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The asymptotic behaviour of undiscounted value iteration in Markov Decision 
*) 

Problems 

by 

P.J. Schweitzer 
and 

A. Federgruen 

ABSTRACT 

This paper considers undiscounted Markov Decision Problems. For the 

general mult:ichain case, we obtain necessary and sufficient conditions 

which guarantee that the maximal total expected reward for a planning 

horizon of n epochs minus n times the long run average expected reward has 

a finite limit as n + 00 for each initial state and each final reward vector. 

In addition, we obtain a characterization of the chain- and periodicity 

structure of the set of one-step and J-step maximal gain policies. Fin_ally, 

we discuss the asymptotic properties of the undiscounted value-iteration 

method. 

KEY WORDS & PHRASES: Markov Decision Problems; average cost criterion, chain 

and periodicity structure, asymptotic behaviour: value

iteration method 

*) Th. f . . . f bl' . 1 is paper is not or review; it is meant or pu ication e sewhere. 





§1. INTRODUCTION 

The value-iteration equations for undiscounted Markov Decision Pro

cesses (MDPs) with finite state- and action space, were first studied by 

BELLMAN [2J and HOWARD [SJ: 

( I. l) v(n+l). = Qv(n)., 
l. l. 

1. = l, ... ,N 

where the Q operator is defined by: 

(I . 2) 

and v(O) is a given N-vector. 

Q = {l, •.• ,N} denotes the state space, K(i) the 
k in state i, qi the one-step expected reward and 

i = l, ••• ,N 

finite set of alternatives 

P~. ~ 0 the transition 
l.J 

probability to 

(i=l, ... ,N). 

state j, when alternative k E K(i) is chosen in state i. 

For all n = 1,2, •.. and i E Q, v(n). may be interpreted as the maximal 
l. 

total expected reward for a planning horizon of n epochs, when starting at 

state 1. and given an amount v(O). is obtained when ending up at state j. 
J k 

BELLMAN [2J showed that if every P .. is strictly positive, then v(n). 
* l.J l. 

ng, n ➔ 00 , the scalar g* being the maximal gain rate and HOWARD [SJ con-

* * jectured that there generally exist two N-vectors g and v, such that 

( 1 • 3) * * lim v(n) - ng - v = 0. 
n➔oo 

* Although BROWN ([3],[4.3J) showed that v(n) - ng 1.s bounded, provided 

g* is taken. as the maximal gain rate vector, the limit 1.n (l .3) may not 

exist for arbitrary v(O) if some of the transition probability matrices 

(tpm's) are periodic. The identification of sufficient conditions for the 

existence of the limit in (1.3) is of particular importance: 

(a) when considering the infin1te horizon-model with the average return per 

unit ti.me criterion, as an approximation to the model where the planning 

horizon is finite though large. 
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(b) for the case N >> I, where the value-iteration method is the only prac

tical way of locating maximal-gain policies. If the limit in (1.3) 

exists, then a generalization of ODONI [9] shows that ahy policy achiev

ing the maxima in (I.2) for large n is maximal gain. However, if the 

limit in (1 .3) fails to exist, then example 4 in LANERY [6] shows that 

policies achieving the maxima for large n in (1 .2) need not be maximal 

gain. 

Sufficiency conditions for the existence of the limit in (1.3) have 

been established by WHITE [16] and SCHWEITZER ([ll],[12]) in the unichain 

* * case, where gi = g (say) for all i E Q. 

Related convergence results for MDPs with compact action spaces, the 

denumerable and general state space case and for continuous time Markov 

Decision Processes were obtained in respectively BATHER [I], HORDIJK, 

SCHWEITZER and TIJMS [4], TIJMS [15] and LEMBERSKY [7]. 

In this paper we establish the weakest sufficient condition. It holds for 

the general nrultichain case, and states that the limit in (1 .3) exists for 

every v(O) E EN, if and only if there exists a randomized maximal gain 

policy whose tpm is aperiodic (but not necessarily unichained) and has 

R* = {i E Q I i is recurrent for some pure maximal gain policy} as its set 

of recurrent states. 

In addition, we show that in general the sequence {v(n) - ng*}:=I is 

asymptotically periodic, i.e. there exists an integer d* (which merely 

depends upon the chain- and periodicity structure of the maximal gain 

policies), such that 

( l • 4) * lim v(nJ+r) - (nJ+r)g 
n➔= 

* if and only if J is a multiple of d • 

N exists for all v(O) EE 

The sufficiency parts of the above mentioned results were treated in 

LANERY [6]. However, it appears that the proof of proposition 19 in [6] 

from which the main result is derived, is either incomplete or incorrect 

(Note l). 

Moreover, our methods use the set of all randomized policies, and in

volve the analysis of the chain- and periodicity strucutre of the one- and 

J-step (randomized) maximal gain policies (J:::::I). This enables a full charac

terization of the asymptotic period. 
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In section 2, we g~ve some notation and preliminaries. In section 3, 

we analyze the periodicity structure of the maximal gain policies, while 1.n 

section 4 the chain- and periodicity-structure of the multi-step maximal 

gain policies is characterized. In section 5, we obtain inter alia the 

above mentioned results with respect to the asymptotic periodicity, and the 

necessary and sufficient condition for the existence of the limit in (1.3) 
N 

for all v(O) EE • 

Finally, we show how the convergences of the various sequences 
* 00 {v(nJ+r). - (nJ+r)g .} 1 (r=I, ..• ,J; i=l, .•. ,N) interdepend. 

i 1. n= 
In section 6, we give some properties of the policies that attain the 

maxima in (I. l) for large n. 

§2, NOTATION AND PRELIMINARIES 

A (stationary) randomized policy f is a tableau [fik] satisfying 

fik ~ 0 and IkEK(i) fik = 1, where fik is the probability that the k-th 

alternative is chosen when entering state i. 

We let SR denote the set of all randomized policies, and Sp the set of 

all pure (non-randomized) policies (i.e. each fik=O or 1). Associated with 

each f E SR, are a N-component reward q(f) and N x N-matrix P(f): 

(2.1) q(f). = 
1. 

P(f) .. = 
1.J 

~ i, J ~ N. 

Note that P(f) is a stochastic matrix (P(f) .. ~ O, I~ 1 P(f) .. = l; 
1.J J= 1.J 

I ~ i,j ~ N). For any f E SR, we define the stochastic matrix TI(f) as the 

Cesaro limit of the sequence {P0 (f)};=l' which always exists and has the 

following properties: 

(2.2) P(f)TI(f) = TI(f) = TI(f)P(f). 

Denote by n(f) the number of subchains (closed, irreducible sets of states) 

for P(f). Then: 

(2.3) IT(f) .. = 
1.J 

n(f) 

I 
m=l 

m m 
<P .(f)n (f)., 

1. J 
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equilibrium distribution of P(f) on the mth sub-where TTm(f) is the unique 

chain Cm(f), and tP~(f) is the probability of absorption in Cm(f), starting 

= {jlIT(f) .. > O}, i.e. R(f) is the set of recurrent 
]] 

1. 

from state i, Let R(f) 

states for P(f). 

Let dm(f) ~ l denote the period of Cm(f), and let 

{Cm'B(f) I B = l, ... ,dm(f)} indicate the set of cyclically moving subsets 
m (c.m.s.) of C (f) numbered such that for any m = l, ... ,n(f) and 

m B = 1, •.. ,d (f) (cf.[10]): 

(2 .4) i E cm,B(f) ~ P(f) .. > 0 only if j E Cm,B+I (f) 
1.J 

with the convention that hereafter Bin Cm'B(f) is taken modulo dm(f) e.g. 

cm, B+ 1 (f) = cm, 1 (f) if B = dm(f). 

(2.5) 

greatest common divisor (g.c.d.) of {n j P(f)~. > O} 
1.1. 

= g.c.d. {n I· there exists a cycle (s0=i,s 1, ••• ,sn=i) 

for P(f)} 

where (s =i,s 1, ..• ,s =i) is called a cycle for P(f) if P(f) > and if 
o n slsl+I 

all the s 1 are distinct ( J=O, •.. ,n-l). 

(2.6) 
m 

lim pnd (f)+r (f) .. · > 0, for all i 
1.J 

(r = 1,2, ... ). 

For each f E SR, we define the gain rate vector g(f) = rr(f)q(f), such that 

g(f). represents the long run average expected return per unit time, when 
1. 

the initial state is i, and policy f is used. We thus have 

(2. 7) 
n(f) m m g(f). = I tP. (f)g (f)' i E Q 

1. m=I 1. 

with gm(f) m l, ... ,n(f). = <n (f),q(f)>, m = 
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Next define: 

(2.8) g(f).; 
1 

1 = l, ••• ,N. 

Since HOWARD [5] proved the existence of pure policies f which attain the N 

suprema in (2.8) simultaneously, we can define: 

(2.9) 

as the set of all pure and the set of randomized maximal gain policies. 

Finally define t' as the set of states that are recurrent under some 

maximal gain policy: 

R* = { i I i E R(f) for some f E SRMG}. 

The following lemma which was proved in SCHWEITZER & FEDERGRUEN [13], 

(th. 3.2) provides a basic characterization of this set: 

LEMMA 2. I 

(a) R* = {i I 1 E R(f) for some f E SPMG}. 

(b) The set {f E SRMG I R(f) = R*} is not empty. 

(c) Define n* = min{n(f) I f E SRMG with R(f) = R*} and 

* I * * SRMG = {f E SRMG R(f) = R and n(f) = n }. 

Fix f* ,:: s~G. 

Any subchain of any£ E SRMG is contained within a suhchain of P(f*). 

(d) AU f* ,:: S~G have the same collection of subchains {R*<\ a = I, ... ,n*L 
* * *O. . *a (e) For any a E {I, ... ,n }, gi = g (say) for aii 1 ER . 

(f) Let R ( 1), ••• ,R (m) be disjoint sets of states such that 

(1) if C is a suhchain of some f E SRMG' then C ~ R(k), for some k, 

I ~ k ~ m 

h · f . h { (k) k I } • f (2) t e:re ex1.-sts a E SRMG' w1.-t R = , ••• ,m as 1.-ts set o 

subchains. 

Then m = n* and after renwnbering R(a.) = R*a.. 
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Define the operator 

(2 .10) 

where 

L ( i) = { k E K (i) I g ~ = I- p~ . g ~} • 
1 J 1J J 

for all 1 E r2. 

Let Qn(and Tn) denote then-fold application of the operator Q(T): 

n n-1 n n-1 Q x = Q(Q x); T x = T(T x); n = 2 d EN. , ... an x E 

The basic properties of both operators were studied in SCHWEITZER & 

FEDERGRUEN [14]. In particular, it was shown that the Q operator reduces to 

Tin the following two ways: 

(2.11) for each x E EN, there exists a scalar t 0 (x), such that 

n * n * Q (x+tg) = T (x+tg) for n = 1,2, ... and t ~ t 0 (x) (cf. [14], 

lennna 2.2 part (c)) 

(2.12) N for each x EE there exists an integer n0 (x) such that 

n+ l-n0 (x) n 0(x) 
= T Q x, 

for all n ~ n0 (x) (cf. [3] and [14], lemma 2.2 part (c)) 

We next consider the functional equation: 

(2.13) * v + g = Tv. 

Let V = {v E EN I v satisfies (2.13)} and define for any v EV: 

(2. 14) b(v)~ = 
' 1 

k * q. - g. + 
1 1 

1 E $], k E K( i) 
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Observe, that for all v EV, ma~EL(i) b{v)~ = 0, for all i En. 

Finally, we define for any i E :rt~, the set K*(i) as the set of actions which 

a pure maximal gain policy that has i among its recurrent states, could 

prescribe: 

(2.15) K*(i) = {k E K(i) I there exists a f E SPMG' with i E R(f) and 

fik = 1}. 

The following lemma gives the necessary and sufficient condition for a 

policy to be maximal gain, characterizes the sets K*(i) and shows that any 

policy that randomizes among all actions in K*(i), in each of the states in 
* * * R, and among all actions in L(i) for the states inn - R, belongs to SRMG: 

LEMMA 2.2 

(a) Fix v E V. A policy f E SR is maxunal gain (i.e. fESRMG) if and only if 
( I) for au i E Q, f.k > 0 => k E L(i) i.e. P(f)g * * = g 

(2) 
i k 

0 i.e. II(f)b(v,f) o. for aU i E R(f),f.k > 0 =>b(v). = = 
i i 

(b) K*(i) = {k E L(i) I there exists a f E SRMG' with i E R(f)., and fik > O}, 

* i E R . 

(c) For any v E V., 

K*(i) = {k E L(i) k b(v). = I k Oand P .. = 
i • *ct iJ 

JER 

(d) Define f* E SR such that 

f~ > O} = {K*(i), i * 
{k E R 

ik L(i), * i E S] - R . 

PROOF 

(a) cf. theorem 3.1 part (a) in [13]. 

} 1 1 • *a l ., for a 1., 1., i E R , 

* a=l, ..• ,n. 

(b) Clearly, K*(i) is contained within the set on the right hand side. 

* Next, fix i ER, k E K(i) and f E SRMG' such that i E R(f) and fik > 0, 

and use lemma 2.1 in [13] in order to show that there exists ah E SPMG' 
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with i E R(h), and hik = I, as well, which proves the reversed inclusion. 

(c) Fix a E {I, ... ,n*}, i 0 E R*a, 

First, let k E K*(i) and f E SRMG' with i E R(f) and fik > 0, and apply 

part (a) of this lennna, and part (c) of lennna 2.1, in order to prove 

that K*(i) is contained within the set on the right hand side of the 

equality. 
kO kO 

Next, take k0 E L(i0) such that b(v). = 0 and I p .. = I ' and fix 
10 . *a 1J 

* * f. f** 
JER 

f E SRMG 0 
De 1ne such that 

** 
f. k 

1 0 0 

** = I, and fjk for all JI io, k E K(i). 

Use part (d) of 

can reach state 

lennna 2.1, in order to show that all states in R*a~{i0} 

i 0 under P(f**) whereas state i 0 can only reach states 
. . *a within R . We conclude ** . ** that i 0 E R(f ), while f E SRMG' as can be 

verified using part (a) of this lennna, thus proving the reversed inclu

sion. 

(d) cf. remark I in [13]. 0 

We finally need the following lemma: 

LEMMA 2.3 
() . I 2 d1 I d2b a F-ix f , f E SR' an 1,e t C an C e two 

with period d 1 and d 2 respectively, such 

subchains of P(f 1) and P(f 2) 

that c1 n c2 1 0. 
Define f 3 such that 

{k 2 
fik > 0} for aU i E c2 \ Cl 

{k I 3 
> 0} {k I 

> 0} U {k J 

2 
> O} for a U i E c I n c 2 

fik = fik fik 

{k I 
fik > O} otherwise. 

Then 

(I) c1 U c: 2 is a subchain of P(f3)., the period d3 of which is a common 
d . . I nd 2 -iv-isor of d a d. 

(2) if f 1,f 2 E SRMG' then f 3 E SRMG" 

(b) For any f E SR., define the set of pure policies SP(f) = X. ,,{k I f.k > 0}. 
1EoG 1 
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Then for all m = 1, ... ,n(f): 

(2.16) m r I d (£) = g.c.d.{d (h) h E Sp(£), 1 
r m 

n(h), C (h) .=. C (£)}. 

PROOF 

(a) (l) Show that c1 U c2 is a closed and cormnunicating set of states for 
3 R(f ). The former is immediate; the latter holds since any state in 

In 2 . .h 1 2 C C communicates wit C UC • 

Since {n I P(£3)~. > 0} ~ {n I P(£ 1)~. > 0} U {n P(£ 2)~. > 0}, it 
11 - 11 11 

follows (cf. (2.5)) that d3 = g.c.d.{n P(£3)~. > 0} is a cormnon divi-
11 

I 2 
isor of d and d . 

(2) Observe that for each i En, f~k > 0 only fork E L(i) since it 
1 1 2 follows from lemma 2.2 part (a) that f.k > 0 and£. > 0 only for 

3 i 1 2 ik 
k E L(i). Using the fact that R(f)..::. R(f) UC , and applying 

3 
lemma 2.2 part (a2) one verifies that f E SRMG' 

(b) Fix m E {1, ••• ,n(f)} and h E Sp(£). Since Cm(£) is closed under any 

policy in Sp(£), P(h) has a subchain Cr(h) .=. Cm(h) (l~r~n(h)). Since 

P(h) .. > 0 only if P(f) .. > O, and since i E Cm(£) implies that 
1J 1J 

P(f):. > 0 only if tis a multiple of dm(f), it follows that for 
11 

i E Cr(h), P(h):. > 0 only if t 1s a multiple of dm(f). Thus (2.5) 
11 

implies that the left hand side of (2.16) is less than or equal to its 

right hand side. 
m To prove the reversed inequality in (2.16) fix i EC(£) and recall from 

(2.5) that 

(2.17) dm(f) = g.c.d.{n I there exists a cycle (s0=i, ... ,sn=i) of P(f)}. 

We next show that 

(2.18) for each cycle S = {s0 = i,s 1, ••• ,sn = i} of P(f), there exists 

a pure policy g E Sp(£) which has i recurrent and contains the 

same cycle. 

As a consequence, we obtain that each of the elements in the set to the 

left of (2.17) is a multiple of the period of a subchain of a pure policy 



m that lies within C (f), thus proving the reversed inequality 1.n (2.16) and 

hence part (b) • 

In order to show (2.18), construct the policy h E Sp(f) as follows: 

Leth k = l for any one k such that f k > 0 and pk > 0 (l=O, ... ,n-1); 
sl sl slsl+I 

for j i Cm(f), let hjk = for any one k such that fjk > O. 

If S # Cm(f), let~ initially be equal to S, and define ""i. = Cm(f),~. 

Next, the following step is performed: 

Choose a state j E ~ and an alternative k such that fjk > 0 and P1t > 0 for 

some t E ~, transfer j from ""i. to~ and define hjk = I. Such k and t can 

always be found since all states in Cm(f) connnunicate under P(f). Repeat 

this step for the new~ and ""i., until~ is empty. This construction shows 

that Sis a cycle for P(h), with i E R(h) since i can be reached from any 

state in Cm(f), and Cm(f) is closed. D 

REMARK I. The period d3 , defined in part (a) of the previous lemma, does 

not necessarily have to be the greatest connnon divisor of d 1 and d2 . Take 

3 I 2 I 
However, it ccLn be shown that d = gec.d.{d ,d } does hold, when P(f ) and 

P(f 2) merely differ in one row, the corresponding state being recurrent for 

both chains (cf. part (b)). 

§3. THE PERIODICITY STRUCTURE OF THE POLICIES IN SRMG 

We first define 

(3. I) d(a) {dm(f) l f E n(f), Cm(f) *Cl = min SRMG' I $ m $ ~ R } ' 
l, .... ,n * a = 

(3.2) d. {dm(f) I f E n(f), Cm(f)}, * = min SRMG' I $ m $ l. E l. E R 
l. 



i.e. d(a) [d.] denotes the minimum of the periods of the subchains of the 1. 
maximal gain policies that lie within R*a [that contain the state i]. Let 

f* E s~G be: defined as 1.n lemma 2.2 part (d), i.e. let 

{k I * 1. E R 

* 1. E n-R. 

For each a= l, .•• ,n* and t = 1, ••• , da(f*) let R*a,t = Ca,t(f*) with the 

convention that hereafter tin R*a,t is taken modulo da(f*) (e.g. 

R*a,t = R*a,l if t = da(f*)+l). 

IHEQREM 3 , l : (Periodicity structure) (cf. lemma 2. 1) 

(a) da(f*) d(a), l , ••• , n * -· a = . 

11 

(b) Fix a * SRMG and Cm(h) *a Then dm(h) a mul-E {l, ... ,n}. Leth E C R • 1,S 

tiple of d(a). 
m I m *a. * (c) d(a) = g.c.d.{d (f) f E SPMG' 1 s ms n(f), C (f).::. R }, a= l, •.. ,n. 

*a * (d) d. = d(a) for all i ER , a= l, ••• ,n. 1. 
(e) d(a) = min{da(f) If E S~G}, a= l, ••• ,n*. 

** * I a *} (£) The set SRMG = {f E SRMG · d (£) = d(a), a= l, .•• ,n is non-empty. 

(g) 

(h) 

For 
k 

P .. 
1.J 

1_ • * . *a, t ( * ( ) ) - d * ( · ) eaerl 1. E R , say 1. E R 1 sasn ; l stsd a an k E K 1. : 
. *a,t+l >O=>JER . 

For each h E SRMG' and i E R(h) 
. *a t+l P(h) .. > 0 only for J ER ' 

1.J 

n R*a,t (Isasn~ lstsd(a)) 

n R(h). 

(i) Fix h E SRMG' with Cm(h).::. R*a (lsmsn(h);Isasn*). Cm(h) has dm(h)/d(a) 

c.m.s. within each of the sets R*a,t (lStSd(a)). 

(j) All£ E s;G have the same collection of c.m.s. 

*Ct, t * { R ( a= l , ••. , n ; t= l , .•. , d ( a) } . 

(k) Let R(l), ... ,R(M) be disJoint sets of states, such that 

(I) if C is a c.m.s. of some subchain of some f E SRMG' then C.::. R(k), 

for some k, l s ks M. 

(2) the1~e exists a £ E SRMG' with {R (k) I k = l, ... ,M} as its collection 

of c.m.s. 

n* 
M = la=I d(a) 

(k) *a,t k ~n* and after re:;o,umbering R = R , = I, ..• ,La=l d(a). 
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PROOF 

(a),(b) Fix a E {J, ••• ,n*} and let h E SRMG' with Cm(h) c R*a (for some m, 

Jsmsn(h)). Define f** such that 

{k I f ** 
ik 

> O}, otherwise. 

It then follows from the definitions of the policy f* and the sets K*(i) 

(cf. lemma 2.2 part (b)) that 

{k I f;~ > 0} = {· K*(i) for i 

L(i) for i 

* E R 

* E n--R 

* ** which implies that f and f have the same chain- and periodicity struc-

ture. In particular, 

On the other hand, applying lemma (2.3), part (a), it follows that 

da(f**) is a divisor of dm(h), hence 

(3. 3) 

such that 

d(a) s da.(f*) s min{dm(h) I h E SRMG' I s ms n(h), Cm(h) c R*a} 

= d(a). 

This proves part(a), whereas the combination of part (a) and (3.3) 

proves part (b) • 

(c) Define f* as in part (a), use the fact that d(a) = da{f*) and apply 

lennna (2.3) part (b). 
*a (d) Fix i ER • Clearly d. ~d(a) (cf. (3.1) and (3.2)) and use part (a) to 

l. 

show d. s d(a) as well. 
l. 



(e), (f) innnE~diate from part (a). 

(g) Observe that P(f*) .. > 0 => j E R*a,t+I (cf. (2.4)) and use lennna 2.2 
l.J 

part (d). 

(h) Use the fact that hik > 0 only fork E K*(i) (cf. lelllllla 2.2 part (b)) 

and apply part (g). 
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(i) Recall from part (b) that dm(h) is a multiple of d(a.). Take i E Cm, 1 (h), 

assume i E R*a,t(l:,;t:,;d(a)) and fix s E {O •••• ,d(a.) -1}. In view of part 

. dm(h) 
(h), we obtain for r = 0, •.. , dfo) - 1: 

P(h)1:~m(h)+rd (a.)+s > 0 only for j E R*a.,t+s 
l.J 

n = 1,2, ••. 

m 
Since lim P(h)1:~ (h)+rd (a.)+s > 0 for all j E Cm' rd (a.)+s+l(h), (cf.(2.4)) 

n-+«> l.J 
we conclude that Cm' rd (a)+s+I (h) c R*a. t+s for r = O, •.• , ~m(~) - I 

which proves part (i). 

(j) Let f E s;G and fix a E {1, .•• ,n*}. It follows from part (i) that each 

of the sets R*a,t(J:,;t:,;d(a)) contains exactly one c.m.s. Ca' 8 (f) (for some 

J:,;ssd(a.)) of P(f). 

Since R*a. = Ud(a.) Ca,s(f) 
s=l 

1:,;s:,;d(a.): 

Ud(a) *a,t 
= t=J R , we conclude that for any 

for some t = t(s) 

which proves that all f E s;G have the same collection of c.m.s. 
*at (k(a t)) * (k) Apply property (1) to conclude that R ' c R ' for a.= I, •.. ,n; 

t = 1, .•. ,d(a), and apply property (2) and part (i) to conclude 

*a,t 
c some R , k = I , ••• ,M. D 

REMARK 2. In [13], a finite procedure was given for calculating R*, n* and 

each R*a after using the Policy Improvement Algorithm to find g* and av EV. 

Part (a) of the previous theorem shows that this procedure can be 

extended in order to find the d(a), the sets R*a,S and a f E s;G in a 

finite number of calculations, as well: 



i 

2 

3 

4 

5 
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(I) For each i ER*, determine the sets K*(i) (use lennna 2.2 part (c)) 

( ) . * ** b 2 Define f E SRMG y 

{k I f;k > 0} = j K* (i), 

L(i), 

* i E R 

* i E '2 ... R 

Then the cyclically moving subsets of each subchain R* 0 of P(f*) form the 

{R*a,8}~=1 • 

Consider the following example: 

EXAMPLE I: 

k k k k k k s n(f) c1 (f) c2(f) d1(f)_d2(f) k pil Pi2 Pi3 Pi4 Pis q. p i 

0 0 0 0 0 fl (1,1,1,1,1) 2 { 1} {2,3} 2 

1 0 0 0 0 l<O f2 (1,1,1,l,2) 2 {1} {2,3} 2 q2_ 

2 0 0 0 0 0 f3 (1,1,1,1,3) 2 {1} {2,3} 2 

0 0 0 0 0 i (1,2,1,1,1) 2 {1} {2,3,4,5} 4 

0 0 0 0 1 0 f5 (1,2,1,1,2) 2 {1} {2,4,5} 3 

0 0 0 0 0 f6 (1,2,1,1,3) {I} 

2 0 0 0 0 2<0 q5_ 

3 0 0 0 0 0 Table 1: 

Table 1 lists the six pure policies, their subchains and periods. 

Observe that (whatever the specific value of q~,q!): 

g* = (0,0,0,0,0); K(i) = L(i) for all i En and V = {(x1, .•• ,x5) I 
* 1r 1 *2 . x 1=x2=x3=x4~x5}, n = 2, R = {I}; R = {2,3,4,5}; since d(l) = I, 

R*l,1 = {l}. 

Next, consider the following cases: 

I 2 
8PMG 

K*(2) K*(5) case q2 q5 

0 0 {fl ,f2,f3,f4,f5,f6} {1,2} {I, 2} 

2 <0 0 {f4,f5,f6} {2} { 1 , 2} 

3 0 <O {f 1 ,f2 ,f3 ,i ,i} {1,2} {2} 

4 <0 <O {f4,i} {2} {2} 
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Define f* 
E SR as in lemma 2.2 part (d): 

0 0 0 0 0 0 0 0 

0 0 XX 0 0 0 0 0 
* P(f) = 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 X X Q Q 0 X X O 0 

case 1 case 2 

1 0 0 0 0 0 0 0 0 

0 0 XX 0 0 0 0 0 

P(f*) = 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 1 0 0 

case 3 case 4 

In case 1 ' P(f*) is aperiodic and d(2) = = g.c.d. {2,2,2,4,3} (cf.th.3.1 (a)). 

In case 2, P(f*) l.S aperiodic and d(2) = = g.c.d. {4,3} ( II 

In case 3, P(f*) has R*2 periodic with d(2) = 2 = g.c.d. {2,2,2,4} ( " 
R*2, I = {2,5}; R* 2 •2 = {3,4} 

* R* 2 periodic with d(2) In case 4, P(f ) has = 4 = g.c.d. {4} ( II 

R*2, 1 = {2}; R*2,2 = {4}; R*2,3 = {5}; R*2,4 = {3}. 

Thus randomization is essential for both the recurrency properties and the 

periodicity structure: it plays the indispensible role of coalescing sub

chains and of decreasing periods. In general, there may fail to exist a pure 

maximal gain policy f with R(f) * . . * = R, or which achieves the minimal number n 

of subchains:, or which achieves the minimal period in every subchain. For 

instance, case of example 1 with state 1 and action 3 in state 5 omitted, 

shows that 

(a) all pure (maximal gain) policies have periodic tpm's, while a randomized 

(maximal gain) policy is aperiodic, 

(b) none of the pure (max. gain) policies has R* as its recurrent set, 

although a randomi~ed (max. gain) policy does. 

) . 
) . 

) . 
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Observe that , whereas d(a) = g.c.d. {dm(f) I f E SPMG'" l s; ms: n(f), 

Cm(£) R*<X} for all 1, ••• , n * (cf. (a) of th. 3. 1), we may have C a = part -
d. = g.c.d. {dm(f) f € SRMG' 1 

s; m s; n(f), i € Cm(£)} < 

< g.c.d. {dm(f) f € SPMG' s; m s; n(f), i € Cm(£)} 

(Take case 1 of example 1, and i = 3). 

§4. THE MULTI-STEP POLICIES 

Fix an integer J ~ 2, and observe from (1.2) that 

(4. 1) 

K(i) I J = {(£ , ••• ,£) 

~~ - 1 J) • P .. - P(f ) ••• P(f .. , 
1J 1J 

s: i , j s: N and ~ 
I J 

= (£ , ••• 'f ) € K(i>. 

~ J Let Q = Q , and define a related "J-step"-MDP, denoted by a tilde, with 

n as its state space, K(i) as the (finite) set of alternatives in state 

i e: n, q~ as the one-step expected reward and P~. as the transition proba-
1 ~ 1J 

bility to state j, when alternative~ e: K(i) is chosen when entering state i. 

Let SR dentote the set of all (stationary) randomized policies with 

respect to the above defined MOP, and observe that 

In complete analogy to the definitions given in section 2, we define 
_ - - ~ -* -** -* -*a ~*a B -

the operator T, the sets Sp, SPMG' SRMG' SRMG' SRMG' R, R , R ' , V the 

integers;*, d(a), di, for each~ e: SR, the quantities q(~),P(~),TI(~),g(~), 
~ ~ ~ n(~),d (~), and for each i e: n, the set L(i). 
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Observe ~hat a "J-step policy" <I> E ~R is specified by NJ "one-step" 

policies {</>r' 1 I r = 1, ••• ,J; i = 1, ••• ,N} such that policy <I> uses "action" 
("'1,i "'2,i "'J,i) ~(') h'l . . ~ , ~ , ••• ,~ EK 1 w 1 e in state 1: 

P(<t>) •• 
1J 

The following theorem characterizes the "J-step" maximal gain policies 

and shows how their chain- and periodicity structure are connected with the 

corresponding ones in our original MDP. 
~ First, define for any <I> E SR: 

(4. 2) Tr'i(</>) {j P( 1,i) ( r,i) O} i n, 1 , ••• 'J = <I> • •• P <I> •• > , € r = 
1] 

ro, i C<t>) = {i}, i € n. 

THEOREM 4.1. Fix J ~ 2. Then 

(a) g* = Jg* and {<t> I there exists f E SRMG such that <l>r,i = f for all 
~ r = 1, ••• ,J; i = 1, ••• ,N} S. SRMG" 

I J ~ 
(b) Let E; = (f , ••• ,f) E K(i). The following statements are equivalent: 

O) t; € i:'(i). 
I 

(2) fik = => k E L(i). 

=> k E L(j) for 2 ~ r ~ J and all j, such that 
1 r-l 

P(f ) ••• P(f ) .. > O. 
1] 

(c) V is an n * -dimensional subset of the ';;_*-dimensional set v·. 
(d) Fix v EV. Then <I> E SRMG if and only if 

(4. 3) 

r+l i r i 
b(v,<1> '). = O for all j ET' (</>), i E R(<t>), r = o, ... ,J-1. 

J 

(e) Fix f E s;G' and take <I> E SR such that. <l>i,r = f for all i E n, 
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r = I , ••• , J • Then 
~ * (I) R(</>) = R . 

(2) The coUection of suhchains of P(</>) is given by: 

{ 

00 *a, r+kJ I * } (4.4) Uk=IR a= 1, ••• ,n; r = t, ... ,g.c.d.(J,d(a)) 

*a,S * 
(3) Each of the R (a=l, ••• ,n; S=l, ••. ,d(a)) 1,,s a cyclically moving 

suhset of P(<f>). 

* a= 1, •.. ,n; r = 1, .•. ,g.c.d. 

* 
i.e.~~= l:=l g.c.d.(J,d(a)) * ~ n . 

(h) . {~R*a,S} = { *a,S} . f' { *} h R ; 1,,.e. ,z,x a E l, ••• ,n . Ten 

~ ~*B *a d(S) = d(a)/g.c.d.(J,d(a)) for all R £ R . 

PROOF 

(J,d(a))} 

(a) Let</> E SRMG' Observe that v(nJ) = QJv((n-l)J) ~ q(<f>) + P(<f>)v((n-l)J) ~ 

~[I+ '.::'Ii-I ~ '.::'Ii + P (</>)] q(¢)+ P (¢)v(O). Hence, 

(4. 5) 
* 1 . v(nJ) 

g - 1m nJ 
n-+oo 

Next, let f E SRMG' and define¢ E SR, such that <f>r,i = f for all i En, 

r = l, ••• ,J; Observe that 

~* ~ 1 \n-1 ~k ~ 
g ~ g(</>) =limn lk=O p (</>)q(<f>) = 

n-+oo 

· l \n-1 kJ J-1 
= 1~m ~ Lk=O P (f)[I+ ..• +E (f)]q(f) 

n-+oo 

= J(IT(f)q(f)) = Jg * 

which together with (4.5) proves part (a). 



19 

* * ~ (b): Recall that g 2'. P(f)g for any f E SR. If I; E L(i), then for each r, 

I r * * \ ~I; * l r r+l J * P(f ).$.P(f )g. ~ g. = l· P .. g. = P(f ) ... P(f )[P(f ) ... P(f )g ]. 
l. l. J l.J J l. 

1 r * :::; P(f ) ••. P(f )g .. 
l. 

1 r * * * 1· I * Hence, P(f ) ... P(f )g. = g .. When r = I, this implies g. = l· P(f ) .. g. 
l. l. l. J l.J J 

and when r 2'. 2, this implies that [P(fr)g~] = 
J 

1 r-1 P(f ) ... P(f ) .. > 0. 
l.J 

g~ for all j, such that 
J 

(c) Fix v EV, and i En, take I;= (f 1 , ••• ,fJ) E L(i) and observe from part 

(b) that 

* - g. + 
l. 

* - g. + 
J 

I * [P (f )v ] .. 
l. 

2 * [P(f )v ]., 
J 

l for all j, such that P(f ) .. > 0. 
l.J 

* J * J * I J-1 v. 2'. q(f ). -g. + [P(f )v ]., for all j, such that P(f ) ... P(f ) .. >O. 
J J J J l.J 

Insert the J inequalities successively into each other and conclude that 

* ~I; \ ~I; * J * f 11 c L~(1.') V • 2'. q. + L . p . . V • - g. ' or a C, E 
l. l. J l.J J l. 

whereas the equality sign holds for I;= (f 1 , ••• ,fJ) iff 

(4.6) * 1 b(v ,f ). = 0 
l. 

* r b(v ,f ). 
J 

1 r-1 
= 0 for all j such that P(f ) ... P(f ) .. >0; r= 2, ..• 

l.J 

* ~* We conclude that v. + g. 
l. l. 

~ Tv. for all iEn, 
l. ~ or v EV. 

~ ~ Hence V c V. The dimensions of V and V follow from th.5.5 in [13]. 

(d) Apply leIIll!la 2.2 part (a) to the "J-step" MDP, and use the fact that 
~ ~ v EV (cf. part (c)), in order to show that¢ E SRMG' iff 

(4. 7) for all i E n 

b(v,¢). = o 
l. 

for all 1. ER(¢). 
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Use part (b)i, (4.6) and (4.2) in order to prove that (4.7) is equivalent to 

4.3). 

* (e) Fix a E {l, ••• ,n} and r,B E {l, ••• ,d(a)} such that B = r + kJ (modulo 

d(a)) for some k = 1,2, ..• 

It then follows from th.3.1 part (j) and (2.5) that P(f)?~(a)+kJ 
l.J 

. . *a, r for all n sufficiently large, 1. ER and j E R*a,B. 

Since P(¢) = P(f)J, it follows that 

> 0 

P(¢)?~+k > O, for all n sufficiently large, i E R*a,r and j E R*a,B 
l.J 

which shows that all the states in each of the sets in (4.4) commuiniQ!ate 

with each other for P(¢). In addition, we observe, using th.3.1 part (g) 

that each of the sets in (4.4) is closed under P(¢) as well which proves 

that all of these sets are subchains of P(¢), and R(¢) ~ R*. We complete 

the proof of parts (e) (I) and (2), by showing the reversed inclusion 

* * R(¢) ..'.:. R, merely noting that for all i E Q,R, 

i(¢) .. = lim P(¢)?. = lim P(f)~~ = 0. 
I.I. I.I. I.I. n-+oo n-+oo 

*} } . ~a,~ We next fix a E {l,, .. ,n , BE {l, .•• ,d(a) and a state 1. ER . 

Observe from th.3.1 part (j) that R*a,B is a cyclically moving subset of 

P(f) and use (2.4) and (2.6) 1.n order to show 

(4.8) n n P(f) .. > 0 => P(f) .. > 0 for all n sufficiently large, and all 
I.I. l.J . 

(f-)n O (f)n O 1 *a, B P : . . > => P .. = for all n = I, 2, ••• and J '- R . 
I.I. l.J 

~ J ~ Note, using P(¢) = P(f) that (4.8) holds for P(¢) as well and conclude 

that each of the R*a,B is a cyclically moving subset of P(¢), thus proving 

part (e) (3). 

(f), (g) and (h) Fix¢ E SRMG and let C be a subchain of P(¢). 

Define 

T = U UJ Tr,i("') 
r= 1 'I' 



(cf. (4.2)) and observe that 

C = U. ~ TJ'i(cp) 
1EC ' 

hence 

(4.9) Cc T. 

For each j ET, let A.= {(r,i) 
J 

Next fix v EV, and define f E SR such that 

{ I r+I ,i U( ") A {k cp.k r,1 E . ] 
{k I fjk > O} - J 

{k E L(j) I b(v)~ = 
J 

Use part (d) in order to show that for all i E ai 

> O} for J ET, 

0} for j ' T. 

b(v,f)i = 0 and fik > 0 only fork E L(i), hence f E SRMG via lennna (2.2) 

part (a). Since Tis closed, and the states in T connnunicate with each 

other for P(f), we conclude, that Tis a subchain. This implies using 

lemma 2.l part (e) that 

~ - *a * (4.10) C .=. T .=. R (for one a, lsasn) 

~* * ~* * which proves R .=. R and hence part (f), the reversed inclusion R => R 

following from part (e) (I). 

Next, fix i EC. We then have in view of (4.10) that i E R*a,S (for 
*a some S, I s S s d(a)). Use the fact that T .=. R , and th.3.1 part (g) in 

order to show successively that 

for r = I , ••• , J. 

In particular, we obtain that 

(4.11) {j 

C {]• I P~( )k = ¢ .. > 0 for some k = 
1] 

1 2 } C Ukro=l R*a,S+kJ ' .... 

21 

which together with part {e) (2) proves part (g), using lemma 2.1 part (f). 
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Finally, a repeated application of (4.l I) shows that 

~ n ~ n P(~) .. > 0 => P(~) .. = 0 11 1J 
• 1 *a,B d 1 2 for all J ,- R , an a 1 n = I, , •.• 

which in view of (2.6) shows that each of the cyclically moving subsets of 
~ 1 · . h. *et' S h. . b. . . h each of the policies in SRMG 1es wit 1n one R • T 1s, 1n com 1nat1on wit 

part (e) (3), proves part (h), using th.3.1 part (k). D 

REMARK 3. It 1s well known from Markov Chain Theory that the chain struc

ture of the .J-th power of a single stochastic matrix P(f) is related to the 

chain structure of P(f) in the following way: 

(a) the states that are transient (recurrent) for P(f) are transient 

(recurrent) for P3 (f). 

(b) One obtains the subchain of P3 (f) as follows 

for each subchain Cm(f) (m=l, •.. ,n(f)), partition the collection of 

cyclically moving subsets {Cm,S(f) I 8 = l, •.. ,dm(f)} (where the number

ing of the c.m.s. satisfies (2.4)) into g.c.d. {J,dm(f)} subcollections, 

such that 

(I) each of the subcollections contains exactly dm(f)/g.c.d. {J,dm(f)} 

c.m.s. 

(2) the rank numbers of the c.m.s. within the same subcollection differ 
m m a multiple of g.c.d. {J,d (f)} (modulo d (f)). 

(c) the collection of all the c.m.s. of P(f) and the one of P3 (f) coincide. 

Parts (f), (g) and (h) of the previous theorem show that the same correspon

dence holds with respect to the chain structure of the set of "one-step" 

maximal gain policies, and the one of the set of "J-step" maximal gain 

policies. 

Consider, for instance, the 11 2-step" MDP in example I: 

~* ~*I d( I) ~* I I ~*2 <l(2) ~*2 I ~*2 2 
case J n R R ' R R ' R , 

I I I I 
3 2 3 {I} I {I} {2,5} I I {2,5} I 
4 2 3 {I} I {I} {2,5} I 2 I {2} I {5} 

3 4 3 { I } I { I} {2,5} I I {2,5} I 

4 4 5 {I} I { 1} { 2} I { 2} I 
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~*3 
R ao) ~*3 l 

R ' R*3,2 ""*4 R a(4) R*4,1 ~*5 R d(5) R* 5, I 

I I I I I I I 
{3,4} I I {3,4} I -1-1 -1-1 
{3,4} I 2 I {3} I {4} -I -1 -1 
{3,4} I I {3,4} I -I -I -I 
{3} I {3} I {4} I {4} {5} I {5} 

Table 3: 

~* }:2 ~ (Verify that n = g.c.d. {J,d(a)} and that d(a) = a=l d(2)/g.c.d. {J,d(2)} 

~* for a= 2, ••• ,n .) 

Defined*= least common multiple of {d(a) I a * = 1, ... ,n }. 

The following corollary will be needed for the analysis of the asymp

totic behaviour of v(n): 

* COROLLARY 4.2. Let J = d. Then 

(a) {R" I ~* {R'.*a, s I * l, ... ,d(a)}. y = l, ... ,n} = a = l,.11.,,n 8 = 

* 
(b) ~* l:= l d(a). n = 

(c) <l(y) for all ~* = y = 1,.~.,n . 

§5. THE ASYMPTOTIC BEHAVIOUR OF v(n) 

In this section we study the asymptotic behaviour of v(n). We show 
* 00 that {v(nJ+r) - (nJ+r)g }n=I converges for every final reward vector v(O), 

if and only if J is a multiple of d*, and as a consequence that 
* 00 {v(n) - ng }n=l converges for every vector v(O) if and only if there exists 

an aperiodic randomized maximal gain policy that has R* as its set of 

recurrent states. 

THEOREM 5 . I • 
* 00 (a) {v(n) - ng }n=I is bounded. 

(b) (cf. LANERY [6] proposition 7). If f E SRMG-' and C -is a subchain of P(f)., 
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* with period d, then lim [v(nd+r) - (nd+r)g Ji exists for all i EC, 
n+oo N 

= o, ... ,d-1 and v(O) £ E • 
* *a * (c) lim [v(nd(a)+r) - (nd(a)+r)g ]. exists for a-U i ER , a= 1, ... ,n 

n➔<» N i 

r = l, ... ,d(a) and v(O) EE 

* * * * (d) lim [v(nd +r) - (nd +r)g J. exists for aU i E Q, r = l, ... ,d and a-U 
n➔<» i 

v(O) E EN. 

PROOF. 

(a) cf. BROWN [3] (corr. 4.3) and SCHWEITZER & FEDERGRUEN [14], remark 1. 

(b) Note that 

v(n+l). 2 q(f). + P(f)v(n)., i E C. 
i i i 

* * * i (n+l)g. = g. + nP(f)g., E c, since f E 5RMG ( cf. lennna 2. 2, 
i i i 

part (a)). 

* * * i * v. = q(f).-g. + P(f)v., E c, for any V EV. 
i i i i 

* * * Fix v EV, let e(n) = v(n) - ng - v, and subtract the above equalities 

from the inequality, in order to get e(n+l). 2 P(f)e(n)., i EC and by 
i i 

induction 

(5. 1) e(md+nd+r). 
i 

md 
2 P(f) e(nd+r)., 

i 
i EC. 

. * 00 

It follows from part (a) that the sequence {v(nd+r). - (nd+r)g.} 1 i i n= 
and hence {e(nd+r).}')0 1 has at least one cluster point. 

in= 
for any i EC, let x. and y. be two cluster points of the sequence {e(nd+r). }00 

i i i n=l 
00 00 

Consider (sub)sequences {~}k=l and {1\:}k=l of the sequence of positive 

integers, such that f.im e(~d+r)i = xi' i EC and lim e(l\:d+~d+r)i = yi, 

i EC. ReplacE~ in (S.J) n and m by~ and 1\:' and let k tend to infinity, 

in order to conclude 

(5. 2) y. 2 l- c n .. X •' i E C 
i J E iJ J 

where Tr •• = lim P(f) 1;~ i,j E c. 
iJ n·~ iJ 
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Multiply (5.2) by ir ~ 0 to get ny ~ nx. Since x and y are arbitrary cluster 

points, we have the reversed inequality 'irx ~ ny as well, hence 'irx = ny. As 

a consequence, (5.2) becomes 

y. ~ '. C n •. y., 
1 lJ E 1J J 

i EC, 

Multiply these inequalities by n ~ O, and note n .. > O, for all i EC (cf • 
. 11 

(2.6)), to conclude that 

Thus, 

y. = [,ry]., 
1 1 

i EC, 

Y. ny = nx. = x. 
1 = i 1 1 

for all i EC 

which proves that {e(nd+r).l00
_ 1 has exactly one cluster point, for any i EC. 

1Jn-

(c) Take f* as in lemma (2.2) part (d), and apply part (b), using th.3.1 

part (a). 
* (d) It suffices to prove that lim [Qnd v(O) 

n-+<><> 
* *] . - nd g exists for all v(O), 

because then !.im [v(nd*+r) - (nd*+r)g*J = Aim 
will also exist for all v(O) and all r. 

* [Qnd v(r) * * * - nd g J - rg 

d* * 
Define Q = Q and consider the d -step MDP, as described in section 4. 

Note v(nd*) - nd*g* = Q°v(O) - ng* (cf. th.4.1 part (a)). Fix v(O) and define 

'::'Il ~* ~ * x. = lim inf [Q v(O) - ng ]. ; X. = lim sup [Q v(O) - ng ]., iEn. 
1 n-+<><> 1 1 n-+<><> 1 

From part (a), it follows that that - oo < x. ~ X. < oo for all 1 • 
1 1 

Observe, using (2.11) that for all n sufficiently large. 

(5.3) '::'O+ 1 r.i-,,: ~'::'Il ~ * ~ ~ ·-* ~ * 
[Q v(O)-(n+l)g J.=[TQ v(O)-(n+l)g J.=[T[Q v(O)-ng J-g ]. 

1 1 1 

~~ ~* ~~ '::'Il ~* =max {q. -g. +I. P •• [Q v(O)-ng ].}, 
~EL(i) 1 1 J 1J J 

i E r2. 
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Fix i E: rt, take (sub)sequences {~}~=I (with l~ ~=co) such that 
n n.+l ,....,, k "'* r.J k _,* lim [Q v(O) - ~g J exists and l~ [Q v(O)-(t;/l)g Ji =xi (or Xi resp.). 

Replace n by~ in (5.3), and let k tend to infinity in order to conclude 

(5.4) ~I; ~* I- ~I; x. J' X. $ max [q. - g. + p .. 
1. 

sE:L(O 
1. 1. J 1.J J 

1. E: Q, 

(5.5) [q~ "-'-I< 

I- ~I; 
X.]' x. 2:: max - g. + P .. 

1. ~ 1. 1. .1 1.J J tEL(i) 
1. E: Q. 

If <p achieves the N maxima in (5.4), w,. have 

(5. 6) 

~ 
or 0 $ X - x $ P(cp)(X-x), 

whence we get, by iterating this inequality 

0:,; X - x:,; n(¢)(X-x). 

We complete the proof of showing X - x = 0 by demonstrating that (X-x). = 0 
1. 

for all i E: R(cp). 

Multiply the right inequality in (5.6) by rr(<t>) ;;:: 0, noting that¢ has 
~ support on XiErl L(i), in order to get 

~* = g(¢) - g 

~ where the last inequality follows from (2.8). Hence¢ E SRMG and 
-.. ""* * _, R(<p).::. R = R (cf. th.4.1 part (f)) which proves (X-x). = O, i E: R(¢), 

1. 

since part (c) shows that (X-x). = 0 for all i E: R*. 0 
1. 

* co We next show that the sequences {v(nJ+r) - (nJ+r)g }n=I do not converge 

* for all final reward vectors v(O), unless J is a multiple of cl • 

However, we first need the following lemma. 

cl* * 
LEMMA 5 • 2 • De fine Q = Q , and consider the corresponding "cl -step II MOP . 

~ ~ Let T,V be defined as in section 4, and fix v E: V. 
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~ (a) For all v EV, we have 

'; = v + x, where there are ~* aonstants {ya,a I a= 1, ••. ,u*; a= 1 , ••• ,d(a)} 

with the aonvention that the supersaript a in ya,a is taken modulo d(a), 

suah that for all a E {l, ••• ,n*}, and a E {1, ••• ,d(a)}: 

(5.7) 

(5.8) *a a for all i ER ' ; m = 0,1,2, ••• 

(b) v EV aan be ahosen suah that all the ya,S are distinat. 

PROOF. 
~ (a) Observe, using th.4.1 part (c) that v EV, and use th.5.1 of SCHWEITZER 

& FEDERGRUEN [13] in order to show (5.7). 

* Next, take f E SRMG and observe, using lemma (2.2) part (a) that 

(5.9) * m=l, ••• ,d. 

Using the fact that v EV and inserting the d* inequalities in (5.9) 

successively into each other, we obtain 

(5.10) 
~ * * d*~ d* 1 d*~ 
v + d g = Tv ~ T v ~[I+ ••• + P(f) - ] q(f) + P(f) v. 

By multiplying (5.10) with Il(f) ~ O, we conclude strict equality for all 

* components i ER. It next follows from (5.9) that 

* Td ~ v. 
l. 

* = [q(f) + P(f)Td -l';J. 
l. 

and more generally that 

(5. 1 1) [q(f) + P(f)Tk-l;]. 
l. 

* for all i E R , 

for all k = 

* 

* 1 , ••• ,d and• 

i E {i I P(f)~.-k 
J l. 

. * > 0 for some J ER}= 

* where the last equality follows from R(f) = R. 

* R ' 
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* We next prove (5.8) form= O, •.• ,d • It then follows that (5.8) holds 

for any value of m, since for all n = 1,2, ... and m = J, ••• ,d * 

* Tnd +m~ 
v. 

l. 

= * * * a,S+m nd g. + v. + mg. + y 
l. l. l. 

for all i E a*a,s. 
First observe that (5.8) holds form= 0. Next assume it holds form= k, 

* with O $ k < d . It then follows that (5.8) holds form= k + I, as well 

since, using (5.11), and th.3,1 part (g) 

k~ 
= [q(f) + P(f) T v]. 

l. 
= 

= q(f). + I 
1. . R*a,S+I JE 

() { * a,S+k+I} p f . . V • + kg. + y 
l.J J J 

= 0 + v. + (k+l)g~ + ya,S+k+l. 
l. l. 

~* (b) It follows from th.5.5 in SCHWEITZER & FEDERGRUEN [ 13] that the n 

parameters {ya,S I a= l, ... ,n*; S = l, ... ,d(a)} may be chosen indepen-
~* 

dently over some (finite) region 1.n En. 

THEOREM 5.3. 

( ) F • { *} *a I rzd { 0 - I } , a -ix a e I, ••• , n , 1. e R , , J ;;: , a r e , ... ,J 

lim v(nJ+r). - (nJ+r)g~ exists for all v(O), n~ l. l. 

only if J is a multiple of d. = d(a). 
l. 

(b) Fix J ;:;-: 1 and r e { 0 , ••• , J - I } 

lim v(nJ+r) - (nJ+r)g* exists for all v(O) e EN only if J is a multiple 
n~ 

* of d • 

PROOF. 

(a) Fix v e V, and choose v e Vas in part (b) of the previous lemma. Pick 
n ~ * n ~ * t large enough that Q (v+tg) = T (v+tg ), for n = 1,2, ••. (cf. (2.10)). 

*a,S * ~ Finally, let i e R {]$S$d(a)). Observe that v + tg e V, and 2pply 
lemma 5.2 part (a) 1.n order to show 

nJ+r ~ * Q (v+tg ). 
l. 

nJ+r ~ * = T (v+tg ). = 
l. 

* tg. 
l. 

+ v. + 
l. 

( ) * a,S+nJ+r nJ+r g. + y • 
l. 
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Hence, 

nJ+r ~ * * * a,a+nJ+r Q (v+tg ). - (nJ+r)g. = v. + tg. + y • 
l. 1 1 1 

Since lim QnJ+r(;+tg*). - (nJ+r)g~ exists and since the ya,a (a=l, ••• ,n*; 
n-+-00 1. 1 

a=I, ••• ,d(a)) are chosen to be distinct, we must have a+ nJ + r (modulo 

d(a)) = y (say) for all n large enough, wnich implies that J is a mul-

tiple of d(a). 

(b) Since lim [v(nJ+r) - (nJ+r)g*]. exists for all i ER* 
n-+<><> 1 

and v(O) E EN, it 

* be a multiple of the d(a) (a=l, ••• ,n) follows from part (a) that J must 

hence J is a multiple of d*. 

Combining th.5.1 parts (c) and (d), with th.5.3, we obtain our main result. 

THEOREM 5.4. 

(a) . { *} . *0 nd . d Th F1,,x a E 1 , ••• , n , i E R , a two 1,,ntegers J an r. en 

lim v(nJ+r). - (nJ+r)g~ exists for all v(O) E EN, if and only if J is n-+<» 1 i 

(b) 

a multiple of d(a) = d .• 
• *1 N 

lim v(nJ+r) - (nJ+r)g exists for all v(O) EE, if and only if J is a 
n-+<><> * 
multiple of d • 

REMARK 4. The following conditions are equivalent statements of the necessary 
* 00 and sufficient condition for the convergence of {v(n) - ng }n=l' for all 

N v(O) EE • 

(I) d* = I • 

(II) There exists an aperiodic randomized maximal gain policy f, with 
* R(f) = R. 

(III) Each state i ER* lies within an aperiodic subchain of some randomized 

maximal gain policy. 

(IV) * For each a E {1, ••• ,n} there exists a randomized maximal gain policy 

which has an aperiodic subchain within R*0 • 

(Observe that (I).,. (II) as a result of th.3.1 part (a), (II).,. (III), and 

(III).,. (IV) are immediate, whereas (IV).,. (I) is immediate from (3.1)). 
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We note that in (II), (III) and (IV) the adjective "randomized" cannot 

be replaced by "pure"; in fact, the modification of example I, case I where 

* K(5) = {1,2} shows that d = 1 can occur, with all of the pure policies 

being periodic. 

Moreover, example I, case I, case 3 and 4 show that the addition "with 

R(f) = R*" in (II) is indispensable: f 6 is an aperiodic maximal gain policy, 

however with R(f 6) c R*. 

Finally example I, case 3, with d* = 2, shows that lim v(n) - ng* fails 
5 2 2 2 n-►ro 

to exist for some v(O) EE (take v(O) = [2q5 q5 0 0 q5J, observe that 
2 2 2 2 2 2 v(2n+l) = [2q5 0 q5 q5 OJ and v(2n)· = [2q5 q5 0 0 q5]. Note that v(O) E V-V 

and cf. th.5.3). 

THEOREM 5.5. The following conditions are sufficient for the existence of 
* N lim [v(n) - ng J for all v(O) E E • 

n-►ro 

(I) All of the transition probabilities are strictly positive. 

(II) 

k 
P ... > 0, 

JLJ 
for all i,j E ~, and k E K(i) 

(cf. BELLMAN [2], BROWN [3]). 

N For all v(O) EE, there exists an aperiodic f E Sp, and an integer n0, 

such that 

v(n+I) = q(f) + P(f)v(n), for all n ~ n0 (cf. MORTON [8]). 

(III) There e,xists a state s and an intege1~ v ~ I, such that 

I V P(f ) ... P(f ) . > 0 
l.S 

I 2 v 
for all f ,f , .•. ,f ESP; i E ~ 

(cf. WHITE [16]). 

(IV) Every f E Sp is aperiodic (cf. SCHWEITZER [II] and [12]). 

(V) Every f E SPMG is aperiodic (cf. SCHWEITZER [II] and [12]). 

(VI) For each i ER*, there exists a pure maximal gain policy f, such that 

state i is recurrent and aperiodic for P(f). 

(VII) .Every pza-e maximal gain policy has a unichained tpm, and at least one 

of them is aperiodic. 
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PROOF. ~I)=> (Ill)=> (IV)=> (V) => (VI) where the last implication follows 

from lemma (2. l) part {a). 

(VI) => d. * * * = I for all i € R => d = d(a) = I for all a= l, ... ,n (cf. th.3. l. l. 

part (c). The sufficiency of (II) follows from the fact that after n0 itera-

tions the policy space may be reduced to s;ew = {f} which satisfies (IV). 

(VII) => n * = l, since the subchains of any two tpm' s must intersect, and in 

addition d* = d{l) = las a consequence of th.3.2. 

We have seen that for arbitrary 
*}00 • {v{nJ+r). - (nJ+r)g. 1 may fail to 

l. l. n= 
for some (or all) r = {O,I, ••• ,J-1}. 

J ~ I, and some fixed v(O) the sequences 

converge for some (or all) i € Q and 

However, the various sequences interdepend as far as their asymptotic behav-

iour is concerned. 

We conclude this section by exhibiting the various ways in which this 

interdependence occurs. However we first need the following lemma. 

LEMMA 5.6. Pix f € SRMG' 

lim [v(n+l). - q(f). - P(f)v(n).J = O, 
n-+<» l. l. l. 

for aZZ i E R(f). 

PROOF. Use the fact that for all i € Q, fik > 0 only fork€ L(i) (cf. lennna 

2.2 part (a)) in order to show that 

(5.12) * * * v(n+l) - (n+l)g ~ q(f) - g + P(f) [v(n) - ng ]. 

By multiplying (5.12) with TI(£), we obtain 

* * TI(f)(v(n+l)-(n+l)g) ~ TI(f)(v(n)-ng ). 

Observing from th. 5.1 part (a) that TI(f)(v(n)-ng*) is bounded inn, we 

conclude the existence of L = lim TI(f)(v(n)-ng*). Define n-+<» 

o(n) z v(n+l) - q(f) - P(f)v(n) 

and note that o(n) ~ 0 for all n (cf.(1.1)). 
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Thus, 

* * lim TI(f)8(n) = lim {IT(f)[v(n+I) - (n+l)g] - IT(f)(q(f)-g) -
n➔oo n➔oo 

* - rr(f)(v(n)-ng )} = L - L = O, 

which proves the lemma using 8(n) ~ 0 and the fact that Il(f) ~ 0 with 

IT(f) .. > 0 for all j e R(f). 
JJ 

THEOREM 5 • 7 • 
* * *a (a) Fix a e {l, ... ,n }; lim v(n). - ng 1• exists either for all i e R or for 

n➔oo i 

none of -them. 
*a S * . * (b) Fix J ~ 11 and t e R ' (l:5:a:5:n ; l:5:S:5:d(a)). Assume lim v(nJ+r) - (nJ+r)gt 

n➔oo t 

exists for some integer r. Then 

(5. I 3) 
* *a, S+kJ-s 

li.m v(nJ+r+s). - (nJ+r+s)g. exists for aU i e Uk=IR 
n-i= 1 1. 

* (c) Fix J ~ I, and a e {l, .•• ,n }. 

(s=l,2, ••• ). 

lim v(nJ+r). - (nJ+r)g~ exists for aU r = I, ... ,J, either for aU 
n➔oo l. l. 

l. E 
*Cl 

R or for none of them. 

(d) Fix J ~ I, r 0 e {l, ... ,J} and a e {l, ... ,n*}. 

If lim v(nJ+r0). - (nJ+r0)g~ exists for aU i e R*a, 
n➔oo 1 1 

then lim v(nJ+r). - (nJ+r)g~ exists for all i e R*a and all r = 1,2, .•• 
n➔oo 1 1 

(e) Fix i e Q. Assume lim v(nJ 1+r). - (nJ 1+r)g~, and 
n➔oo 1. 1 

. 2 2 * . I 11.m v(nJ +s). - (nJ +s)g. exi,st for all re {l, ... ,J} 
n➔oo 1 1. 

3 I 2 Let J = g.c.d{J ,J }. Then 

. 3 3 * 3 l1m v(nJ +t). - (nJ +t)g. exists for all t = l, ... ,J, 
n➔oo 1 1. 

2 ands e {l, ••• ,J}. 

. . *a * . and hence, if in addition 1 e R (for some l:5:a$n) then 

lim v(nJ3+t). - (nJ3+t)g~ exists for all t = I, ... ,J3 and all j e R*a. 
n➔oo J J 

( ) . . *a ( *) nd f F-1,,x 1. e R I sasn a J ~ I . Assume 

lim v(nJ+r). - (nJ+r)g~ exists for all r = l, ... ,J. 
n➔oo l. l. 
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-Let J = g.c.d.{J,d(a.)}. Then 
- - * - ,, *a lim v(nJ+s). - (nJ+s)g. exists for aZZ s = l, •.. ,J and aZZ J ER . 

n-+oo J J 

(g) Fix J ~ 1. If lim v(nJ+r). - (nJ+r) ~ exists for aU i E R* and some r E 
n+oo i J --

{19 •• ,,J}, then lim v(nJ+r). - (nJ+r)g~ exists for aU 1. E rland aU 
n+oo l. l. --

r = l , 2, •.. 

PROOF. 
* *a. (a) Assume lim v(n) - ngt exists for some t ER . n-+co t 

* [v(n) * Define x. = lim inf [v(n) - ng ].; X. = lim sup - ng ]. ' and 
l. n-+oo l. l. n-+co l. 

observe that -oo < x. s x. < 00 as a result of th. 5. 1 part (a). 
l. l. 

* Fix i E R*a. 
. ' pick E: > 0 and apply lemma 5 .6 with f* E 8RMG 

in order to 

show that there exists an integer n(E:)' such that for all n > n(E:) 

(5.14) * * * * * q(f ). - g. + P(f )[v(n)-ng ]. s v(n+l). - (n+l)g. 
l. 1. l. l. l. 

* * s q (f ) . - g. + 
l. l. 

* * + P(f )[v(n)-ng ]. + E:, 
. . l. 

exists and 

Replace n by °kin (5.14) and let k tend to infinity 1.n order to con

clude 

or 

* * * q(f ). - g. + P(f) 
l. l. 

* * * x. s x. s X. s q(f ). - g1.. + P(f )X. + E:, 
l. l. l. l. l. 

0 s X. - x. 
l. l. 

* s P(f )(X-x)., 
l. 

*a. for all i ER , 

whence we get by iterating this inequality 

(5.15) *a 
l. E R • 

* Multip1y tfiis inequality by TI(f) ~ 0 1.n order to conclude strict 

equality on the right of (5.15), thus proving X. - x. = X - xt = O, for 
l. l. t 

all i. 
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(b) Without loss of generality, we taker= O. Define Q = QJ and consider 

* the J-step MDP, as defined in section 4. Let f be defined as in lennna 

(c) 

- 00 *a,S+kJ-s 2.2 part (d), and let R(s) = Uk=I R for s = 1,2, ..• 

* "TI ~* Observe that v(nJ). - nJg. = [Q v(O)]. - ng. (cf. th.4.1 part (a)). 
l. l. l. l. 

Apply pa:rt (a) of this theorem to the J-step MDP, and use th.4.1 

part (g) in order to obtain that v(nJ). - nJg~ exists for all 1. E R(O), 
l. l. 

rhus proving (5.13) for s = O. Assume (5.19) holds for s = S. 

- * Note, using th.3.1 part (f) that for all i E R(S+l),P(f ) .. > 0 only 
l.J 

for j E R(S). It then follows from lennna 5.6 that for all i E R(S+I) 

'where 

* lim v(nJ+S+l). - (nJ+S+l)g. n-+«> i i 
* * \ * = q(f ). - g. + l P(f ) .. x. 

l. l. jER(S) l.J J 

* x. = lim v(nJ+S). - (nJ+S)g., 
l. n-+«> l. l. 

for all 1. E R(S), 

which proves part (b) by complete induction. 
* . ~~ d *a,8 Assume lim v(nJ+r) - (nJ+r)gt exists for a&& r = l, ••• ,J an t ER n-+«> t 

(l~S~d(a)). Take i E R*a,y(l~y~d(a)) ands E {l, ... ,J}. Then 

lim v(nJ+s). - (nJ+s)g~ exists as a result of part (b). 
n-+«> l. l. 

*a 8 * (d) Take i ER ' (l~S<d(a)) and r E {l, ••• ,J}; lim v(nJ+r). - (nJ+r)g. 
n-+«> l. l. 

exists as a result of par~ (b). 
1 I 3 2 2 3 

(e) Let p = J /J and p = J /J • 
3 * (nJ +t)g .. Fix t E {I, .•. ,J3}, and define a(n) = v(nJ3+t). -

l. 

Observe that A(m) = lim a(np 2+m) exists for all m = 
l. 2 

l, ... ,p' just as 
I n-+«> 

A = lim a(np) exists. Observe that there exist two integers a,8 ~ J such 
11-+«> 

that ap 1 Sp2 = I, as a consequence of p1 and p2 being relatively prime. 

Since A(m) = fi.m a[(kp 1+Sm)p2+m] = fi.m a[(kp2+a)mp 1] = A, for all 

m = l, ..• ,p2, it follows that Aim a(n) exists, thus proving the first 

assertion, whereas the second one follows innnediately from part (c). 

(f) Use part (e) with J 1 = J and J 2 = d(a)(cf. th.5.1 part (c)). 

(g) It follows from part (c) that 
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. * * exists for all 1. ER and all r E {l, •.. ,J} whereas convergence on Q-R 

is deduced, using the proof of th.5.1 part (d). 

REMARK 5. The following statements illustrate the degree of interdependence 
* with respect to the asymptotic behaviour of the N sequences {v(n). - ng.} 

1 l. 

(idt), and may be proved using the above theorem, merely verifying all 

possible combinations. 

(a) lim v(n) .. - ng ~ cannot exist for all values of i, but one (cf. SCHWEITZER 
n-+<» l. l. 

[12], th.I part (3)). 

(b) It lim v(n). - ng~ exists for all values of i except two, then these two n-+<» i i 

. *a . ( ) special states comprise one R , with d a = 2. 

Moreover:, for every randomized maximal gain policy these two states· 

either form a periodic subchain, or are both transient. 

(c) If lim v(n) - ng~ exists for all values of i except three, then either n-+<» l. 

. *a . ( ) the three states comprise one R with d a = 2 or 3, or else two of them 

compri~e one R*a with d(a) = 2, and the third one lies in Q - R*, 

having positive probability to reach R*a. 

The generalization of th.5.4 for the case of one fixed v(O) is 

THEOREM 5- 8: 

(a) Fix v(O), and a E {l, ••• ,n*}. There exists an integer Joa~ I, dependent 

upon v(O)., such that lim [v(nJ+r) - (nJ+r)g*J. exists for aU i E R*a 
n-,-oo i 

and some r if and if the integer J ~ l is a multiple of Joa. If this 

condition is met, the limit exists for aU r. The integer d(a) is a 

multiple of Joa. If d(a) ~ 2, then there exist choices of v(O) such that 

JOa < d(a) can occur. 

(b) Fix v(O) and define the integer 

0 { Oa I n*} J = L c. m. J l ::; a ::; 

which depends upon v(O). Then lim v(nJ+r) - (nJ+r)g* exists for some r 

if and only if the integer J ~ n-;ro is a multiple of 1°. If this condition 
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is met, the Zimit exists for aZZ r. The integer d* is a rrruZtipZe of 

Jo. If d* ~ 2, then there exist ahoiaes of v(O) suah that JO< d* aan 

oaaur. 

PROOF: 

(a) Let 

(5. 16) * ~ 1 I lim [v(nJ+r). - (nJ+r)g.J exists for all 
l. l. 

Observe that Joa can be obtained as the g.c.d. of a finite number of 
Oa integers and apply th.5-7 part (e) to conclude that J belongs to the 

set to the right of (5.16), thus proving the first assertion. The second 

and third assertion follow from th.5-7 part (d) and th.5-1 part (c), 

whereas the last one may be verified by choosing 

(5.17) * v(O) = v + tg with v EV and t sufficiently large that 

* (b) Observe from part (a) that lim [v(nJ+r). - (nJ+r)g.J exists for all 
. * , n--►<X> l. l. 0 
1. ER, and some r if and only if J is a multiple of J , and apply 

part (g) of th.5-7 to verify the first two assertions. The third asser

tion follows from th.5-1 part (d) whereas the existence of v(O) with 
0 J = 1 may be verified by choosing v(O) as in (5-17). 

§6. THE ASYMPTOTIC PROPERTIES OF THE POLICIES GENERATED BY THE Q-OPERATOR 

In this final section, we indicate some of the properties of the 

policies that attain the N maxima in (1.2), and the resulting consequences 

with respect to the use of the value-iteration method. 

First, define for any£~ O, and i en 
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K(i,n,£) = {k e: K(i) I v(n). - £sq~+ L· P~. v(n-1). s v(n).}, 
1. 1. J l.J J 1. 

n= 1,2, ••• 

i.e. the set of actions, which at then-th step of the value-iteration are 

£-optimal, in the sense that they achieve the maxim~m in (1.2) within£. 

For any v e: V, define L(i,v) = {ke:L(i) I b(v)~ = O}, i e: n. Note from lenuna 
1. 

2-2 part (a) that K*(i) ~ L(i,v) for all i e: R*. 

THEOREM 6.1. Fix v(O) e: EN. 

(a) If lim v(n) - ng* = v* exists, then n~ 

* (I) V e: V. 

(2) There exists an integer n0, such that if.. a policy f e: SR satisfies 

v(n) = q(f) + P(f)v(n-1) for some n ~ n0 then f e: SRMG' with 
* b(v ,f) = 0. 

* (b) For any £ > O, and aU i e: R , 

* K (i) ~ K(i,n,£) ~ L(i) for all n sufficiently large, 
00 

(c) Let {£n}n=I be a sequence of non-negative numbers, such that 

(I) lim £ = 0. n~ n 

(2) lim An/£= 0 for all A e: (0,1). n~ n 

If lim v(n) - ng* = v* exists, then n~ 

K(i,n,£) = L(i,v*) 
n for aU n sufficiently large, and aU i e: n. 

(d) If there exists a f e: SR, and an integer n0, such that 

v(n+I) = q(f) + P(f)v(n), for all n ~ n0, then f e: SRMG" 

PROOF. 

(a) (I) cf. lenuna 2.2 part (f) in [14]. 

(2) The fact that for large n, and any i e: n, only alternatives in L(i,v*) 

can attain the maximum in (1.2) was shown in [14] (3.3); it 

then follows from lenuna 2.2 part (a) that f e: SRMG. 
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(b) Fix i e: n. 
Observe that k e: K(i,n,£) implies 

* k * + l- k 
[ v(n-1 \ - (n-l)g;] + (n-1) v(n). - ng. - £ :s; q. - g. P .. 

l l l l J lJ 

{I. P~. g~ 
J lJ J - g:} 

which cannot hold for large n, if}:. P~. g~ - g*1• < O, since [v(n) - ng*] 
J lJ J 

is bounded (cf. th.5.1 part (a)). Hence K(i,n,£) .=. L(i). 

Next, fix k e: K*(i) and let f e: SPMG with fik = I and i e: R(f) (cf. (2.12)). 

Apply lemma 5.6 in order to show that 

k ~ k 
lim v(n+I). - q. - l· P .. v(n). = O, 
n~ l l J lJ J 

which proves K*(i) .=. K(i,n,£) for n sufficiently large. 

(c) Define y(n) = v(n) - ng * - v*, and note that k e: K(i,n,£ ), if and only 
n 

if 

( 6. 1) 
(, k * *\ * k , k (n-1)1 l· P .. g.-g./· + b(v ). ~ - l· P .. y(n-1). + y(n). - £ • 
\ J lJ J l l J lJ J l n 

First let k e: K(i,n,e ). Since the right hand side of (6.1) tends to 
n ' k * * zero as n tends to infinity it follows that for n large, l· P .. g. -g. =O 

.'.) lJ J l 
(i.e. k e: L(i)) and b(v*)~'= O, which proves 

l 

(6.2) K(i,n,£) c L(i,v*) , n - for all i e: n, and n sufficiently large. 

(d) 

In order to prove the reversed inclusion, we recall from [14] that y(n) 

converges geometrically to zero, i.e. there exist two numbers Kand A 

with O :s; A< 1 such that ly(n). I :s; KAn for all n = 1,2, ••• and i e: n. 
l 

Let k e: L(i,v*). It then follows that k satisfies (6.1) since the left 

hand side of (6.1) equals zero, whereas its right hand side is strictly 

negative, for large n, as a consequence of lim An/£ = O. n~ n 
This proves the reversed inclusion in (6.2) and hence part (c). 

m-1 m Observe that v(n0+m.) =[I+ P(f) + ••• P(f) Jq(f) + P(f) v(n0), divide 

this equality by m, let m tend to infinity and conclude that 



* v(no+m) 
g = lim --- = TI(f)q(f) = g(f). □ m-+<» m 

Part (a) of the above theorem shows that if [v(n) - ng*J converges, 

then the value-iteration method will generate only maximal gain policies, 

after a finite number of steps. 
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On the other hand, example l shows that a non-maximal gain policy may be 

generated infinitely often, although not at each iteration step (cf. part (d)), 

if lim v(n) - ng* fails to exist. 
n-+<» 2 2 2 

('.rakP case 4. Let v(O) = [2q5 q5 0 o-~5] as in Remark 4, and observe 

that the value-iteration method may generate the sequence of policies 
4 5 4 5 5 

(f ,f ,f ,f , ... ), where f i SPMG.) 

This phenomenon was first noticed by LANERY [6], example 4, where in the 

only possible sequence of policies to be generated by the value-iteration 

method, a maximal and a non-maximal gain policy alternate. 

Moreover, the value-iteration method may even generate exclusively non

maximal gain policies, after a finite number of steps, if v(n) - ng* fails 

to converge. 

(Take example 4 in 
2 2 v(O) = [2q5 q5 0 0 

LANERY [6] or example 1, case 4 with 

q;] and define a new MDP as follows. 

Let Q = {(i,r) I - . -k 1 ea, r = 0,1} with i(i,r) = K(1) ; q(. ) = 1,r 
k q. and 
1 

-k 
P(i,r)(j,s) 

{ 
k 

P .. 
= 1J 

if r = s 

if r / s 

for all i,j en; r = O, I, and k e f(i,r) 

0 

and choose ~(O)(i,O) v(l) .. 
1 

Lemma 5.6 shows that every maximal gain policy comes closer and closer 

to attaining the maxima in (1.2) even if v(n) - ng* fails to exist. Part (b) 

of the above theorem shows that this may be used in order to "localize" the 

sets K*(i) (ieR*) by determining at each iteration step the sets K(n,i,E) 

(for some E>O) rather than the sets K(n,i,O). 

In case lim v(n) - ng* = v* does exist part (c) of th.6.1 provides a method n-+<» 
in order to determine the sets L(i,v*)(ieQ) in the course of the value-iter-

oo -1 
ations. Observe that any sequence {En}n=l' which has En polynomially 

bounded inn, may be used, e.g. En= 1,n. 
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If v* = lim [v(n) - ng*J exists, then the sets K(i,n,E) may be better 
n n-i-o:, 

behaved for large n than the optimizing sets K(i,n,O). 

The former set has a limit L(i,v*) while the latter may oscillate 

(cf. BROWN [3], example) or have a limit which is a strict subset of L(i,v*) 

(cf. example 2 below) 

EXAMPLE 2: 

i k 
k k k k 

.4.· pil pi2 pi3 l. 

0 0 0 

2 0 0 0 

3 0 0 0 

3 -1 -I 0 .5 .5 

Note that g * = (O ,O ,O), d* '."' 1 and that both pure policies are maximal 
n gain. Starting with v(O) = (0,2,1) we find that v(n) = (0,2,•5 ) for all 

* n ~ O, hence v = (0,2,0). For this special choice of v(O), K(3,n,O) = {2} 

for all n which is a strict subset of 1(3,v*) = {I ,2}. Consequently, value 

iteration will fail to generate all functional optimal policies. 

* Finally, we have seen that regardless whether v(n) - ng converges or 

not, none of the sequences of policies that may be generated by value

iteration, neE~ds to converge, i.e. lim inf X. K(i,n,O) may be empty. Part 
n+oo l. 

(d) of theorem 6.l shows that in case of foolproof policy convergence, i.e. 

existence of lim X. K(i,n,O), only maximal gain policies ultimately occur. 
Il+oo l. 

In addition, BATHER [ I J part I example I, which has every policy uni chained 

and aperiodic,, falsified the conjecture (cf. BROWN [3]) that the optimal 

policy sequence is asymptotically periodic, i.e. the existence of a J-tuple 
I J r r of policies (f , ... ,f) such that v(n0+kJ+r) = q(f) + P(f )v(n0+kJ+r-l) 

for all k = 1,2, ..• and some n0 ~ I. 

NOTE I. More specifically, the following argument was used in (VII-64) and 

(VII-7 5). 

max max 
k= 1 , ••• , K . . A. 

l.,Jcl< 

{f. - f.} = 
l. J 

{f. - f.} 
l. J 
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where f is an n-vector and the{~, k = 1, ••• ,K} constitute a partition of 

{l, .•• ,n}. 

The assertions (VII-64) and (VII-75) are repeatedly used in the remainder 

of the proof. 
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