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ABSTRACT 

We survey and extend results on the complexity of machine scheduling problems. 

After a brief review of the central concept of NP-completeness we give a 

classification of machine scheduling problems and study the influence of 

various parameters on their complexity. NP-completeness is established for 

a large number of machine scheduling problems. We finally discuss some ques

tions that remain unanswered. 
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1 • INTRODUCTION 

In this paper we study the complexity of machine scheduling problems. Section 

2 contains a brief review of recent relevant developments in the theory of 

computational complexity, centering around the concept of NP-completeness. 

A classification of machine scheduling problems is given in section 3, In 

section 4 we present the results on the complexity of these problems: a large 

number of them turns out to be NP-complete. Quite often a minor change in 

some parameter transforms an NP-complete problem into one for which a poly

nomial-bounded algorithm is available. Thus, we have obtained a reasonable 

insight into the location of the borderline between "easy" and "hard" machine 

scheduling problems, although some questions remain open. They are briefly 

discussed in section 5. 
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2 . COMPLEXI'.I'Y THEORY 

Recent develo:l)ments in the theory of' computational complexity as applied to 

combinatorial problems have aroused the interest of' many researchers. The 

main credit f'or this must go to S.A. Cook [6] and R.M. Karp [19], who f'irst 

explored the :relation between the classes P and NP of problems solvable by 

deterministic and non-deterministic Turing machines respectively, within a 

number of stei;:is bounded by a polynomial in the length of the input. Roughly 

speaking, P contains all problems f'or which a polynorrrial-bounded, good [7] 

or efficient algorithm exists, whereas all problems in NP can be solved by 

po lynorrrial-depth backtrack search. 

In this context, all problems are stated in terms of recognition prob

lems which require a yes-no answer. An optirrrization problem of', say, mini

mizing some criterion, is therefore replaced by the problem of determining 

the existence of a solution with value~ y, for some y. 

For two problems P' and P, we say that P' is reducible to P (notation: 

P' ex: P) if for any instance of P' an instance of P can be constructed in 

polynomial time such that solving the instance of P will solve the instance 

of p' as well.. P' and P are equivalent if P' ex: P and P a: P' . P is called 

NP-complete [~~OJ if P E NP and every problem in NP is reducible to P. 

It is clear that Pc NP, and the question arises if this inclusion is 

a proper one or if, on the contrary, P =NP.Although this is still an open 

problem, the equality of P and NP is considered to be very unlikely and most~ 

bets [ 20 J have been going in the other direction. This is mainly due to the 

following remarkable results. 

Cook proved that each problem in NP is reducible to the SATISFIABILITY 

problem, which consists of determining if a given boolean formula in conjunc

tive normal form is true for some truth assignment to its variables. It was 

next shown by Karp that SATISFIABILITY is in turn reducible to a large number 

of notorious eombinatorial problems in NP. It follows that all these problems 

are NP-complete. A polynomial-bounded algorithm for any of them thus would 

yield good algorithms for all problems in NP. Given the fact that difficult 

problems such as TRAVELLING SALESMAN, SET PARTITIONING and KNAPSACK are typ

ically NP-complete, the existence of such an algorithm (and thereby an affir

mative answer to the P = NP question) seems highly unlikely. 
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Karp's work has led to a large amount of research on the location of the 

borderline between problems in P and NP-complete problems. It turns out that 

a minor change in a problem para.meter (notably - for some mystical reason -

an increase from two to three) often transforms a problem solvable in poly

nomial time (e.g., BIPARTITE MATCHING) into an NP-complete one (3-DIMENSIONAL 

MATCHING). Not only does knowledge of the borderline lead to fresh insights 

as to what characteristics of a problem determine its complexity, but there 

are also important consequences for practitioners facing these problems: es

tablishing NP-completeness can be interpreted as a formal justification to 

use enumerative solution methods such as branch-and-bound, since no substan

tially better method is likely to exist. Embarrassing incidents like the pre

sentation in a standard text-book of an implicit enumeration approach to the 

CHINESE POSTMAN problem, for which a good algorithm had already been develop

ed [8] (see also [9]), will then occur less readily. 

The class of machine scheduling problems seems an especially attractive 

object for this type of research, since their structure is relatively simple 

and there exist standard problem para.meters that have demonstrated their use

fulness in previous research. 
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3. MACHINE SCHEDULING PROBLEMS 

Machine scheduling problems can be verbally formulated as follows [5;31]: 

The 

"A job J. (j = 1, •.• ,n) consists of a sequence of operations, each of 
J 

which corresponds to the processing of J. on some maahine M. (i = 
J i 

1 , ••• ,m) during a given period of time. Each machine can handle at most 

one job at a time. What is according to some overall criterion the opti-

mal processing order on each machine?" 

following data can be specified for each job J.: 
J 

a nUTfU)er> of operations mj; 

a machine order µj, i.e., an 

a pr-ocessing time p. of its 
Jr 

a weight wj; 

ordered m.-tuple of machines; 
J 

r-th operation, r = 1, ... ,m.; 
J 

a re tease date or r-ead:y time r j ; 

a due date d .• 
J 

We assume that all data (exceptµ.) are nonnegative integers, and, unless 
J 

stated otherwise, that all jobs are available at time O (i.e., r. = 0 for•. each 
J 

J.). Given a processing order on each machine, we can compute for each job J.: 
J J 

the star-ting time B j ; 

the completion time C.; 
J 

the "lateness L. = C. - d.; 
J J J 

the tar-diness T. = max:{O,C. 
J J 

u. = if C. ~ d. then O else 
-J J-- --

- d.}; 
J 

1. 
J 

Machine scheduling problems are traditionally classified by means of four pa-

rameters n, m, £, k. The first two parameters are integer variables, denoting 

the numbers of jobs and machines respectively; the cases in which mis con

stant and equal to 1 , 2, or 3 will be studied separately. If m > 1 , the third 

parameter takes on one of the following values: 

£ = F in a ftOIJ)-shop where m. = m andµ.= (M1 , ••• ,M) for each job J.; 
J J m J 

£ = P in a pePmUtation-shop, i.e., a flow-shop where passing is not per-

mitted so that each machine has to process the jobs in the same order; 

£ = G in a (gener>at) job-shop where m. andµ. nuzy vary per job 
J J 

£=I in a par>attet-shop where each job has to be processed on 

of m identical machines, i.e., m. = 1 andµ. is not defined for 
J J 

J.; 
J 

just one 

any Jj. 



Extensions to more general situations where severaZ gPoups of identicaZ ma

chines are available will not be considered. 

The fourth parameter indicates the optimality criterion. The following 

objective functions have frequently been chosen to be minimized: 

k = C = ma.x1< "< C.; max -J-n J 

k = fw.c. rj=n = . 1 w.C.; 
J J J= J J 

k = L = max1<.< L.; max -J-n J 

k = Iw.T. = rj=n w.T.; 
J J j=1 J J 

k = Iw.U. = rj=n w.u .. 
J J j=1 J J 

We refer to [31] for relations between these and other optimality criteria. 

Some relevant problem variations are characterized by the presence of 

one or more elements in a parameter set A, such as 

r.~o (possibly non-equal ready times for the jobs); 
J 

rn~O (a possibly non-zero ready time for one job, say Jn); 

L so (only schedules whereby all due dates are met are to be considma.x 
ered; in this case we assume that k E {C ,Iw.C.}); 

max J J 
pPec (precedence constraints between the jobs, where "J. precedes J" 

J k 
(notation: Jj < Jk) implies Cj s 1\_); 

7 

tT'ee (precedence constraints between the jobs such that the associated 

precedence graph can be given as a branching, i.e., a set of di

rected trees with eitper indegree or outdegree at most one for all 

vertices); 

no wait (no waiting time for the jobs between their starting and fin

ishing times; hence, c. = B. + l p. for each job J.); 
J J r Jr J 

m.sm (a constant upper bound for the number of operations per job); 
J * 

1Sp. Sp (constant lower and upper bounds for the processing times); 
Jr * 

w.=1 (equality of the weights). 
J 

In view of the above discussion, we can use the notation 

to indicate specific machine scheduling problems in the remaining sections. 



8 

4. COMPLEXITY OF MA.CHINE SCHEDULING PROBLEMS 

All machine scheduling problems of the type defined in section 3 can be solved 

by polynomial-depth backtrack search and thus are members of NP. 

The results on their complexity are summarized in Table I. The problems 

which are marked by an asterisk (*) are solvable in polynomial time; in Table 

II we provide for most of these problems references where the algorithm in 

question can be found. The problems marked by a note of exclamation ( ! ) are 

NP-complete. Question-marks (?) indicate open problems; we will return to them 

in section 5 to motivate our typographical suggestion that these problems are 

likely to be NP-complete. 

Table I contains the "hardest II problems that are known to be in P and 

the "easiest" ones that have been proved to be NP-complete. In this respect, 

Table I indicates to the best of our knowledge the location of the borderline 

between easy and hard machine scheduling problems. 

We will give a simple example of the interaction between the tables and 

theorems in this section by examining the status of the general job-shop prob

lem, indicated by nlmlalc . max 
In Table I, we see that the nl2IG,m.~2IC problem is a member of P and 

J max 
that two minor extensions of this problem, nl2IG,m.~3IC and nl3IG,m.~2IC , 

J . max J max 
are NP-complete. By Theorem 1 (a,h), these problems ·are special cases of the 

general job-shop problem, which is thus shown to be NP-complete by Theorem 

1(b). Table II refers to Jackson's polynomial bounded algorithm [17] for the 

nl2IG,m-~2IC problem. Table III tells us that reductions from KNAPSACK to 
J max 

both NP-complete problems are presented in Theorem 4(i,j); the NP-completeness 

of KNAPSACK is recalled in Theorem 2 (b) • 

Theorem 1 gives some elementary results on reducibility among machine 

scheduling problems. It can be used to establish either membership of P or 

NP-completeness for problems that are, roughly speaking, either not harder 

that the polynomially solvable ones or not easier than the NP-complete ones 

in Table I. 

THEOREM 1. 

(a) If n I I m I I Q. ' , A ' I k ' er n I m I Q. , A I k and n I m I Q. , ). I k E P, then n ' I m' I Q. ' , A ' I k ' E P • 

(b) If n'lm'lt',).'lk' er nlmlt,).lk and n'lm'lt',).'lk' is NP-aompZete, then 

nlmlt,).lk i~ NP-aompZete. 
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(a) 
(d) 

(e) 

(f) 

(g) 
(h) 

( i) 

(j) 

(k) 

(l) 

nlm'lt,Alk oc nlmlt,Alk if m's m or if m' is constant and mis variable. 

nj2jFjk and nl2jPjk aPe equivalent. 

nl31Flc and nl31Plc aPe equivalent. max max 
nlm!F,Aik oc njmjG,Ajk. 

nlmlt,Ajk oc nlmlt,AUA'lk if 

nlmlt,AUA'ik oc nlmlt,Ajk if 

nlmlt,AjC oc nlmlt,AjL . max max 
nlmlt,Allw.c. oc nlmlt,Allw.T .• 

J J ~ J 
njm-1jF,r ~O,Ajk oc njmjF,Ajk if Ac {w.=1}. 

n J 
n'lm!I,prea,1Spj 1sp*jcmax oc nlmlI,prea,1Spj 1sp*,wj=11LwjCj. 

Proof. Let P' and P denote the problems on the lef't-hand side and right-hand 

side respectively. 

(a,b) Clear from the definition of reducibility. 

( a) Tri vi al . 

(d,e) P' has an optimal solution with the same processing order on each ma

chine [5;31]. 

(f,g,h) In each case P' obviously is a special case of P. 

(i,j) Take d. = 0 (j = 1, ... ,n) in P. 
J 

(k) Suppose that in P' the machines and the operations of each job are 

( l) 

indexed from 2 tom. We specify P by adding a machine M1 and defining 

pj 1 = rj (j = 1, ..• ,n) (i.e., p 11 = ... = pn_1 1 = O, pn1 ~ 0). Any 

solution to P' corresponds ,to a solution to P with the same value for 

k, and vice versa. 

Any instance of P' has a solution with value C s n'p. We construct max * 
a corresponding instance of P by choosing y', 0 s y' s n'p*, defining 

n" = (n' - 1)y' 

n = n' + n" 

y = ny' + ~n"(n" + 1) 

and adding n" jobs J , (k = 1, ... ,n") to P' with n +k 
P = 1 n'+k 1 
Jj < Jn'+k (j = 1, ... ,n'+k-1) 

Now P' has a solution with values y' if and only if P has a solution 

with value s y: 

C s y' .. IJ=n c. s n'y' + rk=n ( I + k) = y max j=1 J k=n'+1 y 

r~=n k=n + k) C > y' .. C. > y' + lk=n '+/Y' + 1 = y max J=1 J □ 
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TABLE I. COMPLEXITY OF MACHINE SCHEDULING PROBLEMS 

n jobs 1 machine 2 machines 

C * r .~:O ,prec * F max J 

* F,no wait· 
I F,r ~O n 
I F,tree . 
-----------
* G,m.:::;2 

J 
! G,m.:,;3 
- _J_ - - - - - - -

I I 

* I,prec,pj 1=1 
I I ,prec, 1 :,;p . 1 :::;2 

. l 

Iw.C. * tree ! F,w.=1 
J J J 

? prec,w .=1 ? F,no wait,w.=1 
J - - - - - _J_ - - -

! r 2::0,w.=1 I I n J 

* L :,;o,w.=1 
max J 

! L :,;o 
I I ,prec, 1:,;p . 1:,;2 ,w .=1 max . 

.l .l 

L * prec ! F max 

* r/O,pj 1=1 

! r 2:0 
n 

Iw.T. * rlo,pj 1=1 I F,w.=1 . 
J J J 

? w .=1 
J 

I . 
I r ~o,w.=1 . 

n .1 

Iw.u. * r.~O,p. 1=1 I F,w.=1 . 
J J J J J 

* w.=1 
J 

* 7:,;p. 1:,;p 
J * 

! 

! r ~O,w.=1 n .l 

* problem in P: see Table II 

? open problem: see section 5 

NP-complete problem: see Table III 

m machines 

I m=3:F 

? m=3:F,no wait 

! F,no wait 

-----------
* n=2:G --
! m=3:G,m.:,;2 _-_J ______ 

* I,tree,pj 1=1 

? m=3: I ,prec ,P . 1 =1 
- J 

I I,prec,p_i 1=1 . 
! F,no wait ,w .=1 

J 

-----------
* I,r.~O,p. 1=1 

J J 

* I,w.=1 
J 

! I,prec,pj 1=1 ,wj=1 



TABLE II. REFERENCES TO POLYNOMIAL-BOUNDED ALGORITHMS 

Problem 

n I 1 I r. ~O ,prec I C 
J max 

nl1ltreeliw-C. 
J J 

nl1IL ~o,w.=1IIw.c. 
max J J J 

nl1lpreclL max 
n I 1 I r. ~o ,P . 1 = 1 I L 

J J max 
nl1lr-~O,p. 1=1IIw.T. 

J J J J 
nl1lr.~O,p. 1=1IIw.U. 

J J J J 
nl 1lw-=1IIw.u. 

J J f nl 111Sp. 1sp I w.u. 
J * J J 

nl21Flc max 
n I 2 I F ,no wait I C max 
nl2IG,m.s2lc 

J max 
n I 2 I I ,prec ,P . 1=11 C 

J max 
2lmlGlc max 
n I ml I, tree ,P . 1=1 IC 

J max 
nlmlI,r.~O,p. 1=1IIw.c. 

J J J J 
nlmlI,w.=1IIw.c. 

Reference 

Horn [13]; Sidney [33;34] 

Smith [35] 

Lawler [23] 

Horn [15] 

Lawler [22] 

Lawler [24,Ch.7]; Lageweg [21] 

Moore [27] 

Lawler & Moore [25] 

Johnson [18] 

Gilmore & Gomory [11] 

Jackson [17] 

Coffman & Graham [ 4 J 

Szwarc [36]; Hardgrave & Nemhauser [12] 

Hu [16] 

Conway et al. [5]; Horn [14]; Bruno et al. [3] 

11 
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Remark. The proofs of Theorem 1(a,k) involve processing times equal to O, 

implying tha,t the operations in question require an infinitesimally small 

amount of time. Whenever these reductions are applied, the processing times 

can be transformed into positive integers by sufficiently (but polynomially) 

inflating the problem data. Examples of such constructions can be found in 

the proofs of Theorem 4(g ,h). 

The rema1.m.ng part of this section will be devoted to the NP-completeness 

proofs for the problems, marked by a note of exclamation in Table I. The 

reductions f'or these problems are listed in Table III. They involve four 

results from Karp [19] and a minor extension, as collected in Theorem 2. 
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TABLE III. REDUCTIONS TO NP-COMPLETE MACHINE SCHEDULING PROBLEMS 

Reduction 

PARTITION oc nl2IIlc max 

PARTITION oc nl2IIILw.c. 
J J 

KNAPSACK oc nl 1lr ~o,w.=11Lw.c. 
n J J J 

KNAPSACK oc nl 1IL $Ollw.C. max J J 
KNAPSACK oc nl 1jr ~OIL n max 
KNAPSACK oc nl 11 IIw.T. 

J J 
KNAPSACK oc nl 11 IIw.U. 

J J 

KNAPSACK oc nl 1lr ~o,w.=1IIw.u. 
n J J J 

KNAPSACK oc nl2IF,rn~olcma.x 

KNAPSACK oc nl2IF,treelc max 
KNAPSACK oc nl21G,m.$3IC 

J max 
KNAPSACK oc nl3IG,m.$2lc 

J max 
DIRECTED HAMILTONIAN PATH oc nlmlF,no waitlc max 
DIRECTED HAMILTONIAN PATH oc nlmlF,no wait,w.=1IIw.C. 

J J J 
3-SATISFIABILITY oc nl2II,prec,1$p. 1$2IC 

J max 
3-SATISFIABILITY oc nlmlI,prec,p. 1=1lc 

J max 
nl 1lr ~O,w.=1IIw.C. oc nl1lr ~O,w.=1IIw.T. 

n J J J n f J J 
nl 1lr ~O,w.=1IIw.c. oc nl2IF,w.=1 Iw.C. 

n J JJ J, JJ 
nl 1lr ~OIL oc nl2IFIL n max max 
nl 1lr ~O,w.=11Lw.T. oc nl2IF,w.=112w-T. 

n J J J J J J 
nl 1lr ~o,w.=1IIw.u. oc nl2IF,w.=1IIw.u. 

n ~ J J J J J 
nl2IF,r ~OIC oc nl31Flc n max max 
n 1 l21I,prec,1$p. 1$2lc oc nl2II,prea,1$p. 1$2,w.=11Lw.C. 

J max J ~ JJ 
n' 1ml I ,prec,p . 1=11 Cmax oc nl ml I ,prec,p. 1=1 ,w .=11 l,w.C. 

Reference 

Bruno et al. [3]; 
h.l., Theorem 3(a) 
Bruno et al. [3], 
h.l., Theorem 3(b) 
h.l., Theorem 4(a) 

h.l., Theorem 4(b) 

h.l., Theorem 4(c) 

h.l., Theorem 4(d) 

Karp [19 J; 
h.l., Theorem 4(e) 

h.l., Theorem 4(f) 

h.l., Theorem 4(g) 

h.l., Theorem 4(h) 

h.l., Theorem 4(i) 

h.l., Theorem 4(j) 

h.l., Theorem 5(a) 

h.l., Theorem 5(b) 

Ullman [37] 

Ullman [37] 

h.l., Theorem 1 (j) 

h.l., Theorem 1(k) 

h.l., Theorem 1(k) 

h.l., Theorem 1(k) 

h.l., Theorem 1 (k) 

h.l., Theorem 1 ( k.) 

h.l., Theorem 1(l) 

h.l., Theorem 1(l) 
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THEOREM 2. The foUowing problems are NP-complete: 

(a) PARTI'I~ION 

Given positive integers a1 , ••• ,at, d.oes there exist a suhset Sc T = 

{1 , ••• ,t} such that l· Sa.= l· TS a.? JE J JE - J 
( b ) KNAPSACK 

Given positive integers a1 , ••• ,at,b, d.oes there exist a subset Sc T = 

{1, ... ,t} such that l· Sa.= b? 
JE J 

(c) DIRECT~D HAMILTON CIRCUIT 

Given a directed graph G' = (V' ,A'), does G' have a hamilton circuit 

(i.e., a directed cycle passing through each vertex exactly once)? 

(d) DIREC'I~D HAMILTON PATH 

Given a directed graph G = (V ,A), does G have a hamilton path 

(i.e., a directed path passing through each vertex exactly once)? 

(e) 3-SATISFIABILITY 

Given clauses c1 , ... ,cm, each consisting of at most three literals from 

the set X = (x1 , ••• ,xn,x1 , ••• ,xn), is the conjunction of the clauses 

satisfiable, i.e., d.oes there exist a suhset S c X such that 

Proof. 

S d.oes not contain a complementary pair of literals (x. ,x. ); 
J J 

S n C. ':/- ¢ for i = 1 , ••. ,m? 
1 

(a,b,a,e) See Karp [19]. 

(d) DIRECTED HAMILTON CIRCUIT~ DIRECTED HAMILTON PATH 

Given G' = (V' ,A'), choose v' EV' and construct G = (V,A) with 

V = V' u { v"} 

A = { ( u, v) I ( u, v) E A' , v 'f v'} u { ( u, v") I ( u, v' ) E A'} 

G' has a ha.milton circuit if and only if G has a ha.milton path. D 

In Theorems 3, 4, and 5 we present a large number of reductions of the form 

P ~ nlmlt,Alk by specifying nlmlt,Alk and some y such that P has a solution 

if and only if nlmlt,Alk has a solution with value k ~ y. This equivalence 

is proved for some principal reductions; in other cases, it is trivial or 

clear from the analogy to a reduction given previously. The NP-completeness 

of nlmlt,Alk then follows from the NP-completeness of Pas established in 

Theorem 2. 



First, we briefly deal with the problems on identiaaZ machines. Theorem 3 

presents two reductions which are simplified versions of the reductions 

given in [3]. 

THEOREM 3. PARTITION is reduaibZe to the foZZowing problems: 

(a) nj2jijcmax 

(b) nl21Illwjcj 

Proof. Define A= l- Ta .• 
J€ J 

(a) PARTITION~ nl2!Ilc max 

(b) 

n = t 

pj 1 = aj (j € T) 

y = ~A 

PARTITION~ nl2IIIIw.c. 
J J 

n = t 

pj 1 = wj = aj (j € T) 
\ lA2 

y = lj,kE:T,j~k aj~ -

Suppose that {Jjjj € S} is assigned to M1 and {Jjjj € T-S} to M2 ; let 

c = l· Sa. - ~A. Since p. 1 = w. for all j, the value of Iw.c. is not 
J€ J J J J J 

15 

influenced by the ordering of the jobs on the machines and only depends 

Ml 

M2 

on the choice of S (cf. [5;31]): 

Iw.c. = k(S). 
J J 

It is easily seen (cf. Figure 1) that 

k(S) = k(T) - (I.Sa.) (I-Ts a.) = 
J€ J J€ - J 

= l· k T "<k a.a - (~A+ c)(~A - c) = y + c2, J, € ,J- J !t 

and it follows that PARTITION has a solution if and only if this 

n I 2 I I I Iw / j problem has a solution with value ~ y. D 

s T-S 

value k(T) 

s 
Ml 

T-S 
M2 

value k(S) 

MAT!'-! EMA TISCH 
ilclVl<:'fflR D/l. M 

CENTP.UM 

FiEillre 1 
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Most of our results on different machines involve the KNAPSACK problem, as 

demonstrated by Theorem 4. 

THEOREM 4. KNAPSACK is reduaib "Le 

(a) nl1lr ~o,w.=1!Iw.c. 
n J .J J 

to the fo"L"LouJing prob"Lems: 

(b) nl1IL so!Iw.c. max J J 
(a) 
(d) 
(e) 
( f) 

(g) 
(h) 

( i) 

( j) 

nl1lr ~OIL n max 
nl 111 IwjTj 

nl 111 Iwjuj 
nl1lr ~O,w.=11Iw.U. 

n I J J 
nl2IF,r ~o C n max 
nl2IF,treelc max 
nl2IG,m.s3IC 

J max 
nl3IG,m.s2lc 

J max 

Proof. Define A= l · T a., a = max. T a .• We may assume that O < b < A. 
JE J * JE J 

The reductions will be presented roughly in order of increasing complexity. 

(i) KNAPSACK« nl2IG,m.s3IC 
J max 

Ml 

M2 

n = t + 1 

µ . = ( M1 ) , p . 1 = a. ( j E T) 
J J J 

µn = (M2,M1,M2), Pn1 = b, Pn2 = 1, Pn3 = -A - b 
y = A + 1 

If KNAPSACK has a solution, then there exists a schedule with value 

C = y, as illustrated in Figure 2. If KNAPSACK has no solution, then max 
L· Sa. - b = c F O for each Sc T, and we have for a processing order JE J 
( { J . I j E S} , J , { J . I j E T-S} ) on M1 that 

J n J 

c > O .,. Cmax ~ ljES Pj1 + Pn2 + Pn3 =A+ c + 1 > Y 

c < 0 • cmax ~ Pn1 + Pn2 + ljET-; Pj1 = A - c + 1 > Y 

It follows that KNAPSACK has a solution if and only if this 

nl2IG,m.s3lc problem has a solution with values y. 
J max 

s n T-S 
M 

n n 

t t t f 
0 b b+l A+l 

FiB,'!:!re 2 



(j) 

( c) 

(f) 

I Ml 
i 
0 
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KNAPSACK~ nl3IG,m.~2lc 
J max 

n = t + 2 

µ. = (M1 ,~), Pj1 = pj2 = aj (j € T) 
J 

µn-1 = (M1 ,M2 ), Pn-1 = b, pn-1 = 2(A - b) 1 2 
µn = (~,M3), Pn1 = 2b, Pn2 = A - b 

y = 2A 

If KNAPSACK has a solution, then there exists a schedule with value 

C = y, as illustrated in Figure 3. If KNAPSACK has no solution, then max 
l· Sa. - b = c ¥ 0 for each Sc T, and we have for a processing order 

J€ J 
({J.lj ES}, J 1 , {J.lj i:: T-S}) on M1 that 

J n- J 

~ C ~ l· s P•1 + p 1 1 + p 1 2 = 2A + C > y max JE J n- n-
C > 0 

C < 0 ~ C ~ min { l · s P · 1 + P 1 1 + 1 ,P 1} + P 2 + l- T S max JE J n- n n JE -

= 2A + 1 > y 

which completes the equivalence proof. 

s n-1 T-S 

n-1 
::::::::;:::::::;:;:;:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::3 

s n T-S 
::::♦:-.-:-:: •• :-:::·:::::::::-:::-::::::::::::::: 

t 
b 

t 
2b 

KNAPSACK ~ n I 1 I r ~o I L and n max 
KNAPSACK~ nl 1lr ~o,w.=11Iw.U. 

n J J J 
n = t + 1 

r. = O, Pj 1 = a., d. =A+ 
J J J 

r = b pn1 = 1 , d = b + n , n 
y = 0 

Cf. reduction (i) and Figure 4. 

s n T-S 
U II I 
r i i 
b b+l A+l 

1 

1 

l 
A+b 

{j € T) 

Figure 4 

t 
2A 

Figure 3 
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(g) KNAPSACK~ nl2IF,r ~olc n max 
n = t + 1 

rj = O, pj 1 = taj, pj2 = 1 (j e: T) 

rn = tb, pn1 = 1, pn2 = t(A - b) 

y = t(A + 1) 

If KNAPSACK has a solution, then there exists a schedule with value 

C ~ y, as illustrated in Figure 5. If KNAPSACK has no solution, then 
max 

l· Sa. - b = c ~ 0 for each Sc T, and we have for a processing order 
JE J 

( { J . I j e: S} , J , { J . I j e: T-S} ) on M1 that 
J n J 

C > 0 .. C ~ 
max 

C < 0 .. C ~ max 

s n 

s 

i f 
tb tb+l 

lje:S Pj1 + Pn1 + Pn2 

r + p 1 n n +L·TsP·1 JE - J 

T-S 

n T-S 

f 
tA+l 

t 
t(A+l} 

= t(A + c) + 1 > y 

= t(A - c) + 1 > y 

,___ ____________________ _, Figure 5 

(h) KNAPSACK~ nl2IF,treeic max 
n = t + 2 

Pj1 = ta., pj2 = 
. J 

1 

Pn-1 = 1 , pn-1 = tb 1 2 

(j E 

pn1 = 1 ' pn2 = t(A - b) 

J 1 < J n- n 
y = t(A + 1) + 1 

T) 

Cf. Figure 6. We have for a processing order ({J.jj e: R}, J 1 , 
J n-

{ J. I j e: S} , J , { J. I j e: T-S-R}) on M1 that 
J n J 

R ~ ~ ,. Cmax ~ t + Pn-1 1 + Pn-1 2 + Pn1 + Pn2 = t(A + 1) + 2 > Y 

The remainder of the equivalence proof is analogous to that of reduction 

(g) • 

n-1 s n T-S 

n-1 s n T-S 
I 

t t t 
tb+ISl+l tA+ISl+l t(A+l}+l 

Figure 6 



( e) 

Ml 

(b) 

KNAPSACK ,:x: nl 111 Iw-U • 
J J 

n = t 

pj 1 = wj = a., d. = b (j E T) 
J J 

y = A - b 

Cf. Karp [19] and Figure 7. 

s T-S 

t T i 
0 b A 

Figure 7 

KNAPSACK ex: nl 111 :::;oliw.c. 
max J J 

n = t + 1 

p j 1 = w. = a., d. =A+ (j € T) 
J J J 

pn1 ·- 1 ' w = O, d = b + 1 n n 
y = I j ,kET ,j:s;k aj8k + A - b 

Cf. Figure 4. We have for a feasible processing 

{J.lj E T-S}) on M1 that L· Sa. - b = L :::; 0. 
J JE J n 

JET, the value of Iw.c. is not influenced by 
J J 

T-S (cf. the proof of Theorem 3(b)): 

Iw.c. = l· T a.c. = 
J J JE J J 

= l· k T · k a.~ + l· TS a.= J, € ,J::, J K JE - J 

= y - L c. y n 

The equivalence follows immediately. 

19 

order ({J.lj ES}, J, 
J n 

Since p. 1 = w. for all 
J J 

the ordering of Sand 
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(d) KNAPSACK~ nl 11 IIw.T. 
J J 

n = t + t' 

pj 1 = T + a., w. = T + a. + 1, d. = tT + b (j E T) 
J J J J 

pj 1 = T, w. = T + 1 ' d. = t-r + b (j i T) 
J J 

y = h'(t' + 1)-r('t' + 1) + (t I + 1 )-r(A - b) + t' 

where 

t' = Ht + 1 )(A - b) + h(t + 1 )a2 

* 
't' > 2t' +A 

Given a processing order ,r = (ir(1), •.. ,ir(n)), we may assume that the 

jobs are scheduled without interruption from Oto l· p. 1 = n-r + A; any 
J J 

other schedule can be improved by removal of the idle machine time. 

It is easily seen that KNAPSACK has a solution if and only if 

there exists a processing order ,r such that Cir(t) = tT + b. Defining 

c,r = Cir(t) - (tT + b), we have -b s c,r s A - b for any schedule ,r, We 

will show that 

(A) c1T = 0 • 3,r': c = 0 A \w.T. s y ,r' l J J 
(B) c > 0 • Iw.T. > y 

1T J J 
(C) c < 0 • Iw.T. > y 

1T J J 
which proves the equivalence of KNAPSACK and this nl 1J IIw.T. problem. 

J J 
First, we will derive some important inequalities. Defining a.= 0 

J 
for j i T, we note that l· ta(")= A - b - c. Since w. = p. 1 + 1 J> 1T J 1T J J 
for all J , we have 

(1) Ij>t wir(j)(cir(j) cir<t)) = 

= lj>t P1r(j)1(c1r(j) - cir{t)) + lj>t(cir(j) - cir(t)) 

In the first term, the processing times appear as weights (cf. reductions 

(e,b)). This implies for any processing order (ir(t+1), ••. ,ir(n)): 

= ~t'(t' + 1)T2 + (t' + 1)T(A - b - c) + l a a ,r t<jSkSn ir(j) ir(k) 

where the last term is trivially bounded by 
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As to the second term in (1), we have £or a;ny schedule ,r that 

c1r(j) ~ c1r(t) + (j - t). (t < j s n) 

and there exists a schedule 1T such that 

c1r(j) = c1r(t) + (j - t). (t < j st') 

C,r(j) s C,r(t) + (j - t). + (j - t')(A - b - c,r)/t (t' < j s n) 

Straightforward calculations now show that 

(4) Ij>t(c1r(j) - c1r(t) ~ h 1 (t' + 1 h for any 1r; 

(5) Ij>t(c1r(j) - c1r(t)) s h 1 (t' + 1). + ~(t + 1)(A - b - C ) for some ,r. 
1T 

Combining (1,2,3,4,5) and the definitions of y and t', we obtain 

(6) lj>t w1r(j)(c1r(j) - c1r(t)) ~ y - (t I + 1 hc1r - t' for any 1T; 

(7) l j >t w 1T (j ) ( C 1T ( j ) - c1r(t)) s y - (t I + 1hc -
1T 

Ht + 1)c 
1T 

for some ,r, 

Given a processing order 1r, the tardiness of job J,r(j) is equal to 

T,r(j) = max{O,C,r(j) - C1r(t) + c,r} 

(A) If c,r = O, then the jobs J,r( 1),··· ,J,r(t) are completed before the 

due date and the remaining ones are completed thereafter. By virtue of 

(7), these late jobs can be ordered in such a wey that 

Iw.T. = l· t w (")(c ( ") - c (t)) s y J J J> 1T J 1T J 1T 

(B) If 1 s c,r s A - b, th~n the jobs J,r(t)'""' ,J,r(n) are late. Applying 

(6) we find 

IwjTj ~ lj>t w1r(j)(c1r(j) - c1r(t)) + c,rlj~t w,r(j) ~ 
(t' + 1).c - t' + (t' + 1)(. + 1)c = 

1T 1T 

= y - t' + (t' + 1)c > y 
1T 

(C) If -b s c,r s -1, then the jobs J,r( 1),···,J1r(t) finish in time. It 

follows from (6) and the choice of. that 

Iw-T. ~ l· w (")(c ( ") - c ( )) +cl· t w (") ~ J J J>t 1T J 1T J 1T t 1T J> 1T J 

~ y - (t' + 1).c - t' + (t'(• + 1) + A)c = 
1T 1T 

= y - t' - (. - t' - A)c > y 
1T 
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(a) KNAPSACK a: nl 1 Ir ~o ,w .=11 lW .c. 
n J J J 

where 

n = t + t' + u + 1 

r. = o, pj1 = -r + a. (j € T = {1, ••• ,t}) 
J J 

r. = o, pj1 = '[ (j € T' = {t+1, ••• ,t+t'}) 
J 

r. = o, pj1 = u 
J 

(j € u = {t+t'+1, ••• ,t+t'+u}) 

r = t-r + b, Pn1 = 1 n 
y = u + ~u(u + 1)u 

t' = t(t + 1)a* 

-r = (t' + 1)(b + 1) + t' 

u = ~(t + t')(t + t' + 1)-r + (t + 1)-r 

u = u(CJ + 1) 

CJ = lj¢U Pj1 = (t + t')-r +A+ 1 

If KNAPSACK has a solution, then l· Sa.= b for some Sc T. Defining 
J€ J 

S' = {t + jlj € T-S} c T', we have for a processing order ({J.lj € S'}, 
J 

{J.,j € S}, J, {J.,j € T'-S'}, {J.,j € T-S}, {J.,j € u}) that 
J n J J J 

ljju cj = ljES'uS cj +en+ lj€(T'-S')u(T-S) cj s 

s ,~=t1 J"(-r +a)+ t-r + b + 1 + ,~=tt+t1
1 (j-r + b + 1) + ,4=t1 Ja* = 

L.J= * lJ= + lJ= 

= ~(t + t')(t + t' + 1)-r + t-r + (t' + 1)(b + 1) + t(t + 1)a = u 
* 

and 

2· u c. J€ J 
j=u = lj=1 (CJ + Su) = uCJ + ~u( u + 1 )u 

Hence, 

l· C. ~ u + uo + ~u(u + 1)u = y 
J J 

Conversely, if l· C. s y for some schedule, we claim that 
J J 

(A) {J.lj ¢ U} precedes {J.lj € U}; 
J J 

(B) B. s CJ for some j € U; 
J 

(C) exactly t jobs precede Jn; 

(D) B = t-r + b. n 
It follows from (A) and (B) that {J.lj ¢ U} is 

J 
ruption from Oto CJ. By (C) and (D), exactly t 

scheduled without inter-

jobs from {J.lj € TuT'} 
J 

occupy a period of length t-r + b. This implies that KNAPSACK has a 

solution, as is easily seen. 
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We now turn to the proofs of (A), (B), (C), and (D). 

(A) 

(B) 

If J. I, 
J 

j' i U, succeeds some J., j EU, then we have 
J 

l- c. 
J J 

i?: C., + l. C. > u + ~u(u + 1 )u = y 
J JEU J 

If B. > cr for all j EU, then we have 
J 

l· C. > l· UC.~ u(cr + 1) + ~u(u + 1)u = y 
J J J€ J 

Since l· c. ~ y and, by 

know th;t fjtU Cj ~ u. 

(C) Let exactly s jobs 

(A) and (B), l· UC.~ ucr + ~u(u + 1)u, we now 
J€ J 

(D) 

If O ~ s ~ t - 1, then we have 

'J•ju CJ.~ ,j=s J·• + tT + b + 1 + ,~=t+t'(j. + (t - s)T + b + 1) = 
l ~ lj=1 lJ=s+1 

= u - t' + (t + t' - s)(t - s)T + (t - s)(b + 1) > 

> u -

If t + 1 ~ s ~ 

ljtU c. ~ Ij=s 
J j=1 

= u + 

~ u+ 

Note that Bn ~ 

' C ~ ,j=t 
lj¢U j lj=1 

t' + ( t I + 1 h > u 

t + t I, then we have 

jT + ST + 1 + Ij=t+t I (. 

j=s+1 JT + 1) = 

(s - t - 1 h + t + t' - s + 1 ~ 

1 > u 

rn = tT + b. If Bn > t. +.b, then we have 

d-t+t I 
JT + tT + b + 2 + lj:t+1 (jT + b + 2) = 

=u+1>U 

This completes the proof of Theorem 4. D 

Remax,k. In the last two reductions the size of the scheduling problem depends 

on A and a*. It can be questioned if these reductions are truly polynomial

bounded: in some encodings the length of the scheduling input string is poly

nomial in A and a* and thus exponential in the length of the KNAPSACK input 

string, the latter one being proportional to lo½a*. We may settle this ques

tion, however, by characterizing a subset of jobs with identical data (p. , 
Jr 

w. ,r., d.) by its cardinality and a single copy of the data. 
J J J 
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The NP-compl€teness proofs for the problems with a no wait assumption are 

based on the well-known relation between these problems and the TRAVELLING 

SALESMAN problem of finding a minimum weight hamilton circuit in the complete 

directed graph on the vertex set V with weights on the arcs. 

Given an n I ml F ,no wait I k problem, we define c j k to be the minimum length 

of the time interval between Bj and~ if Jk is scheduled directly after Jj. 

If we define 

(8) qii = l~=~ Pir 

it is easily proved (cf. [29;30;38;26]) that 

c.k = max1<"< {q .. - qk. 1} J -1-m J1 1-

Finding a schedule that minimizes Cmax is now equivalent to solving the TRAV

ELLING SALESMAN problem with V = {O, •.• ,n} and weights cjk defined by (9) and 

by c01 = O, c10 = qim for i # o. 

THEOREM 5. DIRECTED HAMILTON PATH is reduaibZe to the foZZowing probZems: 

(a) nlmlF,no waitlc max 
(b) nlmlF,no wait,w.=11Iw.C. 

J J J 

Proof. 
(a) DIRECTED HAMILTON PATH a: nlmlF,no waitlcmax 

Given G = (V,A), we define 

n = IVI 
m = n(n - 1) + 2 

All jobs have the same machine order (M1 ,M2 , ••. ,Mm_ 1 ,Mm). To each pair 

of jobs (J.,Jk) (j,k = 1, ••• ,n, j # k) there corresponds one machine 
M. = M (" J_)_\i = 2, .•• ,m-1), such that for no J 0 some M (" ") directly 1 l J,k N l J,N 
follows an Mi(t,k)· Such an ordering of the pairs (j,k) can easily be 

constructed. Due to this property of the ordering, partial sums of the 

processing times can be defined unambiguously by 

iµ + A if i = i(t ,k) and (i ,k) € A 

iµ + A + 1 if i = i(t ,k) and (i ,k) f. A 

qii = iµ - A if i+1 = i( j ,t) and (j ,t) € A 

1µ - A - 1 if i+1 = i( j ,t) and (j ,t) f. A 

1µ otherwise 
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for i = 1, •.• ,m, t = 1, .•. ,n, where 

A ;;;:; 1 

µ ;;;:; 2A + 3 

The processing times are given by (cf. (8)) 

Pt1 = qt1 

pH=qH-qti-1 (i= 2 ,···,m) 

Through the choice ofµ, these processing times are all strictly positive 

integers. 

We can now compute the cjk' as defined by (9). Through the choice 

of A, it is imm.ediate that q .. - qk· is maximal for i = t(j,k). Hence, 
Jl. i-1 

if ( j ,k) E A 

if (j,k) j A 

Since qtm = mµ for all Jt, it now follows that G has a h8Jllilton path if 

and only i£ this nlmlF,no waitlc problem has a solution with value 
max 

C 
max 

~ (n - 1)(µ + 2A) + mµ 

DIRECTED HAMILTON PATH ex: nlml F ,no wait,w .=11 Iw .c. 
J J J 

G has a hamilton path if and only if the nlmlF,no wait,w.=1llw-C. 
J J J 

lem, constructed as in (a), has a solution with value 

l· C, ~ ~n(n - 1)(µ + 2A) + nmµ 
J J 

prob-

□ 
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5, CONCLUDING REMARKS 

The results presented in section 4 offer a reasonable insight into the loca

tion of the borderline between "easy" and "hard" machine scheduling problems. 

Computational experience with many problems proved to be NP-complete confirms 

the impression that a polynomial-bounded algorithm for one and thus for all 

of them is highly unlikely to exist. As indicated previously, NP-completeness 

thus functions as a formal justification to use enumerative solution methods 

such as branch-and-bound. 

Most classical machine scheduling problems have now been shown to be 

polynomially solvable or NP-complete. Some notable exceptions are indicated 

by question-marks in Table I. They are briefly discussed below. 

As to the nl 11w.=11rw.T. problem, there is impressive computational 
J J J 

evidence that this problem is extremely difficult. Although the equality of 

the weights leads to stronger elimination criteria, problems with thirty jobs 

may already require large amounts of computer time when attacked by the best 

available branch-and-bound methods [10;32]. We strongly suspect that this 

problem is NP-complete. This would indicate a major difference between the 

rw.T. and rw.u. p;oblems, as demonstrated by Table I. Our NP-completeness 
J J J J 

proof for the nl 11 IIw.T. problem depends on the permitted inequality of the 
J J 

weights and furthermore all due dates are equal, in·which case we can solve 

the nl 11w.=1lrw.T. problem by ordering the jobs according to nondecreasing 
J J J 

processing times (cf. [32]). Thus no straightforward extension of this proof 

is possible. 

With respect to the nl1lprec,w.=1lrw.C. problem, it has been indicated 
J J J 

that W.A. Horn [13] and J.B. Sidney [33;34] have developed good algorithms 

to cover precedence constraints that are as a matter of fact slightly more 

complicated than tree. In both cases, no extension to general precedence 

constraints seems possible and our guess is that these researchers have in

deed reached the aforementioned borderline. 

The complexity of the nl3IF,no waitlc and nl2IF,no wait,w.=11Iw.C. 
max J J J 

problems is not clear. To stimulate further research, we will award a wooden 

shoe to the first scientist who finds a polynomial-bounded algorithm for any 

one of these problems. 

The question of the complexity of the nl 311,preo,p .1=11 C problem has J . max 
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been raised already in the remarkable paper by J.D. Ullman [37]. Knowledge 

about the complexity of the nl2lr,preo,p.1=1,w.=11rw.c. problem, not included 
J J J J 

in Table I, would also more precisely locate the borderline for problems on 

identical machines. 

The results of section 4 could be extended and refined in numerous other 

ways as well. To mention just one possibility, it might be investigated if 

problems that are in P if p. =1 remain in P if 1~p. ~p. However, any such 
Jr Jr * 

result would probably be more of theoretical than of practical use, whereas 

good algorithms for problems with equal processing times often find applica

tion in lower bound computations for more complicated problems (e.g., see 

[32]). Similar remarks apply to a number of other refinements. 

Finally, the general observation that membership of P versus NP-complete

ness only yields a very coarse measure of complexity is valid with regards to 

sequencing problems as well. On one hand, the question has been raised whether 

polynomial algorithms are really good [ 1 J. On the other hand, there are impor

tant differences in complexity within the class of NP-complete problems; we 

note that a branch-and bound approach to the nl 1lr.~OIL problem has figured 
J max 

successfully within a lower bound computation for the nlmlGlc problem [2]. 
max 

Developing a measure that allows further distinction withing the class of hard 

problems remains a major research challen.ge. 
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