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On a Switch-Over Policy for Controlling the Workload in a Queueing System 

with Two Constant Service Rates and Fixed Switch-Over Costs 

by 

H.C. Tijms 

ABSTRACT 

This paper considers a single-server system where jobs arrive 1.n 

accordance with a Poisson process. Each job involves an amount of work 

which is known upon arrival and is sampled from an exponential distribution. 

The server has available two constant service rates land 2 where rate 2 is 

faster than rate J. The total work remaining to be processed in the system 

(= workload) is controlled by a switch-over policy which switches from rate 

I to rate 2 only when the workload exceeds the level y 1 and switches from 

rate 2 to rate I only when the workload falls to the level y2 where 

0 ~ y2 ~ y 1. The costs of this system consist of a linear holding cost, a 

service-cost rate and fixed switch-over costs. The purpose of this paper 

is to derive an explicit expression for the average cost of this policy. 

KEY WORDS & PHRASES: Queueing system with two service rates., workload_. 

switch-over policy, average cost. 





1 . INTRODUCTION 

We consider a service station with a single server where jobs arrive 

in accordance with a Poisson process with rate A. Each job involves an 

amount of work. The amounts of work of the jobs are known upon arrival and 

are independeintly sampled from an exponential distribution with mean 1/µ. 

At any time the server may choose between the service rates I and 2. When 

the server is: in service and uses service rate i an amount of work o. will 
i 

be processed per unit time, i = 1,2. It is assumed that o2 > o 1 > A/µ. De-

fine the workload at time t as the total amount of work remaining to be 

processed in the system at time t, t ~ 0. The server provides service when 

the system is not empty and uses the following switch-over policy. The serv­

er switches from rate I to rate 2 only when the workload exceeds the level 

y 1 and switches from rate 2 to rate I only when the workload falls to the 

level y2 , where y 1 and y2 are given numbers with O:,:; y2 :,:; y 1. It is assumed 

that it takes no time to switch from one service rate to another. We denote 

the above switch-over policy as the (y 1,y2) policy. 

The following costs are incurred. There is a holding cost of h > O 

per unit work in the system per unit time. When the server is busy and uses 

service rate i there is a service cost at rater. ~ O, i = l ,2. There is a 
i 

service cost at rate r 0 ~ 0 when the system is empty. The cost of switching 

The purpose of this paper is to derive an explicit expression for the 

f ( ) . *) . . average cost o the y 1,y2 policy. Roughly, this will be done as follows. 

*) The analysis given in this paper is also applicable when we assume an 
arbitrary distribution for the amount of work of a job, However, in this 
case no simple explicit results can be obtained. 



2 

We first consider a Markov chain embedded at the epochs where the server 

switches from one rate to another and the epochs where the system becomes 

empty. It will be shown that this Markov chain has a unique stationary 

probability distribution which can be explicitly given. Because of the ex­

istence of this distribution, a formula familiar from the theory of semi­

Markov reward processes applies to the average cost. From this formula we 

shall derive an alternative one which allows to give an explicit expres­

sion for the average cost. This analysis will be done in the sections 3 and 

4 after we have given some preparatory results in section 2. Finally, sec­

tion 5 discusses the minimization of the obtained expression for the average 

cost. 

Related work was done by THATCHER [11] who studied the (y 1,y2) policy 

with y 1 = y2 for the M/G/1 queue with no switch-over costs. Using busy pe­

riod analysis he derived for the average cost of this policy a formula in­

volving the stationary probability distribution of the workload under rate 

1. Also, he proved that a policy of this type is average cost optimal among 

the class of all stationary policies (cf. also MITCHELL [9]). 

2. PRELIMINARIES 

In this section we give some preparatory results. We first consider the 

M/G/1 queue in which jobs arrive in accordance with a Poisson process with 

rate A and the amounts of work involved by the jobs are independent, positive 

random variables having a common probability distribution function F with 

finite first moment Sand finite second moment s( 2). When the system is not 

empty the servE~r provides service where an amount of work cr is processed per 

unit time. It is assumed that A/3/cr < 1. For any t ~ O, let V(t) be the total 
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amount of work remaining to be processed in the system at time t (in queue­

ing theory the process {V(t)} is often called the virtual waiting time pro­

cess). Observe that h I: V(s)ds represents the total holding cost incurred 

by time t when there is a holding cost of h > 0 per unit work in the system 

per unit time. Further, let B = inf {t ~ 0 I V(t) = O}, i.e., Bis the first 

epoch at which the system is empty. 

LEMMA 1. Far aZZ x > O, 

(1) 

(2) 

E(BIV(O)=x) = cr(l-A8/cr) 
X 

B 2 

E(fv(t)dt!V(O)=x) = -20-(-1-:-A8-1-O-) + 

0 
2 2 2a (l-A8/cr) 

PROOF. For completeness, we prove these known results. For any x > O, let 

A be the number of arrivals during (O,x/cr). Then, A is Poisson distributed 
X X 

with mean AX/cr. Also, let b(x) be equal to the left side of (1), and let 

b = f: b(x)dF(x), i.e. bis the expected length of a busy period. Now, by 

the same standard argument as used on p. 449 in FELLER [5], 

E(BIV(O)=x, A =n) = x/cr + nb, 
X 

so, by unconditioning on A, b(x) = x/cr + Axb/cr. Together this and the de-
x 

finition of b imply (I). To prove (2), we first observe that under the con-

dition that n arrivals have occurred in (O,x/cr), each of then arrivals ep­

ochs has expectation x/2cr (see Theorem 2.3 in ROSS [10]). Denote by w(x) the 

left side of (2), and let w = f: w(x)dF(x). Now, by a similar argument as 

used above, 

B 

E(fv(t)dtlV(O)=x, 

0 

2 n 
A =n) = ~ + nSx + nw + l (n-k)8b, 

x 2cr 2cr k=l 
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gether this and the definition of w imply (2). D 

We now return to the queueing system introduced in section 1. The state 

of this system can be described by a point in {x I x real, x ~ O} u 

u {x' I x real, x ~ O}, where state x(x') corresponds to the situation that 

the workload equals x and the server is adjusted to rate 1(2). We now intro­

duce a number of functions that will be needed hereafter. These functions 

are defined independently of the (y 1,y2) policy. For any x > O, define 

t 0 (x) as the expected time until the system becomes empty and define k0(x) 

as the total expected cost incurred during this time when the initial state 

is x and the server uses always rate 1. Similarly, let t 0 (x') be the expect­

ed time until the system becomes empty and let k0 (x') be the total expected 

cost during this time when the initial state is x' and the server uses al­

ways rate 2. Using Lenuna 1 with 8 = 1/µ and 8( 2) = 2/µ 2 , it now follows that 

(3) 

The formulae for t 0 (x') and k0 (x') are obtained when in the above formulae 

o 1 and r 1 are replaced by o2 and r 2 • Next, let 

(4) and 

0 

00 

Bo=!+ I to(x)µe-µxdx, 

0 

that is, s0 is the expected time until the next return to state O and a0 

is the total expected cost incurred during this time when the initial state 

is O and the server always uses rate 1. Then, by (3), 

and 
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Finally, define the functions k(x) and t(x) by 

(5) for x > 0. 

Then, by (3), 

( 6) k(x) and t(x) = (3 1x for x > 0, 

where 

( 7) 2(cr µ-A)(cr µ-A)' 
1 2 

(8) hA 
(cr I µ-A)' 

(9) 

By direct integration, for ally> 0, 

00 

( l O) I k(x)µe-µxdx = e-µy{k(y) + a3y + (az+a3)/µ}, 

y 

00 

( l 1) I t(x)µe-µxdx = e-µy{t(y) + 13 1/µ}, 

y 

where 

(12) 

To end this section, we give some required results for a Markov chain 

with a general state space. Consider a Markov chain {X, n = 0,1 , ... } with 
n 

stationary transition probability function P(•,·) on (S,B), where the state 

space Sis a Borel set of a finite dimensional Euclidean space and Bis the 

class of all Borel sets in S. Suppose that this Markov chain satisfies the 
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following assumption. 

* ASSUMPTION. There is some states (say) such that 

( I 3) Pr{Xn = s* for some n z l I x0 = s} = for alls ES, 

and 

We have the following theorem whose proof is included for completeness. 

THEOREM I. There is a unique stationary probability distribution function Q 

satisfying 

(15) Q(A) = J P(s,A)Q(ds) 

s 

Moreover, when the initial state x0 = * s ' then 

(16) 1 n f lim - E{ l f(X. )} = 
n-+oo n k=O -K 

f(s)Q(ds) 

s 

for au A E B. 

for any real-valued Baire function f such that f !f(s)IQ(ds) < 00 • 

PROOF. For any n z O, let Pn(s,A) = Pr{Xn EA x0 = s}. Further, for any 

'.:::'Il * I n z 1, let P (s,A) = Pr{Xn EA, Xk ~ s for ~ k ~ n x0 = s}, and let 

za o I P (s,A) = P (s,A). Define fn(s) = Pr{N = n x0 = s} for n z 1 , and define 

f 0 (s) = O. Then (cf. p. 365 in FELLER [5]), for alls and A, 

(I 7) n P (s,A) ::'11 = P (s,A) + f n-k * l P (s ,A)fk (s) 
k=O 

for all n z O. 

By (13), Ioa * 0 fn(s) = 1. Hence the relation (17) with s * is a renewal = s 

equation for any A. Further, for any A, 

00 00 00 

I '.:::'Il * I '.:::'Il * E(NIXo=s*) I * ( 18) P (s ,A) ~ P (s ,S) = = nf (s ) , 
n=O n=O n=O n 
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so, by (14), both the first series and the last series in (18) are conver­

gent. Now, by applying the Key Renewal Theorem (see p. 292 in FELLER [4]), 

for any A, 

(19) 
l n k * 

l~n - I P (s ,A)= 
n-+<'° n k=0 

00 

I 
n=0 

00 

n * '\ P (s ,A)/ l 
n=0 

* nf ( s ) • 
n 

Now, for any A, define Q(A) as the right side of (19). Then, by (18), Q is 

a probability measure. Next observe that, by ( 13), I; fn (s) = l and 

::::-n 
P (s,A) ➔ 0 as n ➔ 00 for alls and A. Using this we obtain from (17) and 

(19) that 

I n k 
lim - I P (s,A) = Q(A) 
n➔<" n k=0 

for alls ES and A EB, 

from which it is easy to derive that Q satisfies the steady state equation 

(15) (cf. pp. 133-134 in BREIMAN [I]). Since the Markov chain {X} has no 
n 

two disjoint closed sets, we have by Theorem 7.16 in BREIMAN [I] that Q is 

the unique probability distribution satisfying ( 15). To prove ( 16), let m 

* be a finite measure on (S, B) such that m(A) > 0 if and only if s E A. Then, 

by (13), m(A) > 0 implies Pr{X EA for some n c: I n X = s} = 
0 

for all 

s ES. Consequently, the Markov chain {X} satisfies the so-called recurrence 
n 

condition of Harris (cf. pp. 206-207 in JAIN [8]). Relation (15) now follows 

from Theorem 3.3 in JAIN [8]. 

3. AN EMBEDDED MARKOV CHAIN 

In this section we shall determine the stationary probability distribu­

tion of the Markov chain embedded at the epochs where the server switches 

from one rate to another and the epochs where the system becomes empty. 

Consider the queueing system which is controlled by an (y 1 ,y2) policy 
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with O < y2 ~ y 1 (the (y1,y2) policy with y2 = 0 will be considered separate­

ly in the next section). For ease we assume from now on that the system is 

empty at epoch O. Let T0 = O, and, for n ~ 1, let Tn be the nth epoch at 

which either the server switches from one rate to another or the system be­

comes empty. For any n ~ O, define X as the state of the system at epoch 
n 

T with the convention that we take X equal to x(x 1 ) when at epoch T the n n n 

workload equals x and the server switches from rate 1(2) to rate 2(1). Ob-

serve 

state space 

= O. The embedded process {X, n ~ 0} is a Markov chain with 
n 

Denote by P(•,•) the one-step transition probability function of this Markov 

chain, that is, P(s,A) = Pr{Xn EA I Xn-l = s}. For the above Markov chain 

the assumption of Theorem 1 is satisfied for s* = O, so, this Markov chain 

has a unique stationary probability distribution Q(•) (say) satisfying (15). 

This stationary distribution Q will now be determined explicitly. To do this, 

define, for all O < x < y 1 and v ~ y 1, 

p(x,v) = probability that the state of the first entry of the system 

into the set of states {O} u {u I u > y1} belongs to the set 

{u I u > v} when the initial state is x. 

Further, let p0 (x) = 1 - p(x,y1) for O < x < y 1• For shortness we write 

Q0 = Q({O}), Q(v) = Q({ulu>v}) and Q2 = Q({y~}). Then, (15) gives 
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Q(v) 

Further, by Q0 + Q(y 1) + Q2 = 1, we have Q2 = (1-Q0)/2. We shall now deter­

mine p(x,v). Using a standard argument, we get for any v ~ y 1 and l.::,.x very 

small, 

p(x+!.::,.x,v) 

A/.::,.x 
+ (I - -)p(x,v) + o(!.::,.x) 

01 
for O < x < y 1 , 

which implies that, for all v ~ y 1, 

clp(x,v) 
clx = A [-p(x,v) + 

01 

yl-x I p(x+y,v)µe-µydy 

0 

+ e -µ (v-x)] 

for O < x < y 1 • 

Routine analysis using Laplace transforms and the boundary condition 

p(x,v) ➔ 0 as x ➔ 0 yields after some algebra 

( ) [ ' -<01µ-'A)(yl-x)/ul] [0 111 -'e-(0!µ-'A)yl/01]-I Po X = 01 µ-/1.e ,... /1. 

for O < x < y l • 

The formula for p0 (x) was also found in KEILSON [8]. Using these results we 

get after some algebra 

THEOREM 2. The stationary distribution Q is given by 
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for aii v ~ y 1, where q(v) = -aQ(v)/av, and 

REMARK 1, For the case where the amount of work of a job has an arbitrary 

distribution function F the resulting differential equation for p(x,v) can 

be converted into a delayed renewal equation by integration, and this fact 

allows to give a closed expression for p(x,v) in which the renewal function 

of the defective distribution function (A/cr 1) I: {l - F(u)}du appears, cf. 

COHEN [2], Hence Q can be explicitly given in terms of this renewal function. 

4. THE AVERAGE COST OF THE (y1,y2) POLICY 

In this section we shall derive an explicit expression for the average 

cost of the (y 1,y2) policy, To,get to this expression, we first establish 

a formula which is familiar from the theory of semi-Markov processes with 

a cost structure. Next we derive from this formula an alternative one which 

allows to give an explicit expression for the average cost of the (y 1,y2) 

policy. 

Consider in the first instance the (y1,y2) policy with O < Yz ~ y 1• 

Let Z(t) be the total cost incurred during [O,t), t ~ O. For any n ~ O, let 

, = T I - T , n n+ n i.e., T is the length of the time interval between the nth 
n 

and the (n+l)st epoch at which either the server switches from one rate to 

another or the system becomes empty. Further, for any n ~ O, denote by Z n 

the total cost incurred during [Tn' Tn+l), where Zn includes the appropriate 



11 

switch-over cost when at epoch T the server switches from one rate to an­n 

other. Finally, let ,(s) = E(, Ix =s), and let c(s) = E(Z Ix =s) for s Es. n n n n 

LEMMA 2. 

(20) !im ! EZ(t) = f c(s)Q(ds)/I ,(s)Q(ds). 

s s 
PROOF. We first observe that the process describing the behaviour of the 

state of the system is regenerative where the epochs at which the system 

becomes empty are regeneration epochs. There is a cost structure imposed 

on the process. Now, since both the expected time until the first return 

of the system to state O and the expected cost incurred during this time 

are finite, we have by the renewal theoretic argument used in the proof of 

Theorem 7.15 of ROSS [10], 

Next the Lemma follows from Theorem l (using formula (3) it is immediate 

from their definitions that the functions ,(s) and c(s) are bounded by a 

linear and quadratic function, respectively, so, by Theorem 2, both inte­

grals in (20) are absolutely convergent). D 

REMARK 2. By Theorem 3.16 of ROSS [10], we also have that, with probability 

1, Z(t)/t converges to the right side of (20) as t ➔ 00 

We shall now convert formula (20) into an alternative form which allows 

to give an explicit expression for the average cost of the (y 1,y2) policy. 

To do this, recall that k0 (x') has been defined as the expected cost incur­

red until the system is empty when the initial state is x' and the server 

always uses rate 2 (see section 2), and, so, K1 + k0(x') represents the ex-
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pected cost incurred until the system is empty when in the initial state x 

the server was to switch to rate 2 and always remains using rate 2. From 

these interpretations and the definition of c(x) it now follows that 

(21) for all x.> y 1• 

Similarly, it is easily seen that 

(22) 

(23) 

K2 + ko<Y2) = c(yi) + J ko(x)P(y;,dx) 

(yl,oo) 
00 

0 

c(O) + f k0 (x)P(O,dx), 

(yl,oo) 

where P(•,•) is the one-step transition probability function of the embed­

ded Markov chain introduced in section 3. For notational convenience, we 

now introduce functions h 1(s) and h 2(s), s ES. Let h 1(x) be equal to the 

left side of (21) for x > y 1, and h 1(y~) be equal to the· left side of (22), 

and let h 1(0) be equal to the left side of (23). Further, let h2 (x) = k0 (x), 

let h2 (y2) = k0 (y2), and let h2(0) = O. Then, together (21)-(23) can be 

sunnnarized as 

(24) h 1(s) = c(s) + J h2(w)P(s,dw) 

s 
for alls ES. 

Integrating both sides of (24) with respect to the stationary distribution 

Q and using (15), we get after an interchange of the order of integration 

(it is immediate to verify that all integrals are absolutely convergent, 

since any function involved is bounded by a quadratic function), 

s s s 



from which we get by using (4), (5) and Theorem 2, 

(25) 

In the 

(26) 

I c(s)Q(ds) = 

s 

= 

same way, we obtain 

I T(s)Q(ds) = 

s 

I {h1 (s) - h2(s)}Q(ds) = 

s 
00 

a.OQO + I {Kl + k(x)}q(x)dx + {K2 - k(y2)}Q2 • 

Y1 

00 

s0Q0 + I t(x)q(x)dx - t(y2)Q2 

Y1 

13 

(this relation can also be directly obtained from (25) by putting r 0 = r 1 = 

= r 2 = I and K1 = K2 = h = O, and noting that for these values the cost 

functions c(•) and k0(•) reduce to the corresponding time functions T(·) 

and t 0(•)). Now, by Lemma 2 and the relations (25) and (26), the average 

cost of the (y 1,y2) policy with O < y2 :,;; y 1 is given by the formula*) 

00 

a.OQO + f {Kl + k(x)}q(x)dx + {K2 - k(y2)}Q2 

Y1 
00 

SoQo + f t(x)q(x)dx - t(y2)Q2 

Yt 

Using the relations (6), (IO) and (II) and Theorem 2, we find 

THEOREM 3. For any (y 1,y2) policy with O < y2 :,;; y 1 the average (expected) 

cost per unit time is given by 

*) The idea used to derive this formula from (20) is generally applicable 
and a sophisticated use of it has been made in the Markov decision 
model considered in DE LEVE & TIJMS [3]. 
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where K = K1 + K2 and 

REMARK 3. The above formula for the average cost holds also for the (y 1 ,y2) 

policy with y2 = O. This result which will be intuitively clear from con­

tinuity considerations follows by considering the process embedded at points 

in time where either the server switches from rate 1 to rate 2 or the sys­

tem becomes empty and by repeating the above analysis with obvious modifi­

cations. 

REMARK 4. Consider the case of K = 0. Denote an (y 1,y2) policy with y 1 = y2 

by they-policy. Then, the average cost of any-policy is given by 

(28) g(y) = 

This formula agrees with formula (1) on p. 78 in THATCHER [11]. 

REMARK 5. The average cost of the policy that always uses rate 1 equals 

(29) 
r.11. 

( 1 __ 11._) + _1_ + h11. 
g. = ro ( ') 1 o 1.µ o.µ µ o.µ-A 

1 1 

for i = 1, 2, 

as follows by putting o 1 = o2, r 1 = r 2 and K = 0 in (27). Observe that 

g(O) = g2 , however g(O,O) > g2 when K > O. Also, observe that, for any y 2 , 

g(y1,y2) converges to a0 /s0 = g 1 as y 1 ➔ 00 



15 

5. MINIMIZATION OF THE AVERAGE COST 

* * This section discusses the determination of the numbers y 1 and y2 for 

which the average cost function g(y 1 ,y2) is minimal. We shall distinguish 

between the cases K = 0 and K > O. First we consider 

CASE I: K = O. For this case of no switch-over costs we only consider the 

y-policies (as shown by THATCHER [II] a policy of this type is average cost 

optimal among the class of all stationary policies). We find after some 

algebra that the derivative of the average cost function g(y) has the same 

sign as the function 

-I where a= (ho 1µ) (o 1µ-A){r0 + (r2o1 - r 1o2)/(o2-o 1)}. It is immediate to 

verify that h(O) = -a and that h(y) is strictly increasing for y ~ 0 with 

h(y) + 00 as y + 00 • Hence, if a> O, then the average cost is minimal for 

* . * . . they -policy where y is the unique positive root to the equation h(y) = O. 

If a ~ O, then g(y) is minimal 'for y* = 0, that is, the policy that always 

uses rate 2 minimizes the average cost. In table I we give the optimal y* 

* and g(y) for a number of numerical examples, 

CASE 2: K > 0, For this case we find after some algebra 
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and 

where 

-hcr 1µ(cr 1-cr2) 

Y1 = 2A(cr1µ-A) ' 

2 2 hµ (cr 1-cr2) 
y = 3 (cr 1µ-A)(cr 2µ-A) 0 

(r0-rl)(crl-cr2) 
y = + 2 A 

hcr 1 ( cr 1-cr 2) 

(cr 1µ-A)(cr 2µ-A) 

TABLE 1. µ = 2, cr 1 = 4, cr 2 = 5, h = 1, r 0 = 0, r 1 = 5 and r 2 = 10 

A 6 6.5 7 7.5 7.75 

K = 0 * 4.418 y 3.747 3. 146 2.605 2.353 

* g(y) 5. 168 5.925 6.812 7.855 8.450 

K = 10 * 11 .066 9.509 8. 194 6.606 Y1 7.097 

* 3. 108 2.209 1 .463 0.878 0.636 Y2 

* * g(yl ,y2) 5.237 6. 121 7.226 8.541 9.270 
' 

K = 25 * 14.678 12.462 8.520 Y1 10,611 9. 143 

* 3.024 Y2 2.016 1 • 155 0.496 0.234 

* * g(yl,y2) 5,247 6 0 181 7.429 8.979 9.838 

g2 6.750 7.429 8. 167 9.000 9 .472 
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* * Observe that ag(y,y)/ay 1 < 0 for ally, so, for each point (y 1,y2) minimiz-

* * ing the function g(y 1,y2) for O ~ y2 ~ y 1 holds y2 < y 1• Also observe that, 

for each y2 , the partial derivative ag(y 1,y2)/ay1 is positive for all y 1 

➔ 00 sufficiently large and, so, g(y 1,y2) converges to g 1 from below as y1 

which proves that the policy which always uses rate l is not average cost 

optimal (of course, this conclusion also applies to the case of K = O). For 

the numerical computation of the minimum of the function g(y 1,y2) for 

0 ~ y2 ~ y 1, we have used a computer program based on the variable metric 

algorithm of FLETCHER [6] for unconstrained minimization. In table l we 

give for a number of numerical examples the numbers y~ and y; for which the 

function g(y 1,y2) is minimal for O ~ y2 ~ y 1 (numerical computations indi­

cate that the function g(y 1,y2) has a single minimum, although this function 

* * is not convex). We note that g(y 1,y2) should be compared with g2 , since the 

the average cost of the policy that always uses rate 2 may be less than that 

of any (y1,y2) policy. Finally, we note that it is reasonable to conjecture 

that either an (y1,y2) policy with y2 < y 1 or the policy that always uses 

rate 2 is average cost optimal among the class of all possible policies. 
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