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Are polynomial algorithms really good?

by

Jac. M. Anthonisse and P. van Emde Boas

ABSTRACT

In the theory of computational complexity the upper bound on the run-
time of an algorithm is usually expressed in the length of the input.
Problems are believed to be untractable unless they are solYed by an algo-
rithm with polynomially bounded runtime. The observation that complete enu-
meration is an unfeasible but quadratic algofithm for all except a van-
ishing fraction of the bivalent LP problems suggests that the length of the
input is, in general, not the best quantity in terms of which the complex-—

ity of a problem should be measured.

KEY WORDS & PHRASES: polynomial algorithms, bivalent LP problems, input
length.






A starting point for the theory of computational complexity is the
working hypothesis that a class of problems can be regarded as tractable
if and only if there is an algorithm for their solution whose running time
is bounded by a polynomial in the size of the input, c.f. KARP [2].

Input for an algorithm is assumed to consist of a finite string of 0's and

1's, the size of the input is defined as
(0) L = number of zeroes + number of ones.

An algorithm is good for a class of problems if the running time for each
problem is O(LP), i,e. the running time is bounded by a polynomial in L

of degree p. Assuming that the class contains at least one problem such
that the algorithm must look at least once at each bit of the input-string
it follows that p = 1.

A central problem in the theory of computational complexity concerns
the existence of a good algorithm for the class of bivalent linear program-

ming problems. The general form of a problem from this class is:

n
(1) maximize Z c. X.
Jd Jd
J=1
n
(2) subject to ) 85 Xj < b (i=1,...,m)
J=1
(3) b X; e {0,1}  (j=15...,n)

where cj, 83 and bi denote fixed integer coefficients.
The existence of a good algorithm for these problems implies the exis-
tence of good algorithmg for many combinatorial and graph-theoretical prob-
lems.
The input-string for an algorithm solving this class of problems
should contain an encoding of the values of n, m, and all cj, aij’ bi.

Now assume that algorithm A is a good algorithm for the bivalent
linear programming problem, and that its running time RA is o(Lp), thus






P
(4) Ry <t, L

where tA denotes a technical coefficient.

The trivial algorithm for solving the bivalent LP problems is to gener-
ate the 2" vectors (x1,...,xn) satigfying (3) until the optimal solution
is found. Assuming that the time needed for testing whether a vector satis-
fies the constraints (2) and for the computation of the criterion function

(1), is of order L the runtime of this algorithm is

(5) Ry < tg oL,

where t, denotes another technical coefficient.

C
As
p-1
t n
(6) L > —tg 2
A
implies
p
(7) t, IP > ¢, ol

the conclusion is, that for sufficiently large problems, complete enumer-
ation should be preferred above a good algorithm, if the choice is based

upon the upper bounds only.

From a practical point of view it is disappointing that complete enu-
meration, rather than a good algorithm, should be recommended for solving

large problems, because the running time becomes prohibitive if, say, n > 15.

Within the theory of complexity however, a polynomial algorithm (k)
which can solve only small problems, i.e. problems not satisfying (6);
together with complete enumeration for larger problems, constitutes a good

algorithm for the complete class of problems.

The discovery of such an algorithm, even with p rather large, would

be of great theoretical and practical interest. But that algorithm is not






necessarily always better than complete enumeration.

It should be noted that, due to (6), the size of problems to be solved
by an algorithm with R = 0 (IP) is a decreasing function of p.

Moreover, as we shall see, the fraction of small problems is a de-
creasing function of n, so complete enumeration becomes good for the major-

ity of all problems.

Before a polynomial algorithm A can solve a problem an input-string
defining that problem must be produced. Let C denote the class of problems
solved by A, assume that C is partitioned into subclasses Cs (5=1,2535000)
and let LS denote a measure of the length of input-strings for the problems
in Cs' LS could be an upper bound for the length of the strings or the
length of the average or median input-string.

IfL =0 (s%) then the running time of A is bounded by a polynomial
of degree pq in s, and A is an acceptable algorithm for C,

If L 20 (2°) then the upper bound on the running time of A is > 0 (2P%).
Moreover, in this case, the production of the input-string becomes prohibi-
tive. This does not imply that problem C is untractable, because the en-

coding of a problem into an input-string is determined by the structure

of A.

Now consider the class of bivalent LP problems (1), (2), (3) again.
A vector (x1,...,xn) satisfying (3) either is a feasibie solution or vi-
olates at least one of the constraints (2). Hence, a set of feasible so-
lutions corresponds to every problem. Conversely, each subset from the set
of vectors satisfying (3) can be made the set of feasible solutions of a
bivalent LP problem. Thus the number of bivalent LP problems in n variables

is
(8) N =>2° .,
The actual number is still larger since any feasible solution can be made

the optimal one. Furthermore, many input-strings correspond to problems

with identical feasible set and identical optimal solution.






i Different problems should correspond to different input-strings, the
minimum-length encoding for a class of problems consists of the assignment

of the labels 0,1,2,...,N~1 to the N problems.

As
L i o
(9) J 2o 22
i=1
implies
(10) L > 2"

at least one problem requires an input-string of length of,
Moreover, each of at least half the number of problems requires an input-

string of length ot

The conclusion is:
in every encoding of bivalent LP problems in n variables the median length
of the input-string is = 0(2").

This conclusion can also be formulated in the terminology of Boolean
functions, i.e. in every representation of Boolean functions each of at
least half the number of functions requires at least 21 bits.

Thus, if an algorithm creates and manipulates Boolean functions then an
exponential growth in storage requirements and running time should be ex-

pected, c.f. Anthonisse [1],

For each problem with L 2 2" - k the runtime of complete enumeration
satisfies
L 2 "
(11) R < tcan < £,2"L < — < 17—
27 -k oM Lk

The number of problems with L < 2 -k is bounded by

n
27k N
(12) 2 < =

2






Taking k = 2n—1 we conclude that with the exception of a fraction

(13) | (22n_1)'1

of the problems in n variables, the running time of complete enumeration

is 0(L2).

This counter-intuitive conclusion suggests that the length of the
input-string might not be the proper quantity in terms of which the com-
plexity of a problem should be measured. Similar observations have been made
by SAVAGE and LAMAGNA (private communication). Instead of the length of the
string one could consider the contents of the string. For the example of
bivalent LP problems expressions in terms of n, m and the size of the' co-
efficients might be considered. Within such a framework the trade-off in-
volved in replacing some or all constraints by a single equivalent one can
be studied, c.f. PADBERG [3].

One might argue that the large problems used in the above estimates
are unrealistic and can not be formulated due to the length of their input-
strings. This would be another argument in favor of fixiné a bound on L,
expressed in n, m and other parameters, and to study the existence of good

algorithms for these problems only.
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