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Are polynomial algorithms really good? 

by 

Jae. M. Anthonisse and P. van Em.de Boas 

ABSTRACT 

In the theory of computational complexity the upper bound on the run

time of an algorithm is usually expressed in the length of the input. 

Problems are believed to be untractable unless they are solved by an algo

rithm with polynomially bounded runtime. The observation that complete enu

meration is an unfeasible but quadratic algorithm for all except a van

ishing fraction of the bivalent LP problems suggests that the length of the 

input is, in general, not the best quantity in terms of which the complex

ity of a problem should be measured. 

KEY WORDS & PHRASES: polynomial algorithms, bivalent LP pPoblems, input 

length. 





A starting point for the theory of computational complexity is the 

working hypothesis that a class of problems can be regarded as traatahZe 

if and only if there is an algorithm for their solution whose running time 

is bounded by a polynomial in the size of the input, c.f. KARP [2]. 

Input for an algorithm is assumed to consist of a finite string of O's and 

1's, the size of the input is defined as 

(0) L = number of zeroes+ number of ones. 

An algorithm is good for a class of problems if the running time for each 

problem is O(LP), i.e. the running time is bounded by a polynomial in L 

of degree p. Assuming that the class contains at least one problem such 

that the algorithm must look at least once at each bit of the input-string 

it follows that p ~ 1 • 

A central problem in the theory of computational complexity concerns 

the existence of a good algorithm for the class of bivalent linear program

ming problems. The general form of a problem from this class is: 

( 1 ) 
n 

maximize I C. x. 
J J 

j=1 

n 
(2) subject to I a .. x. s b. (i=1, ••• ,m) 

j=1 l.J J ]. 

(3) x. 
J 

e: {O, 1} (j=1, ••• ,n) 

where c., a .. and b. denote fixed integer coefficients. 
J l.J ]. 

The existence of a good algorithm for these problems implies the exis-

tence of good algorithms for many combinatorial and graph-theoretical prob

lems. 

The input-string for an algorithm solving this class of problems 

should contain an encoding of the values of n, m, and all c., a .. , b .• 
J l.J ]. 

Now assume that algorithm A is --.,good algorithm for the bivalent 

linear programming problem, and that its running time RA is o(LP), thus 
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(4) 

where tA denotes a technical coefficient. 

The trivial algorithm for solving the bivalent LP problems is to gener

ate the 2n vectors (x1, ••• ,xn) satisfying (3) until the optimal solution 

is found. Assuming that the time needed for testing whether a vector satis

fies the constraints (2) and for the computation of the criterion function 

(1), is of order L the runtime of this algorithm is 

(5) 

where tc denotes another technical coefficient. 

As 

(6) 

implies 

the conclusion is, that for sufficiently large problems, complete enumer

ation should be preferred above a good algorithm, if the choice is based 

upon the upper bounds only. 

From a practical point of view it is disappointing that complete enu

meration, rather than a good algorithm, should be recommended for solving 

large problems, because the running time becomes prohibitive if, say, n > 15, 

Within the theory of complexity however,·a polynomial algorithm (4) 
which can sohre only small problems, i.e. problems not satisfying ( 6); 

together with complete enumeration for larger problems, constitutes a good 

algorithm for the complete class of problems. 

The discovery of such an algorithm, even with p rather large, would 

be of great theoretical and practical interest. But that algorithm is not 
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necessarily always better than complete enumeration. 

It should be noted that, due to (6), the size of problems to be solved 

by an algorithm with R = 0 (r.P) is a decreasing function of p. 

Moreover, as we shall see, the fraction of small problems is a de

creasing function of n, so complete enumeration becomes good for the major

ity of all problems. 

Before a polynomial algorithm A can solve a problem an input-string 

defining that problem must be produced. Let C denote the class of problems 

solved by A, assume that C is partitioned into subclasses C (s=1,2,3, ••• ) 
s. 

and let L 
s 

in C . L 
s s 

denote a measure of the length of input-strings for the problems 

could be an upper bound for the: length of the strings or the 

length of the average or median input-string. 

If L = 0 (sq) then the running time of A is bounded by a polynomial 
s . 

of degree pq ins, and A is an acceptable algorithm for C~ 

If L ~ 0 (2s) then the upper bound on the running time of A is~ 0 (2ps). 
s 

Moreover, in this case, the production of the input-string becomes prohibi-

tive. This does not imply that problem C is untractable, because the en

coding of a problem into an input-string is determined by the structure 

of A. 

Now consider the class of bivalent LP problems (1), (2), (3) again. 

A vector (x1, .•• ,xn) satisfying (3) either is a feasible solution or vi

olates at least one of the constraints (2). Hence, a set of feasible so

lutions corresponds to every problem. Conversely, each subset from the set 

of vectors satisfying (3) can be made the set of feasible solutions of a 

bivalent LP problem. Thus the numb'er of bivalent LP problems inn variables 

is 

(8) 

The actual number is still larger since any feasible solution can be made 

the optimal one. Furthermore, many input-strings correspond to problems 

with identical feasible set and identical optimal solution. 
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Different problems should correspond to different input-strings, the 

minimum-length encoding for a class of problems consists of the assignment 

of the labels 0,1,2, ••• ,N-1 to the N problems. 

As 

(9) 

implies 

(10) 

at least one problem reqw.res an input-string of length 2n. 

Moreover, each of at least half the number of problems requires an input

string of length 2n-1. 

The conclusion is: 

in every enaoding of bivalent LP problems inn variables the median length 

of the input-stnng is~ 0(2n). 

This conclusion can also be formulated in the terminology of Boolean 

functions, i.e. in every representation of Boolean functions each of at 

least half the number of functions requires at least 2n-1 bits. 

Thus, if an algorithm creates and manipulates Boolean functions then an 

exponential growth in storage requirements and running time should be ex

pected, c.f. Anthonisse [1]. 

For each problem with L ~ 2n - k the runtime of complete enumeration 

satisfies 

( 11) 

The number of problems with L < 2n-k is bounded by 

(12) 
2n-k N 

2 < -- k 
2 





Taking k = 2n-1 we conclude that with the exception of a fraction 

( 13) 

of the problems inn variables, the running time of complete enumeration 
2 

J.S O(L ). 
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This counter-intuitive conclusion suggests that the length of the 

input-string might not be the proper quantity in terms of which the com

plexity of a problem should be measured. Similar observations have been made 

by SAVAGE and LAMAGNA (private communication). Instead of the length of the 

string one could consider the contents of the string. For the example of 

bivalent LP problems expressions in terms of n, m and the size of the· co

efficients might be considered. Within such a framework the trade-off in

volved in replacing some or all constraints by a single equivalent one can 

be studied, c.f. PADBERG (3]. 

One might argue that the large problems used in the above estimates 

are unrealistic and can not be formula.ted due to the length of their input

strings. This would be another argument in favor of fixing a bound on L, 

expressed inn, m and other parameters, and to study the existence of good 

algorithms for these problems only. 
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