stichting
 mathematisch centrum

AFDELING MATHEMATISCHE BESLISKUNDE
MARCH
H.C. TIJMS

ON A SWITCHOVER POLICY FOR CONTROLLING THE WORKLOAD IN
A qUEUEING SYSTEM WITH TWO CONSTANT SERVICE RATES AND
FIXED SWITCHOVER COSTS
Prepublication

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.
The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.w.0), by the Municipality of Amsterdam, by the University of Amsterdam, by the Free University at Amsterdam, and by industries.

On a Switch-Over Policy for Controlling the Workload in a Queueing System with Two Constant Service Rates and Fixed Switch-Over Costs
by
H.C. Tijms

ABSTRACT

This paper considers a single-server system where jobs arrive in accordance with a Poisson process. Each job involves an amount of work which is known upon arrival and is sampled from an exponential distribution. The server has available two constant service rates 1 and 2 where rate 2 is faster than rate 1 . The total work remaining to be processed in the system (= workload) is controlled by a switch-over policy which switches from rate 1 to rate 2 only when the workload exceeds the level y_{1} and switches from rate 2 to rate 1 only when the workload falls to the level y_{2} where $0 \leq y_{2} \leq y_{1}$. The costs of this system consist of a linear holding cost, a service-cost rate and fixed switch-over costs. The purpose of this paper is to derive an explicit expression for the average cost of this policy.

KEY WORDS \& PHRASES: Queueing system with two service rates, workload, switch-over policy, average cost.

1. INTRODUCTION

We consider a service station with a single server where jobs arrive in accordance with a Poisson process with rate λ. Each job involves an amount of work. The amounts of work of the jobs are known upon arrival and are independently sampled from an exponential distribution with mean $1 / \mu$. At any time the server may choose between the service rates 1 and 2 . When the server is in service and uses service rate i an amount of work σ_{i} will be processed per unit time, $i=1,2$. It is assumed that $\sigma_{2}>\sigma_{1}>\lambda / \mu$. Define the workload at time t as the total amount of work remaining to be processed in the system at time $t, t \geq 0$. The server provides service when the system is not empty and uses the following switch-over policy. The server switches from rate 1 to rate 2 only when the workload exceeds the level y_{1} and switches from rate 2 to rate 1 only when the workload falls to the level y_{2}, where y_{1} and y_{2} are given numbers with $0 \leq y_{2} \leq y_{1}$. It is assumed that it takes no time to switch from one service rate to another. We denote the above switch-over policy as the $\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ policy.

The following costs are incurred. There is a holding cost of $h>0$
per unit work in the system per unit time. When the server is busy and uses service rate i there is a service cost at rate $r_{i} \geq 0, i=1,2$. There is a service cost at rate $r_{0} \geq 0$ when the system is empty. The cost of switching from rate $1(2)$ to rate $2(1)$ is $K_{1}\left(K_{2}\right)$, where $K_{1}, K_{2} \geq 0$.

The purpose of this paper is to derive an explicit expression for the average cost of the $\left(y_{1}, y_{2}\right)$ policy.*) Rough1y, this will be done as follows.

[^0]We first consider a Markov chain embedded at the epochs where the server switches from one rate to another and the epochs where the system becomes empty. It will be shown that this Markov chain has a unique stationary probability distribution which can be explicitly given. Because of the existence of this distribution, a formula familiar from the theory of semiMarkov reward processes applies to the average cost. From this formula we shall derive an alternative one which allows to give an explicit expression for the average cost. This analysis will be done in the sections 3 and 4 after we have given some preparatory results in section 2. Finally, section 5 discusses the minimization of the obtained expression for the average cost.

Related work was done by THATCHER [11] who studied the ($\mathrm{y}_{1}, \mathrm{y}_{2}$) policy with $y_{1}=y_{2}$ for the $M / G / 1$ queue with no switch-over costs. Using busy period analysis he derived for the average cost of this policy a formula involving the stationary probability distribution of the workload under rate 1. Also, he proved that a policy of this type is average cost optimal among the class of all stationary policies (cf. also MITCHELL [9]).

2. PRELIMINARIES

In this section we give some preparatory results. We first consider the M/G/1 queue in which jobs arrive in accordance with a Poisson process with rate λ and the amounts of work involved by the jobs are independent, positive random variables having a common probability distribution function F with finite first moment β and finite second moment $\beta^{(2)}$. When the system is not empty the server provides service where an amount of work σ is processed per unit time. It is assumed that $\lambda \beta / \sigma<1$. For any $t \geq 0$, let $V(t)$ be the total
amount of work remaining to be processed in the system at time t (in queueing theory the process $\{V(t)\}$ is of ten called the virtual waiting time process). Observe that $h \int_{0}^{t} V(s) d s$ represents the total holding cost incurred by time t when there is a holding cost of $h>0$ per unit work in the system per unit time. Further, let $B=\inf \{t \geq 0 \mid V(t)=0\}$, i.e., B is the first epoch at which the system is empty.

LEMMA 1. For aZZ x > 0,

$$
\begin{equation*}
E(B \mid V(0)=x)=\frac{x}{\sigma(1-\lambda \beta / \sigma)} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
E\left(\int_{0}^{B} V(t) d t \mid V(0)=x\right)=\frac{x^{2}}{2 \sigma(1-\lambda \beta / \sigma)}+\frac{\lambda x \beta^{(2)}}{2 \sigma^{2}(1-\lambda \beta / \sigma)^{2}} \tag{2}
\end{equation*}
$$

PROOF. For completeness, we prove these known results. For any $x>0$, let A_{x} be the number of arrivals during $(0, x / \sigma)$. Then, A_{x} is Poisson distributed with mean $\lambda x / \sigma$. Also, let $b(x)$ be equal to the left side of (1), and let $b=\int_{0}^{\infty} b(x) d F(x)$, i.e. b is the expected length of a busy period. Now, by the same standard argument as used on p. 449 in FELLER [5],

$$
E\left(B \mid V(0)=x, A_{x}=n\right)=x / \sigma+n b,
$$

so, by unconditioning on $A_{x}, b(x)=x / \sigma+\lambda x b / \sigma$. Together this and the definition of b imply (1). To prove (2), we first observe that under the condition that n arrivals have occurred in $(0, x / \sigma)$, each of the n arrivals epochs has expectation $x / 2 \sigma$ (see Theorem 2.3 in ROSS [10]). Denote by $w(x)$ the left side of (2), and let $w=\int_{0}^{\infty} w(x) d F(x)$. Now, by a similar argument as used above,

$$
E\left(\int_{0}^{B} V(t) d t \mid V(0)=x, A_{x}=n\right)=\frac{x^{2}}{2 \sigma}+\frac{n \beta x}{2 \sigma}+n w+\sum_{k=1}^{n}(n-k) \beta b
$$

so, $w(x)=x^{2} / 2 \sigma+\lambda \beta x^{2} / 2 \sigma^{2}+\lambda x w / \sigma+\lambda^{2} x^{2} \beta^{2} / 2 \sigma^{3}(1-\lambda \beta / \sigma)$ for all $x>0$. Together this and the definition of w imply (2).

We now return to the queueing system introduced in section 1 . The state of this system can be described by a point in $\{x \mid x$ real, $x \geq 0\} u$ $u\left\{x^{\prime} \mid x\right.$ real, $\left.x \geq 0\right\}$, where state $x\left(x^{\prime}\right)$ corresponds to the situation that the workload equals x and the server is adjusted to rate $1(2)$. We now introduce a number of functions that will be needed hereafter. These functions are defined independently of the $\left(y_{1}, y_{2}\right)$ policy. For any $x>0$, define $t_{0}(x)$ as the expected time until the system becomes empty and define $k_{0}(x)$ as the total expected cost incurred during this time when the initial state is x and the server uses always rate 1 . Similarly, let $t_{0}\left(x^{\prime}\right)$ be the expected time until the system becomes empty and let $k_{0}\left(x^{\prime}\right)$ be the total expected cost during this time when the initial state is x^{\prime} and the server uses always rate 2. Using Lemma 1 with $\beta=1 / \mu$ and $\beta^{(2)}=2 / \mu^{2}$, it now follows that

$$
\begin{equation*}
t_{0}(x)=\frac{\mu x}{\left(\sigma_{1} \mu-\lambda\right)} \text { and } k_{0}(x)=\frac{h \mu x^{2}}{2\left(\sigma_{1}^{\mu-\lambda)}\right.}+\frac{h \lambda x}{\left(\sigma_{1} \mu-\lambda\right)^{2}}+\frac{r_{1} \mu x}{\left(\sigma_{1} \mu-\lambda\right)^{\prime}}, x>0 \tag{3}
\end{equation*}
$$

The formulae for $t_{0}\left(x^{\prime}\right)$ and $k_{0}\left(x^{\prime}\right)$ are obtained when in the above formulae σ_{1} and r_{1} are replaced by σ_{2} and r_{2}. Next, let

$$
\begin{equation*}
\alpha_{0}=\frac{r_{0}}{\lambda}+\int_{0}^{\infty} k_{0}(x) \mu e^{-\mu x^{x}} d x \text { and } \beta_{0}=\frac{1}{\lambda}+\int_{0}^{\infty} t_{0}(x) \mu e^{-\mu x} d x \tag{4}
\end{equation*}
$$

that is, β_{0} is the expected time until the next return to state 0 and α_{0} is the total expected cost incurred during this time when the initial state is 0 and the server always uses rate 1 . Then, by (3),

$$
\alpha_{0}=\frac{r_{0}-r_{1}}{\lambda}+\frac{r_{1} \sigma_{1} \mu}{\lambda\left(\sigma_{1}^{\mu-\lambda)}\right.}+\frac{h \sigma_{1}}{\left(\sigma_{1} \mu-\lambda\right)^{2}} \quad \text { and } \quad \beta_{0}=\frac{\sigma_{1}^{\mu}}{\lambda\left(\sigma_{1}^{\mu-\lambda)}\right.}
$$

Finally, define the functions $k(x)$ and $t(x)$ by

$$
\begin{equation*}
k(x)=k_{0}\left(x^{\prime}\right)-k_{0}(x) \text { and } t(x)=t_{0}\left(x^{\prime}\right)-t_{0}(x) \quad \text { for } x>0 \tag{5}
\end{equation*}
$$

Then, by (3),

$$
\begin{equation*}
k(x)=\alpha_{1} x^{2}+\alpha_{2} x \text { and } t(x)=\beta_{1} x \quad \text { for } x>0, \tag{6}
\end{equation*}
$$

where
(7) $\quad \alpha_{1}=\frac{h \mu^{2}\left(\sigma_{1}-\sigma_{2}\right)}{2\left(\sigma_{1} \mu-\lambda\right)\left(\sigma_{2} \mu-\lambda\right)}$,
(8)

$$
\alpha_{2}=\frac{h \lambda}{\left(\sigma_{2} \mu-\lambda\right)^{2}}-\frac{h \lambda}{\left(\sigma_{1} \mu-\lambda\right)^{2}}+\frac{r_{2} \mu}{\left(\sigma_{2} \mu-\lambda\right)}-\frac{r_{1} \mu}{\left(\sigma_{1}^{\mu-\lambda)}\right.}
$$

(9)

$$
\beta_{1}=\frac{\mu^{2}\left(\sigma_{1}-\sigma_{2}\right)}{\left(\sigma_{1} \mu-\lambda\right)\left(\sigma_{2} \mu-\lambda\right)}
$$

By direct integration, for all y > 0,

$$
\begin{align*}
& \int_{y}^{\infty} k(x) \mu e^{-\mu x} d x=e^{-\mu y}\left\{k(y)+\alpha_{3} y+\left(\alpha_{2}+\alpha_{3}\right) / \mu\right\} \tag{10}\\
& \int_{y}^{\infty} t(x) \mu e^{-\mu x} d x=e^{-\mu y}\left\{t(y)+\beta_{1} / \mu\right\} \tag{11}
\end{align*}
$$

where

$$
\begin{equation*}
\alpha_{3}=\frac{h \mu\left(\sigma_{1}-\sigma_{2}\right)}{\left(\sigma_{1}^{\mu-\lambda)\left(\sigma_{2} \mu-\lambda\right)}\right.} . \tag{12}
\end{equation*}
$$

To end this section, we give some required results for a Markov chain with a general state space. Consider a Markov chain $\left\{X_{n}, n=0,1, \ldots\right\}$ with stationary transition probability function $P\left(\cdot,^{\circ}\right)$ on (S, B), where the state space S is a Borel set of a finite dimensional Euclidean space and B is the class of all Borel sets in S. Suppose that this Markov chain satisfies the
following assumption.
ASSUMPTION. There is some state s^{*} (say) such that

$$
\begin{equation*}
\operatorname{Pr}\left\{X_{n}=s^{*} \text { for some } n \geq 1 \mid X_{0}=s\right\}=1 \quad \text { for all } s \in S \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(N \mid X_{0}=s^{*}\right)<\infty \text { where } N=\inf \left\{n \geq 1 \mid X_{n}=s^{*}\right\} \tag{14}
\end{equation*}
$$

We have the following theorem whose proof is included for completeness.
THEOREM 1. There is a unique stationary probability distribution function Q satisfying

$$
\begin{equation*}
Q(A)=\int_{S} P(s, A) Q(d s) \quad \text { for } a l l A \in B \tag{15}
\end{equation*}
$$

Moreover, when the initial state $\mathrm{X}_{0}=\mathrm{s}^{*}$, then

$$
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}} \mathrm{E}\left\{\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{f}\left(\mathrm{X}_{\mathrm{k}}\right)\right\}=\int_{\mathrm{S}} \mathrm{f}(\mathrm{~s}) \mathrm{Q}(\mathrm{ds}) \tag{16}
\end{equation*}
$$

for any real-valued Baire function f such that $\int|f(s)| Q(d s)<\infty$.
PROOF. For any $n \geq 0$, let $P^{n}(s, A)=\operatorname{Pr}\left\{X_{n} \in A \mid X_{0}=s\right\}$. Further, for any $n \geq 1$, let $\widetilde{P}^{n}(s, A)=\operatorname{Pr}\left\{X_{n} \in A, X_{k} \neq s^{*}\right.$ for $\left.1 \leq k \leq n \mid X_{0}=s\right\}$, and let $\widetilde{P}^{0}(\mathrm{~s}, \mathrm{~A})=\mathrm{P}^{0}(\mathrm{~s}, \mathrm{~A})$. Define $\mathrm{f}_{\mathrm{n}}(\mathrm{s})=\operatorname{Pr}\left\{\mathrm{N}=\mathrm{n} \mid \mathrm{X}_{0}=\mathrm{s}\right\}$ for $\mathrm{n} \geq 1$, and define $f_{0}(s)=0$. Then (cf. p. 365 in FELLER [5]), for all s and A,

$$
\begin{equation*}
P^{n}(s, A)=\widetilde{P}^{n}(s, A)+\sum_{k=0}^{n} P^{n-k}\left(s^{*}, A\right) f_{k}(s) \quad \text { for all } n \geq 0 \tag{17}
\end{equation*}
$$

By (13), $\sum_{0}^{\infty} f_{n}\left(s^{*}\right)=1$. Hence the relation (17) with $s=s^{*}$ is a renewal equation for any A. Further, for any A,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \widetilde{P}^{n}\left(s^{*}, A\right) \leq \sum_{n=0}^{\infty} \widetilde{P}^{n}\left(s^{*}, S\right)=E\left(N \mid X_{0}=s^{*}\right)=\sum_{n=0}^{\infty} n f_{n}\left(s^{*}\right), \tag{18}
\end{equation*}
$$

so, by (14), both the first series and the last series in (18) are convergent. Now, by applying the Key Renewal Theorem (see p. 292 in FELLER [4]), for any A,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n} P^{k}\left(s^{*}, A\right)=\sum_{n=0}^{\infty} P^{n}\left(s^{*}, A\right) / \sum_{n=0}^{\infty} n f_{n}\left(s^{*}\right) \tag{19}
\end{equation*}
$$

Now, for any A, define $Q(A)$ as the right side of (19). Then, by (18), Q is a probability measure. Next observe that, by (13), $\sum_{0}^{\infty} f_{n}(s)=1$ and $\widetilde{\mathrm{P}}^{\mathrm{n}}(\mathrm{s}, \mathrm{A}) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$ for all s and A . Using this we obtain from (17) and (19) that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n} P^{k}(s, A)=Q(A) \quad \text { for } a 11 s \in S \text { and } A \in B
$$

from which it is easy to derive that Q satisfies the steady state equation (15) (cf. pp. 133-134 in BREIMAN [1]). Since the Markov chain $\left\{X_{n}\right\}$ has no two disjoint closed sets, we have by Theorem 7.16 in BREIMAN [1] that Q is the unique probability distribution satisfying (15). To prove (16), let m be a finite measure on (S, B) such that $m(A)>0$ if and only if $s{ }^{*} \in A$. Then, by (13), $m(A)>0$ implies $\operatorname{Pr}\left\{X_{n} \in A\right.$ for some $\left.n \geq 1 \mid X_{0}=s\right\}=1$ for all $s \in S$. Consequently, the Markov chain $\left\{X_{n}\right\}$ satisfies the so-called recurrence condition of Harris (cf. pp. 206-207 in JAIN [8]). Relation (15) now follows from Theorem 3.3 in JAIN [8].

3. AN EMBEDDED MARKOV CHAIN

In this section we shall determine the stationary probability distribution of the Markov chain embedded at the epochs where the server switches from one rate to another and the epochs where the system becomes empty. Consider the queueing system which is controlled by an (y_{1}, y_{2}) policy
with $0<y_{2} \leq y_{1}$ (the $\left(y_{1}, y_{2}\right)$ policy with $y_{2}=0$ will be considered separate$1 y$ in the next section). For ease we assume from now on that the system is empty at epoch 0. Let $T_{0}=0$, and, for $n \geq 1$, let T_{n} be the nth epoch at which either the server switches from one rate to another or the system becomes empty. For any $n \geq 0$, define X_{n} as the state of the system at epoch T_{n} with the convention that we take X_{n} equal to $x\left(x^{\prime}\right)$ when at epoch T_{n} the workload equals x and the server switches from rate $1(2)$ to rate $2(1)$. Observe that $X_{0}=0$. The embedded process $\left\{X_{n}, n \geq 0\right\}$ is a Markov chain with state space

$$
S=\{0\} \cup\left\{x \mid x>y_{1}\right\} \cup\left\{y_{2}^{\prime}\right\}
$$

Denote by $P\left(\cdot,^{\bullet}\right)$ the one-step transition probability function of this Markov chain, that is, $P(s, A)=\operatorname{Pr}\left\{X_{n} \in A \mid X_{n-1}=s\right\}$. For the above Markov chain the assumption of Theorem 1 is satisfied for $s^{*}=0$, so, this Markov chain has a unique stationary probability distribution $Q\left({ }^{\circ}\right)$ (say) satisfying (15). This stationary distribution Q will now be determined explicitly. To do this, define, for all $0<x<\mathrm{y}_{1}$ and $\mathrm{v} \geq \mathrm{y}_{1}$,

$$
\begin{aligned}
p(x, v)= & \text { probability that the state of the first entry of the system } \\
& \text { into the set of states }\{0\} u\left\{u \mid u>y_{1}\right\} \text { belongs to the set } \\
& \{u \mid u>v\} \text { when the initial state is } x .
\end{aligned}
$$

Further, let $p_{0}(x)=1-p\left(x, y_{1}\right)$ for $0<x<y_{1}$. For shortness we write $Q_{0}=Q(\{0\}), Q(v)=Q(\{u \mid u>v\})$ and $Q_{2}=Q\left(\left\{y_{2}^{\prime}\right\}\right)$. Then, (15) gives

$$
Q_{0}=Q_{2} p_{0}\left(y_{2}\right)+Q_{0} \int_{0}^{1} p_{0}(y) \mu e^{-\mu y} d y, \quad Q_{2}=Q\left(y_{1}\right), \quad \text { and }
$$

$$
Q(v)=Q_{2} p\left(y_{2}, v\right)+Q_{0}\left\{e^{-\mu v}+\int_{0}^{y} p(y, v) \mu e^{-\mu y_{d y}}\right\} \text { for all } v \geq y_{1} .
$$

Further, by $Q_{0}+Q\left(y_{1}\right)+Q_{2}=1$, we have $Q_{2}=\left(1-Q_{0}\right) / 2$. We shall now determine $p(x, v)$. Using a standard argument, we get for any $v \geq y_{1}$ and Δx very sma11,

$$
\begin{aligned}
p(x+\Delta x, v) & =\frac{\lambda \Delta x}{\sigma_{1}}\left\{\int_{0}^{y_{1}} \int_{0}^{-x} p(x+y, v) \mu e^{-\mu y} d y+e^{-\mu(v-x)}\right\}+ \\
& +\left(1-\frac{\lambda \Delta x}{\sigma_{1}}\right) p(x, v)+o(\Delta x) \quad \text { for } 0<x<y_{1},
\end{aligned}
$$

which implies that, for all $\mathrm{v} \geq \mathrm{y}_{1}$,

$$
\begin{aligned}
& \frac{\partial p(x, v)}{\partial x}=\frac{\lambda}{\sigma_{1}}\left[-p(x, v)+\int_{0}^{y} p(x+y, v) \mu e^{-\mu y} d y+e^{-\mu(v-x)}\right] \\
& \text { for } 0<x<y_{1} .
\end{aligned}
$$

Routine analysis using Laplace transforms and the boundary condition $p(x, v) \rightarrow 0$ as $x \rightarrow 0$ yields after some algebra

$$
p(x, v)=\lambda e^{-\left(\sigma_{1} \mu v-\lambda y_{1}\right) / \sigma_{1}}\left[e^{\left(\sigma_{1} \mu-\lambda\right) x / \sigma_{1}}-1\right]\left[\sigma_{1}^{\left.\mu-\lambda e^{-\left(\sigma_{1} \mu-\lambda\right) y_{1} / \sigma_{1}}\right]^{-1}}\right.
$$

for all $0<x<y_{1}$ and $v \geq y_{1}$. From $p_{0}(x)=1-p\left(x, y_{1}\right)$,

$$
\begin{array}{r}
\mathrm{p}_{0}(\mathrm{x})=\left[\sigma_{1} \mu-\lambda e^{-\left(\sigma_{1} \mu-\lambda\right)\left(y_{1}-x\right) / \sigma_{1}}\right]\left[\sigma_{1} \mu-\lambda e^{\left.-\left(\sigma_{1} \mu-\lambda\right) y_{1} / \sigma_{1}\right]-1}\right. \\
\text { for } 0<x<y_{1} .
\end{array}
$$

The formula for $p_{0}(x)$ was also found in KEILSON [8]. Using these results we get after some algebra

THEOREM 2. The stationary distribution Q is given by

$$
Q_{0}=c^{-1}\left\{\sigma_{1} \mu-\lambda e^{-\left(\sigma_{1} \mu-\lambda\right)\left(y_{1}-y_{2}\right) / \sigma_{1}}\right\}
$$

$$
\begin{aligned}
& Q_{2}=c^{-1}\left(\sigma_{1}^{\mu-\lambda)} e^{-\left(\sigma_{1} \mu-\lambda\right) y_{1} / \sigma_{1}}\right. \\
& q(v)=c^{-1} \mu\left(\sigma_{1} \mu-\lambda\right) e^{-\left(\sigma_{1} \mu v-\lambda y_{1}\right) / \sigma_{1}}
\end{aligned}
$$

for $\operatorname{all} \mathrm{v} \geq \mathrm{y}_{1}$, where $\mathrm{q}(\mathrm{v})=-\partial Q(\mathrm{v}) / \partial \mathrm{v}$, and

$$
c=\sigma_{1}^{\mu}+\left(2 \sigma_{1} \mu-2 \lambda\right) e^{-\left(\sigma_{1} \mu-\lambda\right) y_{1} / \sigma_{1}}-\lambda e^{-\left(\sigma_{1} \mu-\lambda\right)\left(y_{1}-y_{2}\right) / \sigma_{1}} .
$$

REMARK 1. For the case where the amount of work of a job has an arbitrary distribution function F the resulting differential equation for $p(x, v)$ can be converted into a delayed renewal equation by integration, and this fact allows to give a closed expression for $\mathrm{p}(\mathrm{x}, \mathrm{v})$ in which the renewal function of the defective distribution function $\left(\lambda / \sigma_{1}\right) \int_{0}^{y}\{1-F(u)\} d u$ appears, cf. COHEN [2]. Hence Q can be explicitly given in terms of this renewal function.
4. THE AVERAGE COSt OF THE $\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ POLICY

In this section we shall derive an explicit expression for the average cost of the $\left(y_{1}, y_{2}\right)$ policy. To get to this expression, we first establish a formula which is familiar from the theory of semi-Markov processes with a cost structure. Next we derive from this formula an alternative one which allows to give an explicit expression for the average cost of the $\left(y_{1}, y_{2}\right)$ policy.

Consider in the first instance the $\left(y_{1}, y_{2}\right)$ policy with $0<y_{2} \leq y_{1}$. Let $Z(t)$ be the total cost incurred during $[0, t), t \geq 0$. For any $n \geq 0$, let $\tau_{n}=T_{n+1}-T_{n}$, i.e., τ_{n} is the length of the time interval between the nth and the ($n+1$)st epoch at which either the server switches from one rate to another or the system becomes empty. Further, for any $n \geq 0$, denote by Z_{n} the total cost incurred during $\left[T_{n}, T_{n+1}\right.$), where Z_{n} includes the appropriate
switch-over cost when at epoch T_{n} the server switches from one rate to another. Finally, let $\tau(s)=E\left(\tau_{n} \mid X_{n}=s\right)$, and let $c(s)=E\left(Z_{n} \mid X_{n}=s\right)$ for $s \in S$. LEMMA 2.
(20)

$$
\lim _{\ddagger \rightarrow \infty} \frac{1}{t} E Z(t)=\int_{S} c(s) Q(d s) / \int_{S} \tau(s) Q(d s) .
$$

PROOF. We first observe that the process describing the behaviour of the state of the system is regenerative where the epochs at which the system becomes empty are regeneration epochs. There is a cost structure imposed on the process. Now, since both the expected time until the first return of the system to state 0 and the expected cost incurred during this time are finite, we have by the renewal theoretic argument used in the proof of Theorem 7.15 of ROSS [10],

$$
\lim _{t \rightarrow \infty} \frac{1}{t} E Z(t)=\frac{1 i_{n} \rightarrow \infty}{} \frac{1}{n} E\left\{\sum_{k=0}^{n-1} z_{k}\right\} / \lim _{n \rightarrow \infty} \frac{1}{n} E\left\{\sum_{k=0}^{n-1} \tau_{k}\right\} .
$$

Next the Lemma follows from Theorem 1 (using formula (3) it is immediate from their definitions that the functions $\tau(s)$ and $c(s)$ are bounded by a linear and quadratic function, respectively, so, by Theorem 2, both integrals in (20) are absolutely convergent).

REMARK 2. By Theorem 3.16 of ROSS [10], we also have that, with probability $1, Z(t) / t$ converges to the right side of (20) as $t \rightarrow \infty$.

We shall now convert formula (20) into an alternative form which allows to give an explicit expression for the average cost of the $\left(y_{1}, y_{2}\right)$ policy. To do this, recall that $\mathrm{k}_{0}\left(\mathrm{x}^{\prime}\right)$ has been defined as the expected cost incurred until the system is empty when the initial state is x^{\prime} and the server always uses rate 2 (see section 2), and, so, $K_{1}+k_{0}\left(x^{\prime}\right)$ represents the ex-
pected cost incurred until the system is empty when in the initial state x the server was to switch to rate 2 and always remains using rate 2 . From these interpretations and the definition of $c(x)$ it now follows that

$$
\begin{equation*}
k_{1}+k_{0}\left(x^{\prime}\right)=c(x)+k_{0}\left(y_{2}^{p}\right) \quad \text { for all } x .>y_{1} \tag{21}
\end{equation*}
$$

Similarly, it is easily seen that

$$
\begin{align*}
& K_{2}+k_{0}\left(y_{2}\right)=c\left(y_{2}^{\prime}\right)+\int_{\left(y_{1}, \infty\right)} k_{0}(x) P\left(y_{2}^{\prime}, d x\right) \tag{22}\\
& \frac{r_{0}}{\lambda}+\int_{0}^{\infty} k_{0}(y) \mu e^{-\mu y_{1}} d y=c(0)+\int_{\left(y_{1}, \infty\right)} k_{0}(x) P(0, d x), \tag{23}
\end{align*}
$$

where $P(\cdot, \cdot)$ is the one-step transition probability function of the embedded Markov chain introduced in section 3. For notational convenience, we now introduce functions $h_{1}(s)$ and $h_{2}(s), s \in S$. Let $h_{1}(x)$ be equal to the left side of (21) for $x>y_{1}$, and $h_{1}\left(y_{2}^{\prime}\right)$ be equal to the left side of (22), and let $h_{1}(0)$ be equal to the left side of (23). Further, let $h_{2}(x)=k_{0}(x)$, let $h_{2}\left(y_{2}^{\prime}\right)=k_{0}\left(y_{2}^{\prime}\right)$, and let $h_{2}^{\prime}(0)=0$. Then, together (21)-(23) can be summarized as

$$
\begin{equation*}
h_{1}(s)=c(s)+\int_{S} h_{2}(w) P(s, d w) \quad \text { for } a 11 s \in S \tag{24}
\end{equation*}
$$

Integrating both sides of (24) with respect to the stationary distribution Q and using (15), we get after an interchange of the order of integration (it is immediate to verify that all integrals are absolutely convergent, since any function involved is bounded by a quadratic function),

$$
\int_{S} h_{1}(s) Q(d s)=\int_{S} c(s) Q(d s)+\int_{S} h_{2}(w) Q(d w),
$$

from which we get by using (4), (5) and Theorem 2,

$$
\begin{align*}
\int_{S} c(s) Q(d s) & =\int_{S}\left\{h_{1}(s)-h_{2}(s)\right\} Q(d s)= \tag{25}\\
& =\alpha_{0} Q_{0}+\int_{y_{1}}^{\infty}\left\{K_{1}+k(x)\right\} q(x) d x+\left\{K_{2}-k\left(y_{2}\right)\right\} Q_{2} .
\end{align*}
$$

In the same way, we obtain

$$
\begin{equation*}
\int_{S} \tau(s) Q(d s)=\beta_{0} Q_{0}+\int_{y_{1}}^{\infty} t(x) q(x) d x-t\left(y_{2}\right) Q_{2} \tag{26}
\end{equation*}
$$

(this relation can also be directly obtained from (25) by putting $r_{0}=r_{1}=$ $=r_{2}=1$ and $K_{1}=K_{2}=h=0$, and noting that for these values the cost functions $c(\cdot)$ and $k_{0}(\cdot)$ reduce to the corresponding time functions $\tau(\cdot)$ and $\left.t_{0}(\cdot)\right)$. Now, by Lemma 2 and the relations (25) and (26), the average cost of the $\left(y_{1}, y_{2}\right)$ policy with $0<y_{2} \leq y_{1}$ is given by the formula*)

$$
g\left(y_{1}, y_{2}\right)=\frac{\alpha_{0} Q_{0}+\int_{y_{1}}^{\infty}\left\{K_{1}+k(x)\right\} q(x) d x+\left\{K_{2}-k\left(y_{2}\right)\right\} Q_{2}}{\beta_{0} Q_{0}+\int_{y_{1}}^{\infty} t(x) q(x) d x-t\left(y_{2}\right) Q_{2}}
$$

Using the relations (6), (10) and (11) and Theorem 2, we find

THEOREM 3. For any $\left(y_{1}, y_{2}\right)$ policy with $0<y_{2} \leq y_{1}$ the average (expected) cost per unit time is given by

[^1](27) $g\left(y_{1}, y_{2}\right)=\frac{\alpha_{0} R\left(y_{1}, y_{2}\right)+\alpha_{1}\left(y_{1}^{2}-y_{2}^{2}\right)+\alpha_{2}\left(y_{1}-y_{2}\right)+\alpha_{3} y_{1}+\left(\alpha_{2}+\alpha_{3}\right) / \mu+k}{\beta_{0} R\left(y_{1}, y_{2}\right)+\beta_{1}\left(y_{1}-y_{2}\right)+\beta_{1} / \mu}$
where $\mathrm{K}=\mathrm{K}_{1}+\mathrm{K}_{2}$ and
$$
\mathrm{R}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)=\left(\sigma_{1} \mu-\lambda\right)^{-1}\left\{\sigma_{1} \mu \mathrm{e}^{\left.\left(\sigma_{1} \mu-\lambda\right) \mathrm{y}_{1} / \sigma_{1}-\lambda \mathrm{e}^{\left(\sigma_{1} \mu-\lambda\right) \mathrm{y}_{2} / \sigma_{1}}\right\}}\right.
$$

REMARK 3. The above formula for the average cost holds also for the ($\mathrm{y}_{1}, \mathrm{y}_{2}$) policy with $y_{2}=0$. This result which will be intuitively clear from continuity considerations follows by considering the process embedded at points in time where either the server switches from rate 1 to rate 2 or the system becomes empty and by repeating the above analysis with obvious modifications.

REMARK 4. Consider the case of $K=0$. Denote an (y_{1}, y_{2}) policy with $y_{1}=y_{2}$ by the y-policy. Then, the average cost of an y-policy is given by

$$
\begin{equation*}
g(y)=\frac{\alpha_{0} e^{\left(\sigma_{1} \mu-\lambda\right) y / \sigma_{1}}+\alpha_{3} y+\left(\alpha_{2}+\alpha_{3}\right) / \mu}{\beta_{0} e^{\left(\sigma_{1} \mu-\lambda\right) y / \sigma_{1}}+\beta_{1} / \mu} \tag{28}
\end{equation*}
$$

This formula agrees with formula (1) on p. 78 in THATCHER [11].
REMARK 5. The average cost of the policy that always uses rate i equals

$$
\begin{equation*}
g_{i}=r_{0}\left(1-\frac{\lambda}{\sigma_{i^{\mu}}}\right)+\frac{r_{i}{ }^{\lambda}}{\sigma_{i^{\mu}}}+\frac{h \lambda}{\mu\left(\sigma_{i}{ }^{\mu-\lambda)}\right.} \quad \text { for } i=1,2, \tag{29}
\end{equation*}
$$

as follows by putting $\sigma_{1}=\sigma_{2}, r_{1}=r_{2}$ and $K=0$ in (27). Observe that $g(0)=g_{2}$, however $g(0,0)>g_{2}$ when $K>0$. Also, observe that, for any y_{2}, $g\left(y_{1}, y_{2}\right)$ converges to $\alpha_{0} / \beta_{0}=g_{1}$ as $y_{1} \rightarrow \infty$.
5. MINIMIZATION OF THE AVERAGE COST

This section discusses the determination of the numbers y_{1}^{*} and y_{2}^{*} for which the average cost function $g\left(y_{1}, y_{2}\right)$ is minimal. We shall distinguish between the cases $K=0$ and $K>0$. First we consider

CASE 1: $K=0$. For this case of no switch-over costs we only consider the y-policies (as shown by THATCHER [11] a policy of this type is average cost optimal among the class of all stationary policies). We find after some algebra that the derivative of the average cost function $g(y)$ has the same sign as the function

$$
h(y)=y+\lambda\left(\sigma_{1}-\sigma_{2}\right)\left(\sigma_{1} \mu-\lambda\right)^{-1}\left(\sigma_{2} \mu-\lambda\right)^{-1}\left\{1-e^{-\left(\sigma_{1} \mu-\lambda\right) y / \sigma_{1}}\right\}-a
$$

where $a=\left(h \sigma_{1} \mu\right)^{-1}\left(\sigma_{1} \mu-\lambda\right)\left\{r_{0}+\left(r_{2} \sigma_{1}-r_{1} \sigma_{2}\right) /\left(\sigma_{2}-\sigma_{1}\right)\right\}$. It is immediate to verify that $h(0)=-a$ and that $h(y)$ is strictly increasing for $y \geq 0$ with $h(y) \rightarrow \infty$ as $y \rightarrow \infty$. Hence, if $a>0$, then the average cost is minimal for the y^{*}-policy where y^{*} is the unique positive root to the equation $h(y)=0$. If $a \leq 0$, then $g(y)$ is minimal for $y^{*}=0$, that is, the policy that always uses rate 2 minimizes the average cost. In table 1 we give the optimal y^{*} and $g\left(y^{*}\right)$ for a number of numerical examples.

CASE 2: $K>0$. For this case we find after some algebra

$$
\begin{aligned}
\frac{\partial \mathrm{g}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)}{\partial \mathrm{y}_{1}} & =\phi\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\left[\mu \mathrm{e}^{\left(\sigma_{1}^{\mu-\lambda)} \mathrm{y}_{1} / \sigma_{1}\left\{\gamma_{1}\left(y_{1}^{2}-y_{2}^{2}\right)+\gamma_{2}\left(y_{1}-y_{2}\right)-\frac{\mathrm{K} \sigma_{1}\left(\sigma_{2} \mu-\lambda\right)}{\lambda \mu}\right\}+\right.}\right. \\
& +\frac{\lambda}{\left(\sigma_{1} \mu-\lambda\right)}\left\{e^{\left(\sigma_{1} \mu-\lambda\right) y_{2} / \sigma_{1}-e^{\left.\left(\sigma_{1} \mu-\lambda\right) y_{1} / \sigma_{1}\right\}}\left\{2 \gamma_{1} y_{1}+\frac{2 \gamma_{1}}{\mu}+\gamma_{2}\right\}+}\right. \\
& \left.+\frac{\gamma_{3}}{2}\left(y_{1}-y_{2}\right)^{2}+\frac{\gamma_{3}}{\mu}\left(y_{1}-y_{2}\right)-K\left(\sigma_{1}-\sigma_{2}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial g\left(y_{1}, y_{2}\right)}{\partial y_{2}} & =\phi\left(y_{1}, y_{2}\right)\left[\frac{-\lambda}{\sigma_{1}} e^{\left(\sigma_{1} \mu-\lambda\right) y_{2} / \sigma_{1}\left\{\gamma_{1}\left(y_{1}^{2}-y_{2}^{2}\right)+\gamma_{2}\left(y_{1}-y_{2}\right)+\frac{2 \gamma_{1}}{\mu} y_{1}+\right.}\right. \\
& \left.+\frac{2 \gamma_{1}}{\mu^{2}}+\frac{\gamma_{2}}{\mu}-\frac{K \sigma_{1}\left(\sigma_{2} \mu-\lambda\right)}{\lambda \mu}\right\}+R\left(y_{1}, y_{2}\right)\left(2 \gamma_{1} y_{1}+\gamma_{2}\right)+\frac{\gamma_{3}}{2}\left(y_{1}-y_{2}\right)^{2}+ \\
& \left.+\frac{\gamma_{3}}{\mu}\left(y_{1}-y_{2}\right)+\frac{\gamma_{3}}{\mu^{2}}+K\left(\sigma_{1}-\sigma_{2}\right)\right],
\end{aligned}
$$

where

$$
\begin{aligned}
& \phi\left(y_{1}, y_{2}\right)=\mu^{2}\left(\sigma_{1} \mu-\lambda\right)^{-1}\left(\sigma_{2} \mu-\lambda\right)^{-1}\left\{\beta_{0} R\left(y_{1}, y_{2}\right)+\beta_{1}\left(y_{1}-y_{2}\right)+\beta_{1} / \mu\right\}^{-2} \\
& \gamma_{1}=\frac{-h \sigma_{1} \mu\left(\sigma_{1}-\sigma_{2}\right)}{2 \lambda\left(\sigma_{1} \mu-\lambda\right)}, \quad \gamma_{2}=\frac{\left(r_{0}-r_{1}\right)\left(\sigma_{1}-\sigma_{2}\right)}{\lambda}+\frac{\left(r_{1}-r_{2}\right) \sigma_{1}}{\lambda}-\frac{h \sigma_{1}\left(\sigma_{1}-\sigma_{2}\right)}{\left(\sigma_{1} \mu-\lambda\right)\left(\sigma_{2} \mu-\lambda\right)} \\
& \gamma_{3}=\frac{h \mu^{2}\left(\sigma_{1}-\sigma_{2}\right)^{2}}{\left(\sigma_{1} \mu-\lambda\right)\left(\sigma_{2} \mu-\lambda\right)} .
\end{aligned}
$$

TABLE 1. $\mu=2, \sigma_{1}=4, \sigma_{2}=5, h=1, r_{0}=0, r_{1}=5$ and $r_{2}=10$

	λ	6	6.5	7	7.5	7.75
$\mathrm{K}=0$	y^{*}	4.418	3.747	3.146	2.605	2.353
	$g\left(y^{*}\right)$	5.168	5.925	6.812	7.855	8.450
$K=10$	y_{1}^{*}	11.066	9.509	8.194	7.097	6.606
	y_{2}^{*}	3.108	2.209	1.463	0.878	0.636
	$g\left(y_{1}^{*}, y_{2}^{*}\right)$	5.237	6.121	7.226	8.541	9.270
$K=25$	y_{1}^{*}	14.678	12.462	10.611	9.143	8.520
	y_{2}^{*}	3.024	2.016	1.155	0.496	0.234
	$g\left(y_{1}^{*}, y_{2}^{*}\right)$	5.247	6.181	7.429	8.979	9.838
	g_{2}	6.750	7.429	8.167	9.000	9.472

Observe that $\partial g(\bar{y}, \bar{y}) / \partial y_{1}<0$ for all \bar{y}, so, for each point $\left(y_{1}^{*}, y_{2}^{*}\right)$ minimizing the function $g\left(y_{1}, y_{2}\right)$ for $0 \leq y_{2} \leq y_{1}$ holds $y_{2}^{*}<y_{1}^{*}$. Also observe that, for each y_{2}, the partial derivative $\partial g\left(y_{1}, y_{2}\right) / \partial y_{1}$ is positive for all y_{1} sufficiently large and, so, $g\left(y_{1}, y_{2}\right)$ converges to g_{1} from below as $y_{1} \rightarrow \infty$ which proves that the policy which always uses rate 1 is not average cost optimal (of course, this conclusion also applies to the case of $K=0$). For the numerical computation of the minimum of the function $g\left(y_{1}, y_{2}\right)$ for $0 \leq y_{2} \leq y_{1}$, we have used a computer program based on the variable metric algorithm of FLETCHER [6] for unconstrained minimization. In table 1 we give for a number of numerical examples the numbers y_{1}^{*} and y_{2}^{*} for which the function $g\left(y_{1}, y_{2}\right)$ is minimal for $0 \leq y_{2} \leq y_{1}$ (numerical computations indicate that the function $g\left(y_{1}, y_{2}\right)$ has a single minimum, although this function is not convex). We note that $g\left(y_{1}^{*}, y_{2}^{*}\right)$ should be compared with g_{2}, since the the average cost of the policy that always uses rate 2 may be less than that of any $\left(y_{1}, y_{2}\right)$ policy. Finally, we note that it is reasonable to conjecture that either an $\left(y_{1}, y_{2}\right)$ policy with $y_{2}<y_{1}$ or the policy that always uses rate 2 is average cost optimal among the class of all possible policies.

ACKNOWLEDGMENT

I would like to thank Mr. ROB VAN DER HORST, computer programmer at the Mathematisch Centmu, for numerical assistance.

REFERENCES

1. BREIMAN, L., Probability, Addison-Wesley, Reading, Massachusetts (1968).
2. COHEN, J.W., A Simple Derivation of the Distribution of the Supremum of
the Virtual Waiting Time during a Busy Period of an $M / G / 1$ Queue, Report of the Mathematical Institute, University of Utrecht, Holland (1974).
3. DE LEVE, G., \& H.C. TIJMS, A General Markov Decision Method, with Applications to Controlled Queueing Systems, Report BN 24/74, Mathematisch Centrum, Amsterdam (1974).
4. FELLER, W., An Introduction to Probability Theory and its Applications, Vol. 1 (2nd ed.), Wiley, New York (1957).
5. FELLER, W., An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, New York (1966).
6. FLETCHER, R., A New Approach to Variable Metric Algorithms, Comp. J., Vol. 13 (1970), 317-322.
7. JAIN, N.C., Some Limit Theorems for General Markov Processes, Z. Wahrschein1ichkeitstheorie verw. Geb., Vol. $\underline{6}(1966), 206-223$.
8. KEILSON, J., A Gambler's Ruin Problem in queueing Theory, Operations Res., Vo1. 11 (1963), 570-576.
9. MITCHELL, B., Optimal Service-Rate Selection in an M/G/1 queue, Siam Journal of App1. Math., Vol. $\underline{24}$ (1973), 19-35.
10. ROSS, S.M., Applied Probability Models with Optimization Applications, Holden-Day, Inc., San Francisco (1970).
11. THATCHER, R.M., Optimal Single-Channel Service Policies for Stochastic Arrivals, Report ORC 68-16, Operations Research Center, University of California, Berkeley (1968).

[^0]: *) The analysis given in this paper is also applicable when we assume an arbitrary distribution for the amount of work of a job. However, in this case no simple explicit results can be obtained.

[^1]: *) The idea used to derive this formula from (20) is generally applicable and a sophisticated use of it has been made in the Markov decision model considered in DE LEVE \& TIJMS [3].

