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CONVERGENT DYNAMIC PROGRAMMING 

by 
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ABSTRACT 

In this paper we investigate the dynamic programming problem for 

which the total absolute return is finite for each policy, we call 

this the convergent dynamic programming problem. 
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policies, existence optimal policies. 
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1. INTRODUCTION AND SUMMARY 

In BLACKWELL [1] the positive dynamic programming problem (p.d.p.), 

i.e., all returns are nonnegative, was investigated. In STRAUCH [8] the 

negative dynamic programming problem (n.d.p.), i.e., all returns are non­

positive, was studied. In HORDIJK [6] we introduced the assumption that 

the total absolute return is finite for each policy. Let us call this the 

convergent dynamic progrannning problem (c.d.p.). It should be noted that, 

in case the supremum of the total expected returns is finite for a p.d.p 

problem it is also of the c.d.p. type. Moreover, it seems to us that with 

the exception of problems of sequential statistical decision type (see Sec­

tion 9 of HORDIJK [6]) the c.d.p. case also covers the interesting n.d.p. 

problems. 

The c.d.p. problem with a denumerable state space was investigated 

to some extent in Section 6 of HORDIJK [6]. The optimality equation was 

derived and criteria for a stationary policy to be optimal were given. 

A few other results for c.d.p. are given in this paper. 

In section 2 it is proved that the supremum of the total expected 

return over the nearly conserving policies equals the supremum over all 

policies, i.e., equals the value function. In section 3 it is shown that 

the property: the supremum of the total expected return over the conserving 

equals the value function, provides a characterization for the existence 

of optimal policies. Moreover it is proved there that the existence of an 

optimal policy implies the existence of a stationary optimal policy. An 

analogous result for the p.d.p. was obtained in BLACKWELL [2] and in 

ORNSTEIN [7]. 
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In section 4 the c.d.p. with a finite state space is studied. 

A simple counterexample is given, showing that the existence of an optimal 

policy is not always guaranteed. Moreover, some conditions implying the 

existence of an optimal stationary policy are provided. 

In the remainder of this section we introduce the notations used 

in this paper. 

We are concerned with a dynamic system which at times t = 0,1, ••• , 

is observed to be in one of a possible number of states. Let E denote the 

countable space of all possible states. If at time t the system is observed 

in state i then a decision must be chosen from a given set P(i). The prob­

ability that the system moves to a new state j (the so-called transition 

probability) is a function only of the last observed state i and the sub­

sequently taken decision. In order to avoid an over-burdened notation we 

shall identify the decision to be taken with the probability measure on E 

that is induced by it. Thus for each i EE the set P(i) consists of prob­

ability measures p(i,.). (We allow that with positive probability the sys­

tem "breaks down" or "disappears", so p(i,j) ~ 0, i,j EE and 

p(i,E) := l p(i,j) s 1, i EE.) Let P be the set of all stochastic matri­
jEE 

ces P with p(i,•) E P(i) for each i EE. Hence P has the produat property: 

with P1 and P2 the set P also contains all those P with for every i E E in 

the .th row of p . h h .th of p 1' 
h .th row of P2• 1 eit er t e 1 row or t e 1 

A policy R for controlling the system is a sequence of decision rules 

for the times t = 0,1, ••• ,, where the decision rule for time tis the in­

struction at time t which prescribes the decision to be taken. This in­

struction may depend on the history, i.e., the states and decisions at 

times 0,1, ••• , t-1 and the state at time t. When the decision rule is inde-
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pendent of the past history except for the present state then it can be 

identified with a PEP. A memoryless or Markov policy Risa sequence 

P0 ,P 1, ••• , E P, where Pt denotes the decision rule at time t. Pt also gives 

the transition probabilities at time t. It follows from a theorem in 

DERMAN & STRAUCH [4], generalized in STRAUCH & VEINOTT [9] that we do not 

loose genE~rality by restricting the class of policies to the Markov poli­

cies. IndE~ed, if the innnediate return is a concave function in P and P con­

tains all randomized decision rules then the supremum of the total expected 

return ovE~r all policies equals the supremum over the Markov policies (see 

Section 13 of HORDIJK [6]). In this paper we assume that the above suprema 

are equal and we shall only use Markov policies except in the proof of 

Theorem 2.1 where we use also nonmemoryless policies. 

A memoryless policy which takes at all times the same decision rule, 

00 

i.e., P := (P,P, ••• ), PEP is called a stationary policy. 

When in state i decision p(i,•) is taken then an innnediate return de­

pending on i and p(i,•) is incurred. Let r (i) be the innnediate return when 
p 

taking decision p(i,·)(the i th row of matrix P) in state i and writer for 
p 

the vector with i th component r (i). Note that if P, Q E P with p(i,·) = 
p 

= q(i,·) then rp(i) = rQ(i). 

The expectation of the cost at time n when starting in state i at time 

zero and using policy R = (P0 ,P 1, .•• ) will be denoted by lE. R r(x ) , where 
l.' -n 

~ (random variables are underlined) is the state at time n. lERr(x) de-n -n 

notes the vector with i th component lE. R· r(x ). It is easily seen that 
i, . -n 
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In section 4 we need a notion of convergence on P. A sequence P ,n = 
n 

= 1,2, ••• ,, is convergent to P if limp (i,j) = p(i,j) for all i and j. n 
n+oo 

In this case we shall say that lim P = P. P with this product topology 
n-+<x> 

n 

a metric space. Finally, for vectors x,y we write X:;; y resp. X < y if 

x(i) :;; y(i) resp. x(i) < y(i) for all i; for vectors x, X , n = 1,2, ••• , n 

we write lim x = 
n-+<x> n 

0 if lim x (i) = 0 for all i EE and lim x 
n-+<x> n n-+<x> n 

= X if lim 
n+oo 

x (i) = x(i) for all i n EE. 

2. NEARLY CONSERVING POLICIES 

We assume in this paper that 

00 

(2.0.1) sup lE. R l I r(x ) I < 00 • 

R 1 ' n=O n 

is 

As pointed out in Section 13 of HORDIJK [6] relation (2.0.1) is equivalent 

to assuming that the total absolute return is finite for each policy in­

cluding policies which are randomized, i.e., for which the decision rules 

are randomizations over the original class of decisions. This result is 

essential due to Derman, Strauch and Veinott (see the references given in 

the introduction or alternatively see [DERMAN] [3] Theorem 7.1). 

with 

Let v be the value function, i.e., 

v(i) = sup vR(i), 
R 

00 

vR(i) := lE. R l r(!n) for all i E E. 
i, n=O 

For constant p and vector w we introduce the class of (p,w)-nearly-con~ 

serving decision rules 



p = {P 
p,w r + Pv ~ v - pw}. 

p 

Let R denote the class of policies with decision rules in P • 
p ,w p ,w 

THEOREM 2.1: Given any constant p > O and any veator w suah that w ~ v 

and w(i) > 0 for aZZ i EE, it holds that 

(2. I.]) sup 
R E R. 

p ,w 

00 

for all i E E. 

PROOF: Choose constant o with O < o < p ~nd o < 1. 

Given any i EE there exists an Ri = (P~, P~, ••• ) such that 

(2. I .2) v .(i) > v(i) - o2 w(i). 
R1. 

Define Markov time T as follows 

(2.1.3) v. (ik) 
~o 

i i i 
where~= (Pk, Pk+l'··•) and write 

(2. I .4) v(i,j,k) for v . (j). 

~ 

5 

Writing the total expected return under policy Rias the sum of the return 

until Markov time! plus the total expected return thereafter, we find 

.-1 00 

(2.1.5) 1E. Ri -l r(x) + l l 1P 1.[~.,. = J, ! = kl~0 = i] v(i,j,k). 
1 ' n=O -n j EE k= I R .!:. 

Denote R for the nonmemoryless policy ~ith decision rule at the nth 

decision point Pi when the starting state is i, so R is the "composition" 
n 

of the Ri's. We write vR 
, !. 

f h . h . th lE • or t e vector wit 1. component . R1 
1, 

Combining the relations (2.1.2), (2.1.3) and (2.1.5) we obtain 

r(x ). -n 
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following relation, written in vector notation, 

(2.1.6) v + I. PR[!.,. = j] {v(j) - ow(j)} > v - o2w. R,!, • 
J 

It can be proved that (see HORDIJK [6] Theorem 2.21) 

(2. 1. 7) vR + I PR[! = j J v(j) ~ v. 
,T • T 
- J -

An intuitive reasoning assuming the existing of optimal policies for this 

relation is: the total return when following a certain policy R until 
• 

Markov time! and controlling the system in an optimal way thereafter does 

not exceed the total return when using an optimal policy from time zero on. 

The relations (2.1.6) and (2.1.7) together yield 

(2. 1.8) ? lPR[!T = j] w(j) < ow. 
J 

Since w ~ v it follows from (2.1.6) and (2.1.8), 

(2.1.9) V > V -
R,,! 

2 
(o +o)w. 

Let R * be the "periodic" policy which follows policy R until time !,, note 

that always!~ 1, and starts with a new period at time!• To be more for­

mal the decision which R* prescribes at time T = j 0+j 1+ ••• +jk_ 1+k+n is 
ikO 

Pn (ikn'.) when the history is 

and 

-r(i 0,i 1, ••• ,i • ) = J. + 1 for O ~ v ~ k-1 
- V V VJ V 

V 

and 



Note that in case 1' is infinite sor some sample path (i0 ,i1, ••• ) the po­

licy R* is not a periodic policy. 

It follows from the definition of Markov time T that if R* takes de­

cision rule Pat some time then, recall that vis not smaller than the 

total return for each policy and use (2.1.3) 

(2. 1. 10) r + Pv > v-ow. 
p 

Now since o < p we conclude that Pis an element of P • 
p ,w 

Since E. R* r Ir(! ) I < OO for all i E E, it holds that 
1, n=O n 

(2.1.11) 1 . [ 'p p2 p3 VR* = 1m VR + VR + VR + V 
N-+<x> ,! 1' ,! 1' ,! T R,! 

where P. is the matrix with (i,j)-entry PR[~= jl!o = i] and 

Pn is then-fold matrix product of it. 
1' 

From relation (2.1.6) we obtain 

Hence 

(2.1.12) 

Using the relation (2.1.9) we obtain 

N k N-1 
pk N - (o 2+o) N VN := I p! vR,! > I V + p V p w. 

k=O k=O 1' R,! 1' 1' 

Hence in view of (2.1.12) with k = N 

N-2 
Pk PN-1 02 N-1 - cc2+o) PNw VN > I V + V - p w 

k=O 1' R,! 1' 1' 1' 

,19UO'.fhl65~ MATl!-IEMATISCH CHJ: RLJM 
AM.<;'r!'RnAM 

. 

7 
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Now repeating this argument successively fork= N-1, N-2, ••• ,1 we obtain 

2 
V > V - 0 

N 

Using relation (2.1.8) we find 

2 -1 
v * = lim VN ~ v - o (1-o) w. 

R N-+<» 

Since o can be chosen arbitrarily small we conclude that relation (2.1.1) 

is valid. D 

If vis not bounded from above then also w ~vis not bounded from 

above. The question then raises whether there always exists a bounded vec­

tor w for which relation (2.1.1) is satisfied. In particular does it always 

hold that 

where e is the unit vector, i.e., e(i) = 1 for all i EE and 

00 

vR = ]ER En=O r(~n). The answer is no, as shown by the following counterexample. 

COUNTEREXAMPLE: E = {(n,m)ln = 1,2, ••• and m = 0,1, ••• ,2n}. 

There are two decisions in the states (n,O), n =1,2, ••• , with zero return 

and 

and 

In state (n,k), k 

form= n+1 and k = 0 

otherwise 

1 
~ I there is only one decision with return (I--) and 

n 
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p((n,k), (n,k+l)) = I fork$ 2n-l and p((n,2n), (m,k)) = 0 for all (m,k). 

If we start in state (n,O) and take decision one until state (m,O) is 

I reached then the total return equals (I--) 
m 

tion v we have v((n,O)) = 2n and v((n,k)) = 

2n. Hence for the value func-

with it is easily checked that a decision rule in P1 must take decision ,e 

in all states (n,O), n = 1,2, •••• So R1 contains only one policy with 
,e 

zero total expected return in the states (n,O), n = 1,2, •••• 

3. CHARACTERIZATION OF THE EXISTENCE OF OPTIMAL POLICIES 

A decision rule Pis conserving if rp = v - Pv. A policy R = 

= (P0 ,P 1, ••• ) is conserving if i E Em implies rp (i) = v(i)-Pmv(i), where 
m 

E := {j : Pn R[x = j] > 0 for some !l, EE}. A policy R is equalizing if 
m "'' -m 

lim ER v(~n) = 0 (the notions "conserving" and "equalizing" are adapted 
n-+«> 
from DUBINS AND SAVAGE [5]. It is proved in Section 4 of HORDIJK [61 that 

a policy is optimal if and only if it is conserving and equalizing. Hence 

if there exists a policy R which is optimal then 

(3.0.l) sup vR = v, 
RERO 

where R0 = {(P0 ,P 1, ••• )1Pt is conserving for all t}. 

The following converse is true. 

THEOREM 3.1: The relation (3.0.I) implies the existence of a stationary 

optimal po Ziey 

PROOF: Define 

r +Pv=v}, 
p 
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i.e., P0 is the class of conserving decision rules. We consider the p.d.p. 

problem with return structurer; (i.e.,r;(i) = max(rp(i),O)) and P0 as 

class of decision rules. Let v+ be the value function of this p.d.p. 

problem. In view of a theorem of Ornstein (see ORNSTEIN [7] or HORDIJK [6] 

Theorem 13.7) there exists for any O < E < la Q such that 

00 

r n + 
(l-E)V + 

Q rQ 2: . 
n=O 

Hence, since v ~ 
+ V 

00 

lim n -I 
lim Qn I Qk + 

sup Q v ~ ( l-E) rQ = o. 
n-l'°" n-l'°" k=O 

Also, 
00 

lim inf Qnv 2: lim Qn I k o. Q rQ = 
n-l'°" n-l'°" k=O 

Consequently 

(3.l.l) 

00 

Hence the stationary policy Q is conserving and equalizing. This implies 
00 

that Q is optimal. 

Indeed, iterating the equation 

rQ + Qv = v, 

N times we obtain 

00 

Letting N tend to infinity we find with (3.1.l) that l QnrQ = v. D 
n=O 



As a corollary of the above results we state: 

THEOREM 3.2: If there exists an optimal policy in c.d.p. then there exists 

also a stationary optimal policy. 

A direct consequence of Theorems 2.1 and 3.1 is 

THEOREM 3.3: There exists a stationary optimal policy when P has a finite 

number of elements. 

PROOF: Since Pis finite there is a pair p,w for which (2.1.1) is true and 

moreover rp + Pv = v for each PEP • Hence relation (3.0.1) is ful­p,w 

filled. 0 

As a corollary we conclude: 

There is a stationary optimal policy when Eis finite and the number 

of decisions in each state is finite. 

4. FINITE STATE SPACE 

In this section we assume that the state space E has a finite number 

of elements. It was shown already in Section 3 that the existence of a 

stationary optimal policy is guaranteed when in addition the number of 

decisions in each state is finite. For more general decision spaces a op­

timal policy may fail to exist as the following counterexample shows. 

COUNTEREXAMPLE: 

{: 
for 1 = 2 

E = {1,2,3}; p b(l,i) = a, for i = 3 

1 1 
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1/2 with a~ O, b ~ 0, a+b ~ 1 and b ~ a ; there is only one decision in the 

states 2 and 3 and p(2,i) = p(3,i) = 0 for i = 1,2,3; in state 1 the imme­

diate return is zero for all decisions and in states 2 respectively 3 the 

immediate returns are 1 respectively 2. Then 

v(l) a+ 2b 
= sup{a + b : a> O, b > 0, a+b ~ = 2. 

However, this supremum is not attained for any pair (a,b). We note that 

for this example the set Pis compact with respect to the product topology 

and rp(i) does not depend on the decision rule P and so is certainly con­

tinuous in P, for all i EE. 

Since the existence of optimal policies is not always guaranteed we 

conclude this section with some sufficient conditions. 

THEOREM 4. 1 : If 

:= sup E. R l I r(x ) I > 0, 
RER0 1 ' n=O n 

(4.1.1) w(i) for all i EE 

then there exists a stationa:cy optimal policy. 

PROOF: We consider the c.d.p. problem with P0 as class of decision rules 

and lrpl as immediate returns. Similar as in Theorem 3.1 we find a Q E P0 

such that lim Qnw = 0~ Using now the fact that Eis finite we have for a 
n-+<x> 

certain constant b that lv(i)I ~ bw(i) for all i. Hence lim Qnv = 0 and 
n-►<x> 

Q is conserving and equalizing. Consequently Q00 is optimal. D 

As a corollary of the above theorem we state: 



THEOREM 4.2: Each of the foll(Jl,)irtg wo conditions unply the existence of 

a stationary optimal policy: 

a.Pis corrrpact, rp(i) is an upper semicontinuous function in P for all 

i EE and the immediate return is always nonzero, i.e., r (i) 1 0 for p 

all i EE and PEP. 

b. For each pair of states (i,j) there is a PE P0 such that state j can 

13 

be reached from state i with positive probability when usin,g policy P 
co 

and vis a noneonstant vector. 

PROOF: From the facts that rp(i) + Pv(i) is an upper semicontinuous func­

tion in P and Pis compact it follows that P0 is a nonvoid set. Hence con­

dition a implies relation (4.1.1). This proves the first part of the theo-

rem. 

Assume condition bis true. For arbitrary j EE it 1.s possible to 

find a P E: P0 such that under P state j is reached with positive probabil­

ity from E~ach state i EE. Since Eis finite it follows that state j is 

reached with probability I from each state i EE. Since Pis conserving 

it follows that v(i) 1.s equal to v(j) plus the expected cost under P 
00 

until reaching state j. Now if w(i) = 0 (w is defined in (4.1.1)) then 

this expected cost is zero and hence v(i) = v(j). Consequently w(i) = 0 

for some i EE implies that vis a constant vector. From condition bit 

follows then w(i) > 0 for all i E E and we can apply theorem 4.1. 0 
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