z 

Cutting operation 

Let A be an arbitrary set of states satisfying A0 ~A~ Az,· Define the 

IJI- dimensional vectors y"(A) and v"(A) respectively by 



and 

I (y" (A) )A : = 

l (y" (A)) A : = (y') 
A 

{
(v"(A))A := S(A) (v') A 

( v" (A) ) : = ( v' ) A A 

Let M be the collection of sets A satisfying either y~(A) > y! or 
l. l. 

y'! (A) = y! and v'.' (A) ;;:: v! for each i E: A , . 
l. l. l. l. z 

Compute: 

* defined by a. The set A 

* A := n A 
AE:M 

b. The strategy z" defined by 

:= 
{ 

z'(i) for i E A* 

z"(i) 
... 

xo(i) for i E A .. 

If z" = z then the iteration cycle is terminated. Otherwise the value 

determination operation is reentered with z := z". 

4. FOUR VARIANTS ON THE ITERATION METHOD 

1. Usual policy improvement and optimal cutting. 

This variant uses the policy improvement operation of the preceeding 

paragraph followed by the optimal cutting algorithm stated and proved in 

[6]. This optimal cutting algorithm computes the set A* by solving two 

9 
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optimal stopping problems in the Markov chain defined by the matrix Q of 

the natural process with y' and v' as return vectors respectively, see [5] 

or [ 6] • 

2. Usual policy improvement and suboptirm.l cutting. 

This variant replaces the cutting operation by a suboptimal cutting 

algorithm. By this algorithm a suboptimal cutting set C is computed in the 

following way (see also [5]): 

Compute 

a. The set B(y') defined by 

B(y') := A ,\{i €A, n A0: I q •. y! > y!}. 
Z Z j €J 1J J 1 

b. If B(y') FA, and/or y' > y(z) then take C := B(y'), otherwise con
z 

tinue with step c. 

c. The set C defined by 

C := A ,\{i €AI n Ao:· I q .. v! > v!} 
Z Z j €J 1J J 1 

This algorithm simply computes a member of the class M. If the class 

M consists only of sets A, A0 s A s Az, satisfying 

y"(A) = y"(A*) 

v"(A) = v"(A*) 

then C is defined to be identical to A,. 
z 

3. Compound policy improvement 

This variant can be derived from the usual policy improvement operation 

by replacing for each i € A0 the definition of pij(x0(i)) (1) by 

j € J. 
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Note that in the single chain case the compound policy improvement 

operation is identical to the usual policy improvement operation followed 

by suboptimal cutting on v(z) instead of v'. 

4. Reduction of the frequency of use of the cutting operation. 

A reduction of the frequency of use of the cutting operation can be 

done in many ways. By example we may use the policy improvement operation 

at each iteration step and the cutting operation only periodically with a 

period of 1,,2,3 or more iteration steps. The period may also be changed 

during the iteration. Better is to let the choice of the period depend on 

the course of the iteration. The most natural way of doing this is to omit 

the cutting operation until the iteration has converged. Then use the cut

ting operation once. If this does not alter the lastly obtained strategy 

then this strategy is optimal. Otherwise, the iteration is resumed until 

again convergence is obtained by the policy impr0vement operation only. 

Then again the cutting operation is used once and so on. This procedure 

also converges within a finite number of steps to an optimal strategy. 

The numerical results by variant 4 are obtained with the suboptimal cutting 

algorithm of variant 2 substituting the cutting operation. 

5. NUMERICAL RESULTS FROM RANDOMLY GENERATED PROBLEMS 

The experiments carried out in this section are restricted to randomly 

generated problems satisfying the model considered in this report. In the 

problems generated all interventions imply a deterministic change of the 

state of the! system. Consequently we shall denote each intervention x E X(i) 

by the state m it leads into. 

To gene!rate a problem, primarily the natural process given by the 

triple (Q,u,,h) is generated. Each row of the matrix Q is obtained by gener

ating IJI random numbers and dividing them by their sum. The vectors u and 

h consist of random numbers multiplied by a suitable factor (here 1000 in 

both cases). The set of actions in each state i E J\A0 is given by 
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X(i) := {m=l, .•• ,J} 

where m = i corresponds to the nulldecision. The set A0 1.s given by 

and because the nulldecision is infeasible in A0 we have 

X(IJI) := {m=I, ••• ,IJI - I}. 

Note that each problem generated in this way will have exactly one 

ergodic set for each strategy of the class z. In general the policy im

provement operation may generate strategies with a sequence of interven

tions in zero time. To avoid violation of the basic notions of the model 

we will rule out strategies of this kind by imposing a condition on the 

numbers g .• Suppose strategy z applies intervention z(l) =min state l, 
I.ID 

then vl(z) satisfies 

(3) 

If in state i the intervention l E X(i) is compared with intervention 

m E X(i) then intervention i +mis preferred over the sequence of inter

ventions i + l + m if 

> -

which yields using (3) and multiplying by - I 

( 4) g • < g • o + go_• 1. m l.,{.. -uu 

Hence the numbers g. should satisfy the strict triangular inequality. We 
I.ID 

note that condition (4) looks more stringent than is really necessary. 



If the numbers g. satisfy only 
1.m 

(5) g. ~ 0 
im 
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for i,m e J, 

then we determine for each pair of states the sequence of interventions 

which minimizes the total intervention costs. This problem is in fact the 

shortest route problem considered in graph theory. The resulting "shortest 

route" matrix then satisfies the triangular inequality. Hence what we 

suggest to do in problems satisfying (5) is to replace the matrix of inter

vention costs by its "shortest route" matrix and replace each sequence of 

interventions which yields this "shortest route" by one intervention. Then 

we solve the new problem. The iteration method then yields an optimal strat

egy which specifies an optimal strategy to the original problem by replacing 

each new intervention by the corresponding sequence of original interven

tions. 

The number g. ,i,m e J were generated by taking IJI random points in the 
1.m 

unit square and taking g. equal to the distance between point i and point im 
m. After that the matrix may be multiplied by a scalar. 

Two series of problems were generated. 

Series a: 10 problems with 10 states and 10 actions per state 

Series b: 5 problems with SO-states and 50 actions per state. 

The following iteration methods were used: 

1. Usual policy improvement and optimal cutting 

2. Usual policy improvement and suboptimal cutting 

3. Compound policy improvement 

4. Using a cutting operation (here suboptimal cutting) only each time• 

convergence with the policy improvement operation is obtained. 

5. The policy iteration method of JEWELL [2]. 

Each problem of series a has been solved by each of the five methods 

for two initial strategies being: 
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and 

for i=l, ••• ,IJl-1 

(2) 

ResuZts of series~: 

Presented are the number of iteration steps for each problem, the 

total number of iteration steps as well as the total CPU-time minus time 

for compilation required to solve all 10 problems and the average time per 

step. 

Initial strategy (1): 

Method Number of iteration steps per problem Time Time 

1 2 3 4 5 .6 7 8 9 10 total (per ste-i:) 
I 

] 5 5 6 4 5 4 4 5 6 1 45 36 sec. .80 sec. 

2 5 4 5 4 4 4 4 4 5 1 40 29 II • 71 II 

3 4 3 5 4 3 3 3 3 3 1 32 24 II .75 II 

4 4 3 5 4 3 3 3 3 3 ] 32 25 II .77 II 

5 3 2 3 3 3 2 2 2 2 ] 23 20 II .85 II 



Method 

l 

2 

3 

4 

5 

Initial strategy (2): 

Number of iteration steps per problem 

l 

4 

4 

3 

3 

3 

2 3 4 

4 5 5 

3 4 5 

2 4 5 

2 4 5 

2 3 4 

5 6 

4 4 

4 3 

3 2 

3 2 

3 2 

7 

3 

3 

2 

2 

2 

8 

4 

3 

2 

2 

2 

9 

5 

4 

2 

2 

2 

10 

4 

3 

2 

2 

2 

total 

42 

36 

27 

27 

25 

Time 

33 sec. 

27 II 

22 II 

23 II 

25 II 

15 

Time I 
(per step), 

.80 sec. 

.75 II 

.83 II 

• 88 II 

.98 II 

Each problem of series b has only been solved with initial strategy, because 

series a indicates that the results do not depend very much on the initial 

strategy. 

ResuZts of series b 

Initial strategy (2) 

Method Number of iteration per problem Time Time 

l 2 3 4 5 total ,per step) 

1 6 6 5 6 5 28 480 sec. 17.l sec. 

2 5 5 4 5 4 23 315 II 13.5 II 

3 4 4 4 5 3 20 295 II 14.8 II 

4 4 5 4 5 3 21 301 II 14.3 II 

5 3 3 3 3 3 15 610 II 41.2 II 

The results were obtained on the CDC Cyber 73 while previous results 

in WEEDA [5] were obtained on the Electrologica XS. 
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6. NUMERICAL RESULTS FROM A PRODUCTION PROBLEM 

The following problem has also been presented in WEEDA [5] with numer

ical results only on variants 1 and 2. A continuous version of this problem 

has been solved in DE LEVE, TIJMS & WEEDA [4]. 

PPobZem formulation 

A product can be produced at m production rates, r=O, ••• ,m. r = 0 corre

sponds to the situation that the production is switched off and r > 0 to a 

production rate of r units of product per unit of time. The demand is 

supplied innnediately from the available stocks. If the demand exceeds the 

available stock the shortage is replenished by an emergency purchase. The 

production is controlled by changing the production rate. As soon as the 

maximum stocklevel Mis reached the production is switched off until the 

applied strategy prescribes a restart of the production. Stockholding cost 

amount c 1 per unit of time and per unit of product in stock at the end of 

the unit time period. An emergency purchase costs c2 per unit product. 

Production cost is given by c3r per unit of time for production rater. 

Changing the production rate from r' tor" costs an amount of b(r',r"). 

Find a strategy that minimizes the average cost per unit of time. 

State space 

J .- {i = (r,s): r=O,l, ••• ,m, s=O,I, ••. ,M}. 

It will be convenient to distinguish the subsets of states with fixed 

r E { 0, 1 , ••• , m} 

J (r) .·= {1.· = ( ) f. d O I } r, s E J: r 1.xe , s= , , •.• ,M . 

NatUPaZ pPocess 

The natural process is defined for each initial state (r,s) E J. 

The natural process with initial state (r,s) visites only the states of 

subset /r). Let i=)r,s) be a given state and let i = (r,~') be the state 
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assumed afteir the next transition. Then s' is given by 

[: + r -
k if 0 < s + r - k < M 

<:' I := if s + r - k ~ M ~· 
ifs + r - k :;;; 0 

where k denoites the size of the demand with probability 

:= P{k 

Then we have: 

s+r-M 
P{s' = Ml(r,s)} = P{k :;;; s + r - M} = I ak 

k=O 

00 

P{s' = Ol(r,s)} = P{s + r - k :;;; 0} = P{k ~ r + s} = I ak. 
k=s+r 

P{s' = s'l(r,s)} = P{k = r + s - s'} = a r+s-s' for O < s' < M. 

These relations define the probabilities of the natural process q .. for 
l. J 

i = (r,s) and J = (r,s'). For i = (r,s) and J = (r',s') with r' fr we 

have q .. = OI. By the formulation of the problem we have 
l.J 

Ul. : = 
l. 

for i E J. 

The expected. return h. in state i = (r,s) consists of stockholding cost, 
l. 

emergency purchase expenses and production cost and is given by 

h. := -cl E{2_' I (r,s)} +c2 E{min[s + r - l,OJ} -c r = 
l. 3 

s+r..:.M M-1 
= -cl M I ~- cl I a r+s-s' · s' + 

k=O s'=l 
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Interventions 

In each state i = (r,s) € J each feasible intervention implies a determin

istic change of the state of the of the system to state (r',s') satisfying 

r' ~rands' = s. The intervention cost g.(x) is given by 
l. 

g. (x) := b(r,r') 
l. 

for i = (r,s) and x = (r',s). 

The numbers b(r,r') are assumed to satisfy 

b(r,r') ~ b(r,r") + b(r",r') 

for r,r',r" € {0,1, ••• ,m}. 

The set A0 

AO:= {i = (r,M): r=l, ••• ,m} u {(0,0)} u {(1,0)}. 

Three different numerical versions of the problem were solved by the 4 

variants of section 4 and the method of HOWARD (method 5). 

NumeriaaZ problem 1 

M = 20, m = 3, cl = .2, c2 = 

0 2 2 

b 0 2 = 
0 

Initial strategy: 

z 1(r,O) = (3,0) 

z1(r,20) = (0,20) 

z1(r,s) = x0(r,s) 

15, c2 = 

-
2 

2 

2 

0 

1 , A = 1.2 and 

for r = 0,1 

for r = 1,2,3 

otherwise. 
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Optimal strategy: 

s r' s r' s r' s r' 

0, 1 3 0,1 3 0, ••• , 3 2 0,1,2 3 

2 2 2, ••. ,7 l 4,5,6 l 3, ... , 7 1 

3, ••• , 20 0 8, •.. , 20 0 7, ... , 20 0 8, ... , 20 0 

Computational performance: 

Method Number of iterations CPU-time iteration 

1 I 6 105 (+4) *) sec. 

2 6 98 (+4) sec. 

3 5 98 (+4) sec. 

4 9 130 (+4) sec. 

5 6 170 sec. 

Convergence of y(z): 

Strategy Method 1 Method 2 Method 3 Method 4 Method 5 

l -3.674 -3.674 -3.674 I -3.674 -3.674 

2 -2.836 -2.836 -2.710 I -2. 710 -2.710 
I 

3 -2.484 -2.470 -2.489 -2.593 -2.438 

4 -2.346 -2. 340 -2.351 -2.459 -2.360 

5 -2. 339 -2.339 -2.339 -2.409 -2.341 

6 -2.339 -2.339 -2. 396 -2.339 

7 -2.339 

8 -2.339 

9 -2.339 

The number between parenthesis is the computation time for the vectors 
k0 and t 0 together. 
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Numerical, problem 2 

M = 20, m = 3, cl = . 2, c2 = 

0 3 3 

b 
3 0 3 -
3 3 0 

3 3 3 

Initial strategy: 

z 1(r,O) = (3,0) 

z 1(r,20) = (0,20) 

z 1(r,s) = x0(r,s) 

Optimal strategy: 

r = 0 r = 1 

s r' s 

0, 1 3 0,1 

2,3 2 2 

4, ••• 20 0 3, ••• ,13 
' 

14, ••. ,20 

Computational performance: 

Method Number 

1 

2 

3 

4 

5 

15, 

3 

3 

3 

0 

r' 

3 

2 

1 

0 

" = 

0 

1 • 7, c3 = I and 

for r = 0, 1 

for r = 1, 2, 3 

otherwise 

r = 2 

s r' 

r = 

s 

3 0, ... , 6 

1 , ... , 7 2 7, ••. ,10 

8, ••. ,10 1 11 , ... , 20 

11 , .•. , 20 0 

3 

r' 

3 

1 

0 

of iterations CPU-time iteration 

6 119 (+4) sec. 

4 73 (+4) sec. 

6 119 (+4) sec. 

9 136 (+4) sec. 

6 171 sec. 

' 



Convergence of y(z): 

Strategy Method 1 Method 

I -4.453 -4.453 

2 -3.653 -3.560 

3 -3.392 -3.267 

4 -3.293 -3.249 

5 -3:260 

6 -3.249 

7 

8 

9 

Numerioal problem 3 

M = 25, m = :3, cl = . 2, c2 = 15, 

0 5 5 5 

b 
5 0 5 5 

= 
5 5 0 5 

5 5 5 0 

Initial strategy: 

z1(r,0) = (3,0) 

z1 (r,25) = (0,25) 

z 1(r,s) = x0(r,s) 

2 

c3 = 

Method 3 Method 

-4.453 -4.453 

-3.600 -3.600 

-3.400 -3.600 

-3.249 -3.400 

-3.249 -3.312 

-3.249 -3.310 

-3.253 

-3.253 

-3.249 

I ' A = 1.9 and 

for r = 0,1 

for r = 1,2,3 

otherwise. 
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4 Method 5 

-4.453 

-3.600 

-3.380 

-3.291 

-3.249 

-3.249 
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Optimal strategy: 

r = 0 r = 1 r = 2 r = 3 

s r' s r' s r' s r' 

0,1 3 0,1 3 0 3 0, .•• , 4 3 

2,3,4 2 2,3,4 2 1, .•• ,10 2 5,6 2 

5, ••• , 25 0 5, ••• ,18 1 11,12 1 7 3 

19, ••• ,25 0 13, ••• , 25 0 8, .•• ,12 1 

13, ••• ,25 0 

Computational performance: 

Method Number of iterations CPU-time iteration 

1 7 220 (+6.4) sec. 

2 4 11 7 ( +6. 4) sec. 

3 6 189 (+6.4) sec. 

4- 9 212 (+6.4) sec. 

5 8 349 sec. 



Convergence of y(z): 

Strategy Method 1 Method 2 Method 3 Method 4 Method 5 

1 -5.147 -5.147 -5. 14 7 I -5. 14 7 -5 .147 

2 -4.313 -4. 196 -4.550 I -4.550 -4.550 

3 -4.007 -3.742 -4.099 -4.550 -4.094 

4 -3.850 -3.733 -3.797 -4.099 -3.770 

5 -3.741 -3. 733 -3.801 -3.744 

6 -3.733 -3.733 -3.801 -3.733 

7 -3.733 -3.733 -3.733 

8 -3.733 -3.733 

9 -3.733 

The numerical results presented in this report are obtained on the CDC 

Cyber 73 while previous results in WEEDA [5] were obtained on the former 

Electrologica XS of the Mathematical Centre. 

7. CONCLUSIONS 

From all examples solved, we observe that the computation time per 

iteration st«?p for each of the four variants of generalized Markov pro

gramming is smaller than required for the conventional policy iteration 

methods of HOWARD [1] and JEWELL [2]. The explanation is evidently the 

fact that th«? value determination operation of the GMP iteration method 

in the single chain case requires the inversion of two square matrices 

of size IA I and IA I respectively while the conventional methods require 
z z 

the inversion of one square matrix of size IJI. Because the computation 
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time required to invert a NxN - matrix is proportional to N3, the GMP 

variants will usually be faster per step. In the sequel we will denote these 

variants by GMPl ••• GMP4. The second important contributor in the overall 

computation time is the number of iteration steps required. For the whole 
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sample of randomly generated problems we have uniformly in the number of 

iteration steps 

JEWELL$ GMP3 $ GMP4 $ GMP2 $ GMPI 

This uniformicity is not merely a consequence of a too small sample size, 

because previously in WEEDA [5] an experiment, restricted to GMPI and 

GMP2, has been performed for which the sample size of series a has been 

extended to 65t problems. The result has been that uniformly in the number 

of iteration steps for the whole sample 

GMP2 $ GMPl 

For the three numerical versions of the production problem there is less 

uniformicity. Here we have uniformly 

GMP2 and 3 $ GMPI $HOWARD< GMP4 

Here also GMP2 and GMP3 have to be preferred over GMPI while conventional 

policy iteration even looses its advantage of requiring a smaller number 

of iteration steps. Note that the position of Q1P2 is strengthened and the 

position of GMP4 is worsened compared with the random sample. We note 

further that small deviations in the number 0£ iteration steps between this 

and the previous study are caused by the fact that a newly developed 

numerical procedure to solve a linear system has been used here. 

From the experiments as a whole we may conclude that in view of the overall 

computation time generalized Markov programming has to be preferred over 

conventional policy iteration in this model. Further if one agrees to use 

GMP then preferably use variants 2 or 3 rather than conventional generalized 

Markov programming (variant 1). 
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