
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE
(DEPARTMENT OF OPERATIONS RESEARCH)

B. DORHOUT

EXPERIMENTS WITH SOME ALGORITHMS
FOR THE LI NEAR ASS I GNMENT PROBLEM

~
MC

BW 39/77 NOVEMBER

2e boerhaavestraat 49 amsterdam

SIBLIOTHEEK f',":AT'.iEMiH!SCH CH✓TRUM
--ALAS'Tf.=.nDAtv1-·

~

111111111111111 llll lllli\ lilf 111111 Ill 111111111111111111
3 0054 00035 9936

Ptunted a.t -the Ma:thema..tlc.a.l Ce.ntll.e, 49, 2e BoeJthaa.vu.tJr.a.a:t, Am6telt.dam.

The Ma:thema:Uc.a.l Ce.ntll.e, 6ou.n.ded the 11-th 06 Feb1tw:vz.y 1946, ,l6 a. non
p1to6U ,ln6.ti:t:u,tlon a.,im,i.ng a.t t;he p1tom0Uon 06 pUll.e ma.thema:UC-6 a.nd .lt6
a.ppUca:Uon6. It ,l6 .6pon601ted. by t;he Nethvrl.a.nd6 GoveJLnment th/tough the
Nethvrl.a.nd6 01e.ga.nlza.Uon 601t t;he Advancement 06 PUll.e Re&eaJLch (Z.W.O).

AMS(MOS) subject classification scheme (1970): 90BIO, 90C05

Experim~nts with some algorithms for the linear assignment problem

by

B. Dorhout

ABSTRACT

This report is adapted from a Dutch report [5], written in 1973.

Several algorithms for solving the linear assignment problem are compared

with each other, in particular with respect to the computing times needed

to solve problems of a test set.

In addition to some well known algorithms a recently-developed al

gorithm of the primal-dual type was tested. Because it seems to have very

favourable properties it is described extensively in the report.

KEY WORDS & PHRASES: Zinear assignment probZem, comparison of aZgorithms

1 • INTRODUCTION

The linear assignment probl~m may be formulated as follows: Given real

numbers a .. , i = 1, ••• ,n; j = 1, ••• ,n, find such values of the variables x .. ,
iJ iJ

i = 1 , ••• ,n; j = 1 , ••• ,n, that

n n
(J. 1) z = I I

i=l j=l
a .. x •.
iJ iJ

is minimized subject to the restrictions

n
(1.2) I x .. = 1 '

j=l iJ

n
(1.3) I x .. = 1 ,

i=l iJ

(J.4) x .. = 0 or 1
iJ

If (1.4) is replaced by

(1.5) x .. ;;:;: 0,
iJ

i = 1, ..• ,n,

j = 1, ••• ,n,

i = 1, .•• ,n; j = 1, •.• ,n.

i = 1 , ••• , n; J = 1 , ••• , n,

then linear progrannning theory tells us that among the possibly more than

one optimal solutions there is always at least one, that satisfies (1.4).

As a consequence also the altered problem is considered to represent a lin

ear assignment problem. Because every solution to (1.2), (1.3), (1.4) des

cribes one of the permutations of the integers 1, •• ,n, the linear assignment

problem plays an important role in the solution to several kinds of se

quencing problems. Direct applications are for example found in the field

of transportation., where certain scheduling problems can be formulated as

linear assignment problems [18]. Because these problems often cover several

periods of time, they may have very large dimensions. Other sequencing

problems can be solved by branch-and-bound methods, in which linear as

signment problems occur as relaxations of the original problem [9]. In

these cases large numbers of similar assig11l!lent problems have to be solved.

2

From the preceding it will be clear that it is very useful to have

efficient algorithms for solving the linear assignment problem. For this

reason the performances of several algorithms were compared, in particular

with regard to computation time.

2. ALGORITHMS

In accordance with the second formulation of section 1 it is possible

to solve the linear assignment problem by linear progrannning methods. In

fact all successful algorithms make use of linear progrannning techniques.

The dual linear progrannning problem of the linear assignment problem

is to maximize

n
(2. 1) - I

i=l
u. +

1

n

I
j=l

subject to the constraints

v.
J

(2.2) -u.+v.sa .. ,
1 J 1J

i = 1, ••• ,n; j = I, ••. ,n.

Optimal feasible solutions to the original and the dual problem may be con

nected by the complementary slackness property described in the next theorem.

THEOREM 2.1. A necessary and sufficient condition for a feasible solution

to problem (1.1), (1.2), (1.3), (1.5) to be optimal is that there is a

feasible solution to the dual problem (2.1), (2.2) with the complementary

slackness property

(2.3) (u.+a .. -v.) x .. = 0,
1 1J J 1]

i = 1, ••• ,n; J = 1, ..• ,n.

The known efficient algorithms for the linear assignment problem may

be divided into primal algorithms and primal-dual algorithms.

In each step of a primal algorithm one has a feasible solution to

(1.2), (1.3), (1.5) and values of the dual variables which satisfy (2.3).

3

If the values of the dual variables satisfy (2.2) then the optimal solution

is found. Otherwise a new step is made. The number of steps is finite.

The primal-dual algorithms construct a sequence of feasible solutions

to (2.2) with values of x .. which satisfy (2.3) and (1.5). Also the x ..
lJ lJ

satisfy

n
(2.4) I

j=l

and

n
(2.5) I

i=l

x .. s 1,
lJ

X •• S 1,
lJ

i =

j =

1 , ••• , n

1, ... ,n.

As soon as a primal solution is obtained that satisfies (1.2) and (1.3) it

is optimal. The successive values of

n n
(2.6) w = I I

i= 1 j= 1
x ..

lJ

form a monotone non-decreasing sequence. Finite bounds for the number of

steps may be calculated.

The best-known primal algorithms are the simplex algorithm for trans

portation problems, due to DANTZIG [3] and refined by SRINIVASAN and

THOMPSON [15], an algorithm due to BALINSKY and GOMORY [l], and KLEIN's

negative cycle algorithm [10]: As a comparative study of FLORIAN and

KLEIN [7] revealed that the last mentioned algorithms give worse results

than the primal-dual Hungarian algorithms, these methods were not considered.

The best-known primal-dual algorithm is the Hungarian algorithm, due

to KUHN [11], in the version of MUNKRES [12], described [13] and programmed

[14] by SILVER. A primal-dual algorithm for solving the general minimal

cost network flow problem, due to BUSACKER and GOWEN r2J, was worked out

by TOMIZAWA [17] as well for the linear assignment problem as for the

more general problem, and by TABOURIER [16], only for the linear assign

ment problen1. Three versions of the Hungarian algorithm, the Tomizawa

4

algorithm, the Tabourier algorithm and a revised form of the Tomizawa al

gorithm were programmed and tested.

Before mentioning the results we will describe the algorithm based

on the ideas of Basacker and Gowen. For this purpose we consider the linear

assignment problem as a network problem. We start from a directed network

with a source P0 , a sink Q0 , and intermediate nodes P1, •.• ,Pn, Q1, ••• ,Qn.

There are arcs from P0 to P1, •.• ,Pn, from Q1, ••• ,Qn to q0 , each having

capacity 1 and unit costs O, and uncapacitated arcs from each P.,
l.

i = 1, ••• ,n, to each Q., j = 1, ••• ,n, with unit costs a .. (figure 2.1).
J l.J

Figure 2.1. The linear assignment network.

Only nonnegative flow in the direction of the arrows is allowed. The sum

of the flow into an intermediate node must be equal to the sum of the flows

out of it. We will denote the quantities of flow in the arcs from P0 to Pi'

i = 1, ••• ,n, from P. to Q., i = 1, .•. ,n;
l. J

J = 1, ••• ,n, to Qo by XO"' x .. , and X-o·
l. l.J J

and cjO respectively. Solving the linear

alent to determining a minimum cost flow

j = 1, •.• ,n and from Q.,
J

and their capacities by cOi' cij'

assignment problem is then equiv

from P0 to Q0 with integer flow

values and total flow value w = n.

Given a certain feasible flow pattern, a flow augmenting path consists of

a sequence of arcs (P0 ,P.), (P. ,Q.), (P. ,Q.), ••• ,(P. ,Q.), (Q. ,Q0)
· 1.1 1.1 Jl 1.2 Jl l.r Jr Jr

5

with the property that x0 . < 1, x. j > O, k = l, ... ,r-1, and x. 0 < 1.
1 1 1 k+l · k. Jr

If one moves along the nodes of this path via the arcs of it, the arcs

(P0 ,P.), (P. ,Q.), k = l, ... ,r, and ·(Q. ,Q0) are passed in the direction
1 1 1k Jk Jr

of the arrows. These are called forward arcs. The other arcs are called

backward arcs. The total flow from source to sink may be augmented by

augmenting the flow in the forward arcs by an amount o and diminishing the

flow in the back.ward arcs by the same amount. Then the costs of the total

flow are augmented by the sum of the costs of the forward arcs, diminished

by the sum of the costs of the backward arcs per unit of flow.

In the same way we define an augmenting cycle. This is a path with a given

orientation, for which the starting point and the endpoint coincide. The

arcs with the given orientation are forward arcs, the others are bakcward

arcs. In the forward arcs one must have x .. < c .. , in the backward arcs
l.J l.J

x .. > 0. The costs of augmenting the flow along the cycle are equal tb the
l.J

sum of the costs of the forward arcs, diminished by the sum of the costs

of the backward arcs per unit of flow.

THEOREM 2.2. A feasible flow J;aving value w minimizes cost over all feasible

flows of value w if and only if there are no augmenting cycles having nega

tive cost.

PROOF. It is obvious that a flow pattern that admits an augmenting cycle

with negative cost cannot be of minimal cost. On the other hand, if one

diminishes a minimal cost flow with a given non-minimal cost flow, this

results in a sum of augmenting cycles with respect to the given flow. As

the cost of this sum is negative it will contain at least one augmenting

cycle with negative cost.

As a consequence of this theorem we have

THEOREM 2.3. (Busacker and Gowen). If a minimum cost flow is augmented

6

along a minimum cost flow augmenting path, the new flow is a minimum cost

flow for the new flow value.

PROOF. We start with a flow that contains no augmenting cycles with nega

tive costs. If the new flow is not a minimum cost flow, then it will con

tain a fl6w augmenting cycle with negative cost which contains at least

one backward arc that was flawless before. So this is an arc which is a

forward arc of the minimum cost flow augmenting path. But then this path

would not have been a minimum cost path, for the part of the path that

coincides with (part of) the negative cycle in the opposite direction,

could have been replaced by the rest of the cycle, thus giving a path with

less costs than those of the minimum cost path.

As a consequence of theorem 2.3 the linear assignment problem may be solved

by the following basic algorithm:

). Start with flow O.

2. Determine a minimum cost flow augmenting path.

3. Augment the flow along the minimum cost path as much as possible. If the

flow value is n, stop: the optimal solution is found. Otherwise go to

.step 2.

REMARK. After each iteration of the basic algorithm all x-values are equal

to O or J. In effect, at the start of the algorithm all x-values are 0, and

in each subsequent iteration, flow is augmented by 1 unit in the forward

arcs and diminished by 1 unit in the backward arcs of a flow-augmenting

path. As a result the algorithm is finished after exactly n iterations.

THEOREM 2.4. The optimal solution of a linear assignment problem does not

change if a constant is added to all elements of q row (a column) of the

cost matrix.

PROOF. Trivial.

Application of theorem 2.4 leads to some modifications of the basic algo

rithm.

7

Firstly consider the

e • g • M = 'i'f;- 1 'i'f;- 1 I a .. I
L1 = LJ= l.J

situation, where a very large number Mis defined,

and Mi is added to all elements a .. of row i of
1.J

the cost matrix, for i = I, ... ,n. Then in the ith iteration of the basic

algorithm the flow on (P0 ,Pi) is augmented. The same sequence of flow aug

menting paths would have been obtained by subsequently augmenting the flow_

on (P0 ?P 1), ••• ,(P0 ,Pn). We infer that in each iteration it is possible to

choose the first arc of a minimum cost· flow augmenting path arbitrarily

from the flowless arcs (P0 ,Pi). In the same way one 1.s free in the choice

of the last arc.

As a seicond consequence of theorem 2. 4 one may reduce the cost matrix:

first diminish all numbers in the rows of the cost matrix by their respec

tive minima and then do the same with the columns. Both problems have the

same optimal solution(s). After the reduction all coefficients are nonnega

tive and each row and each column contains at least one zero. Then one may

choose an independent set of zeroes, i.e. a set of zeroes with the property

that no row or column contains more than one of them. With each of these

a .. = 0
l.J

(Qj ,Qo).

have any

there corresponds a zero cost flow augmenting path (P0 ,P.), (P.,Q.),
1. 1. J

Flow may be augmented along all of these paths because they do not

P., i 1 0, or Q., j 1 0, in connnon.
1. J

Now Tabourier's algorithm [16] may be described as follows:

I. Start with flow 0.

2. Reduce the cost matrix and determine a maximal independent set of zeroes

of it. Augment the flow along all corresponding zero cost flow augment

ing paths by I unit.

3. Try to find a flowless arc (P0 ,Pk). If there is no such arc, stop: the

optimal solution is found. Otherwise determine a minimum cost flow aug

menting path having (P0 ,Pk) as its first arc.

4. Augment the flow along the m1.n1.mum cost flow augmenting path with one

unit. Go to step 3.

The minimum cost flow augmenting path in step 3 is determined by means of

a shortest path algorithm, applied to a modified network. This is derived

8

from the original one by adding arcs (Q.,P.) for all pairs (P.,Q.) with
J l. l. J

xij = 1 and deleting all arcs (P0 ,Pi) except (P0,Pk) and deleting all satu-

rated arcs (Qj?Q0), i.e. all arcs with xjO = 1. The lengths of the added

arcs (Q.,P.) are - a .. and the lengths of the other arcs are equal to the
J l. l.J

corresponding unit costs in the original network.

As some of the arcs of the modified network may have negative lengths the

shortest path problems are solved by Ford's algorithm [8], which requires

O(n3) addition and comparison• operations. So the number of operations re

quired by Tabourier's algorithm is O(n4).

In Tomizawa's algorithm [17] at iteration k a modified network is ob

tained from the original one by adding arcs (Q.,P.) for all arcs (P.,Q.)
J l. l. J

with xij = I and by deleting all arcs (P0 ,Pi) and (Qj,QO) except (P0 ,Pk)

and (Qk,Q0). The arcs (Pi,Qj), i = i, .•• ,k; j = I, ••• ,k have lengths

a .. = a .. + u. - v. and all other arcs are of length 0. The values of the
l.J l.J l. J

dual variables u. and v. are chosen in such a way that the a .. are nonnega-
l. J l.J

tive. Therefore it is possible to apply Dijkstra's shortest path algorithm

[4] that takes only O(n2) addition and comparison operations [6]. So the

total number of these operations in Tomizawa's algorithm is 'ocn3).

In describing Tomizawa's algorithm we use expressions a:= b which stand

for "a is replaced by b". Furthermore in each iteration for all pairs

(P. ,Q.) with x .. = I we define s- = j and Tl. =
l. J l.J l. J

i with x .. = O, j = I, ••• ,n and n. = 0 for all
l.J J

The algorithm consists of the following steps:

I. Start with flow O. k = I.

YI== all' ul = 0, xii= I.

2. k :== k + I.

i. We defines.= 0 for all
l.

j with x . . = 0 , i = I , • • • , n.
l.J

V ::
k . min (a.k+u.), u =

= I k I 1 1 k . =
- min (ak.-v.)

J J I , ••• , k l. , ••• , - J
-a .. = a .. +u. -v.,

l.J l.J l. J
i = I, ... ,k; j = I, ... ,k.

3. Define a set T = {l, .•• ,k} and labels A.= k, for all j E: T. In the
J

modified network the shortest distance to Pk is ~uk = O. Nodes Qj'

j = I, ... ,k may be reached along one-arc paths of lengths ~vj = akj"

Furthermore ~u. = 00 , i = I, ... ,k-1.
l.

4. !J.v = min{!J.v.
m J

j ET}. If m = k then go to 5.

T := T - {m}, i := n , !J.u.
m l.

a .. + !J.u. < !J.v.
l.J l. J

make A. :=
J

Repeat this step.

:= !J.v. For all j ET, for which
m

i and !J.v. :=
J

a .. + !J.u .•
l.J l.

5. Construct the shortest path from Pk to Qk: going backward from Qj = Qk

this path contains in turn arcs (P.,Q.) with i =~-and (Q.,P.) with
1., J J J l.

9

j = ~i until Pk is reached. In the original network the flow is changed

and new values of the dual variables are determined by

u. := u. + min(!J.ui ,!J.vk), i = 1, ••. ,k,
l. l.

v. := v. + min(!J.vj ,!J.vk), J = 1, ••• ,k.
J J

If k < n then go to 2.

6. The problem is solved. The u., i = 1, •.• ,n and v., j = 1,.,.,n represent
l. J

an optimal solution of the dual problem.

The validity of the algorithm follows from the observation that at the end

of the kth iteration the u. and v. satisfy
l. J

(2. 7) a .. + u. - v. ~ O,
l.J l. J

i = l, ... ,r; J = I, ... ,r,

and

(2.8) a .. + u. - v. = 0 · if x .. = 1,
l.J l. J l.J

i = l, .•• ,r; J = 1, ••• ,r,

with r = k.

In fact, at the end of step I these conditions are clearly satisfied. Now

assume that they are satisfied at the end of iteration k-1, with r = k-1. We

will show that they are also valid at the end of ~he kth iteration.

The determination of the values of uk and vk in step 2 assures that aij ~ O,

i = 1, ... ,k; j = 1, ... ,k, during iteration k. In order to prove that (2.7)

is valid for r = k after the changes in step 5 we consider the shortest
- -

distances !J.u. and 6v. to all P., i = I, ... ,k, and Q., j = I, ... ,k, re-
1. J l. J

spectively. They satisfy the shortest path optimality conditions

-(2. 9) a .. + tiu.
l.J l.

!iv.;?:: O,
J

i = I, ... ,k; j = I, ... ,k.

Now if we define S = {i i = n., j ET, i # o}, s = {I, ••• ,k}-s,
J

T = {I, .•• ,k}-T, then Dijkstra's algorithm, performed in the steps 4, has
- -the property that in each execution of this step the sets Sand Tare ex-

tended with the index of one point to which the shortest distance from P0
is definitively determined. The distan~es to the points with the subsequent

ly added indices form two monotone nondecreasing sequences. At the moment

that m =kin step 4, and Dijkstra's algorithm stops, the following relations

hold: !iv = tivk' flu. = tiui :s; tivk, for all i € s, !iv. = !iv. :s; tivk, for all k l. - J J
j € T, flu. ;?:: flu. ;?:: tivk, for all i € s, and tiv. ;?:: !iv. ;?:: tivk, for all j ET.

l. l. J J
If for the moment we denote the values of u. and v. at the end of step 5

l. J
by u! and v! respectively, then

l. J

+ u! - v! - + min(fiui'fivk) - min (!iv j , Liv k) , a .. = a ..
l.J l. J l.J

i = I , ••• , k; j = I, ... ,k.

-Hence, by (2. 9) we have for i € s, j € T:

a .. + u! v! = a .. + flu. - !iv. ;?:: O,
l.J l. J l.J l. J

and for i € s, j € T:

a .. + u! - v! = a .. + Liu. - tivk ;?:: a .. + Liu. - tiv. ;?:: o.
l.J l. J l.J l. l.J l. J

As for i € S, J = I , .•• , k

a .. + u! - v! = a .. + tivk - min(tivj,tivk) ~ a .. ~ 0
l.J l. J l.J l.J

we conclude that (2. 7) holds for r = k.

At the end of step 5 of an iteration Liu. = Liv. for all (P. ,Q.) for which
l. J l. J

x .. = I at the start of step 2. So there is a .. + u! - v! = a .. = o. Fur-
l.J l.J l. J l.J

thermore for all (P. ,Q.) on the shortest path Liv. = a .. + flu., with
l. J J l.J l.

Liu. :s; tivk and Liv. :s; Livk. Hence a .. + u! v! = a .. + flu. - Liv. = 0 on l. J l.J l. J l.J l. J

these arcs. As flows are only changed on the arcs of the shortest path

the new solution also satisfies (2.8) for r = k.

Observe that it is essentially necessary to apply Dijkstra's algorithm,

if one wishes to stop the shortest path computations as soon as the

shortest path to Q0 is found (m =kin step 4).

The properties of Dijkstra's algorithm are used more fully if, like in

Tabourier's algorithm, the modified network contains all arcs (Qj,QO)

1 1

for which xjO = O. Although the networks considered are greater the number

of steps in Dijkstra's algorithm is greatly reduced in most cases, because

in general there are less arcs in the shortest paths to q0 • A second im

provement is obtained if, like in Tabourier's method, one starts with a

reduction of the cost matrix. The revised algorithm that results is de

scribed below. In order to prove the validity of this algorithm only minor

changes have to be made in the proof of the original algorithm. It will

therefore be omitted here.

The steps of the revised algorithm are:

1. Start with flow O.

Reduce the cost matrix:

u. =
i

v. =
J

- min
j=l, ... ,n

min
i=l, ... ,n

Define a set J

i := 0.

a .. ' iJ

(a .. +u.),
iJ i

{ I , ••• , n}

i I, ... ,n,

J = l, ... ,n,

2. i := i + 1. If there is an index j e J with a_.+ u. - v. = 0 then
iJ i J

:= I. J := J - {j}. Repeat this step up to and including i = n. x ..
iJ

3. Try to find a flawless arc (P0 ,Pk). If there is no such arc go to 7.

u = - min
k . I J= , ... ,n

(ak.-v.)
J J

a .. = a .. +u. -v.,
iJ iJ i J

i = l, ... ,n; J = l, ... ,n.

12

4. Define a set T = { 1, ••• ,n} and labels A. = k, for all J0 e: T. . J

In the modified network the shortest distance to Pk is Auk= 0.

Nodes Q., j
J

= 1, ••• ,n may be reached along one-arc paths of lengths

Avj = ~j.
Furthermore Au. = co,

l.
i = 1, ••• ,n.

5. If l::.v = min{Av. I j e: T} then go to 6 in the case, that n.m = 0
rn J

T := T - {m}, i : = nm, Au . : = Av •
l. m

For all j e: T, for which a .. + Au.< Av. make A, := i
l.J l. J J

and Av . : = a . . + Au .•
J l.J l.

Repeat this step.

6. Construct the shortest path from Pk to~- In the original network

the flow is changed and new values of the dual variables are deter-

mined by

u. := u. + min (Au . , Av) , i e: {i I XOi = 1}
l. l. l. m

v. := v. + min(Av. ,Av) , j = 1 , ..• , n.
J J J m

Go to 3.

7. The problem is solved. The u., i = l, ... ,n, and v., J = 1, ••. ,n,
l. J

represent an optimal solution of the dual problem.

Example for the revised Tomizawa algorithm.

Given is the cost matrix

7

5

14

8

10

12

10

15

13

9

9

7

13

1 1

7

I 1

8

12

14

6

5

12

8

7

13

The first a .. are shown in table 2.1. The assignments made in ste?s 2
l.J

are characterized by asterisks.

13

) .. j 1 3 1 1 3 3
J

h.v. 1® 4 f 3 4 ® h.u. J
1

0 2 4 3 6 o*
2 o* 2 1 3 7

0 6 4 4 4 0

1 3 3 7 0

3 4 o* 0 0 7

Table 2.1. The first tableau

The first flawless arc, found in step 3, is (P0 ,P3). According to step 4

we define T = {1, •.. ,5} and\= 3, j = 1, ••• ,5, with h.vj = a3j, j =1, .•• ,5,

h.u3 = 0. The infinite values of the other h.ui are deleted. In step 5 we

find h.v5 = min{h.vj I j E TL T := T - {5} as represented by the circle.

i := 1, h.u 1 := h.v5 (= 0),h.v 1 := 2+0, >i. 1 := I, h.v3 := 3, >i. 3 := 1. In the

second application of step 5 we find ~v 1 = min{h.vj I j ET}, T := T - {I},

i := 2, h.u 2 := ~v 1(= 2). No labels are changed. In the third application

of step 5 we have h.v3 = min{h.vj I j ET}. As n3 = 0 (there is no asterisk

in column 3), the minimum cost flow augmenting path is constructed. It

consists, in reverse order, of the arcs (Q3 ,q0), (P>i. 3 ,Q3)=(P 1,Q3),

(P 1,Qs 1)=(P 1,Q5), (PJi. 5 ,Q5)=(P3 ,Q5), and (P0 ,P3). The transition to the aij -

tableau at the end of the next step 3 is represented by

~
I
I

I * o o~---- --3- -- ---9
' o* o 2 1

- - - --4- • - . - -1- . - - - · l • - • - • ·I·. - - --6
0 5

5 o* 0 0 10

Table 2.2 shows the final tableau of the second iteration

14

I A. • 4 4 2 3 l
J

~· J ® l @ l ® J

0 0 l o* 3 0

0 o* l 0 2 9

0 4 ·1 l l o*

0 0 l l 5 l

l 5 0* 0 0 10

Table 2.2. The second tableau

After step 6 we have

_J

So the optimal solution is x 41 = = 1 •

3. COMPUTATIONAL RESULTS

Several algorithms were programmed in ALGOL 60 and tested on an
·-

EL - XS computer. Some results are given in table 3.1, which shows CPU

time intervals between entry and exit of the ALGOL 60 procedures. The

test problems are characterized by four digit numbers abed, where ab

represents the value of n, and digit c has the following meaning:

C = 0: a .. random integers,
1J 0 ~ a .. < 10

1J
C = l : a .. random integers, 0 ~ a .. < 50 1J 1J
C = 2: a .. random integers, 1J 0 ~ a .. < 250

1J

~ m -
em

2501

2502

2503

2511

2512

2513

2521

2522

2523

2531

2532

2533

5001

5002

5003

5011

5012

5013

5021

5022

5023

5031

5032

5041

5051

7511

7512

7513

7531

7532

Hl H2 H3 Ta

-
1.85 1.92 4.41

1.57 1.66 1 4 .33

2.03 2. I 0 4.79

2.96 2.53 ·7 .53

2.32 1.95

2.71 2. 12

4 .19

4.71

2.56

4.08

4.33

2. 72

4.50 5.33

5.84

6. I 9

12.03

I 3. I 7

10. I 2

22. 72 · 18. 29

35.06 23.48 16.88 50.34

39 .97 27.43 19. 77 49.01

93.63 56.56 36.31 54.22

55.22 35.79 24.63 4 I .87

37. 14 27. I 7 21.77

97.50 76.56

25.30 27.84

25.52 24.54

25.69 24.34

163.79 105.30

145.55 104 .39

Table 3.1

Computation times (in seconds)

15

To R s

2.70 2. 14 11 • 74

2.48 2.25 10.03

2.59 2.21 9.22

3.47 2.20 10.85

2.88 1.74 8.62

2.78 1.97 12.27

2.40 1.62 11 • 64

2.51 2. 11 9. 72

2.24 I.39 8.95

3.24 1.81 11 • 62

2.96 1.82 10.02

3.43 I .66 10.08

12.94 10.96 19.73

12.65 IO .49 25.94

I 2 .98 11. 44 21 .50

16. 80 7.88 31. 74

17.51 9.79 37.56

17. 1 7 8.67 34.07

20.60 9.34 33. 11

21.36 9. 10 44.46

23.99 I 2. 72 38.90

20.45 IO. I 9 33 .15

20.63 9.09 31.76

25.86 10.75 42. 11

30.37 13. 17 36.91

64. 16 32.80 75.73

63.97 24.97 66.22

50 .16 21.96 72.63

69.96 19.08 67.32

77 .09 22.96 95.31

16

C = 3: a .. random real numbers, 0 s a .. < I
1J 1J

C = 4: a .. integers taken from a scheduling problem, 0 s a .. < 40
1J 1J

C = 5: a .. equal to the a •. , applied with c = 4, augmented with random
1J 1J

perturbations E .• , 0 s E .. < .01.
1J 1J

The headings of the columns represent· the algorithms:

HI: Hungarian method as described in [14]

H2: Improved version of HI, the cost matrix is transformed in each

iteration

H3: More simple version of H2, no tranformations but updating of

the dual variables

Ta: Tabourier's algorithm

To: Tomizawa's algorithm with cost matrix reduction start

R: Revised Tomizawa algorithm

S: Simplex transportation algorithm.

The main conclusion that can be drawn from our results is that the

revised Tomizawa algorithm is superior to all other tested methods. For

this reason a slightly changed version of the ALGOL 60 procedure that was

tested is included in an appendix. As this procedure is programmed in a

rather straightforward way one may expect still better results if more

sophisticated programming tec~niques are applied.

It appears that for the Hungarian method computation times decrease with

increasing dual degeneracy. Only problems with a very high degree of dual

degeneracy were solved within competitive times. The other algorithms are

rather insensitive in this respect.

As with growing n computation times do not grow as fast for the simplex

algorithm as for the Hungarian algorithm, it is perhaps worthwhile to

develop primal simplex methods which take advantage ofthe special struc

ture of the linear assignment problem. Although several ideas of [15] are

realised in the simplex procedure that was tested it can certainly be

programmed better.

REFERENCES

[l] BALINSKI, M.L. & R.E. GOMORY, 11 A primal method for the assignment

and transportation problems", Man. Sci. _!_Q. (1964), 578-593.

[2] BUSACKER, R.G. & P.J. GOWEN, "A Procedure for Determining a Family

of Minimal-Cost Network Flow Patterns", ORO Technical Report

15, Johns Hopkins University, 1961.

17

[3] DANTZIG, G.B., Linear programming and extensions, Princeton University

Press, Princeton (1963).

[4] DIJKSTRA, E.W., "A note on two problems in connection with graphs",

Nurn. Math. _!__ (1959), 269-271.

[5] DORHOUT, B., "Het lineaire toewijzingsprobleem: vergelijking van

algoritmen 11, Report BN 21, Mathernatisch Centrum, Amsterdam.

[6] DREYFUS , S . E. , 11An appraisal of some shortest-path algorithms 11,

Operations Res. _!2 (1969), 395-412.

[7] FLORI.AN, M. & M. KLEIN, "An experimental evaluation of some methods

of solving the 0ssignment problem", CORS ~ (1970), 101-108.

[8] FORD, L.R. & D.R. FULKERSON, Flows in Netwerks, Princeton University

Press, Princeton (1962).

[9] GEOFFRION, A. U. & R. E. MARS TEN, 11Integer Programming A lgorithrr:s:

A Framework and State-of-the-Art-Survey", Man. Sci. 18 (1972),

465-491.

[10] KLEIN, M., '~ primal method for minimal cost flows with applications

to the assignment and transportation problems", Man. Sci. 14

(1967), 205-220.

[11] KUHN, H.W., "The Hungarian method for the assignment problem",

Nav. Res. Log. Quart. I (1955), 83-97.

[12] MUNKRES, J., "Algorithms for the assignment and transportation prob

lems", J. Soc. Industr. Appl. Math. l (1957), 32-38.

[13] SILVER, R., 11An Algorithm for the Assignment Problem", Comm. ACM, 3

(1960), 605-606.

18

[14] SILVER, R., Algorithm 27, Assignment, Connn. ACM, 3 (1960), 603-604.

[15] SRINIVASAN, V. & G.L. THOMPSON, ''Benefit-Cost Analysis of Coding

Techniques for the Primal Transportation Algorithm", Journal

of the ACM, 20 (1973), 194-213.

[16] TABOURIER, Y., "Un algorithme pour le probleme d'affectation",

RAIRO i (1972), 3-15.

[17] TOMIZAWA, N., "On Some Techniques Useful for Solution of Transpo~ta

tion Network Problems", Networks_!_ (1971), 173-194.

[18] UEBE, G., Optimale Fah:Pplane, Springer, Berlin (1970).

APPENDIX: An ALGOL 60 - procedure for the revised Tomizawa algorithm

real procedure assigtm1.ent(n,i,j,aij,x,u,v); value n;

integer n,i,j; real aij; integer array x; array u,v;

comment

formal parameters:

n: <arithmetical expression>: the size of the problem,

i: <variable>:

integer identifier denoting a row of the cost matrix,

j: <variable>:

integer identifier denoting a column of the cost matrix,

aij: <arithmetical expression>:

the cost of using the element in row i and column j,

x: <array identifier>:

u,v:

a one-dimensional integer array x[l:nJ,

exit: a rowwise stored optimal solution of the problem:

x[i]=j means that the element in row i and column j belongs

to the solution,

<array identifier>:

a one-dimensional array u[l:nJ, resp. v[l:nJ,

exit: the arrays u and v contain the optimal solution

of the dual pro~lem, that corresponds with the final

primal solution,

assign:= the cost of the optimal solution;

begin integer io,jo,k,ko,up;

real a,dj,h,s,min,ui,vj,giant;

integer array y, lab,td[l:n]; real array d[l:n];

for j:= step until n do x[j]:= y[j]:= lab[)]:= O;

min:= O;

for i:= 1 step 1 until n do

begin j:= jo:= l; a:= aij; giant:= a; ui:= -a;

if giant<a then giant:= a;

for j := 2 step 1 until n do

begin a:= aij; if giant<a then giant:= a;

if a+ui<O then

19

20

begin ui:= -a;jo:= j end

end;

u[i]:= ui; if i=I or min+ui>0 then min:= -ui;

if y[jo]=0 then begin x[i]:=jo; y[jo]:= i end

end;

giant:= (giant-min)*n;

up:= 0;

for j:= I step I until n do if y[j];'0 then v[j]:= 0 else

begin v[j]:= giant; up:= up+l; td[up]:= j end;

for i:= I step I until n do

begin ui:= u[i];

for k:= 1 step

begin j:= td[k];

until up do

vj:= v[j]; a:= aij+ui;

if a<vj then begin v[j]:= a; lab[j]:= i end

end

end;

fork:= I step 1 until up do

begin j:= td[k]; i:= lab[j];

if i;'0 then

begin if x[i] =0 then

begin x[i]:= j; y[--i'J:= i end
:J

end

end;

for io:= I step 1 until n do if x[io]=0 ~

begin min:= giant; i:= io;

for j := 1 step I until n do

begin d[j]:= dj:= aij-v[j]; lab[j]:= io; td[j]:= j;

if dj <min then begin min:=dj; jo := j end.._

~;

u[id]:= -min; td[jo]:= n; td[n]:= jo; up:= n-1;

for i:= y[jo] while i>0 do

begin h:= min+u[i]; min:= giant;

fork:= I step 1 until up do

begin j:= td[k]; s:= h+aij-v[j]; dj:= d[j];

if s<dj then begin d[j]:= dj:= s; lab[j]:= i end;

if dj<min then begin min:= dj; ko:= k end

end;

jo:= td[ko]; td[ko]:= td[up]; td[up]:= jo; up:= up-I

end;

u[io] := -rnin;

fork:= up+2 step I until n do

begin j:= td[k]; h:= d[j]-min;

v[j]:= v[j]+h; i:= y[j]; u[i]:= u[i]+h

end;

for j := jo while j>O do

begin y[j]:= i:= lab[j]; jo:= x[i]; x[iJ:= j end

end;

s:= O; for j:= step I until n dos:= s+v[j]-u[j];

assignment::= s

end;

21

