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Regenerative Markov decision models 

by 

A. Hordijk 

ABSTRACT 

Discrete time Markov decision processes with a countable state space 

are investigated. Under a condition guaranteeing the recurrence to a fixed 

state, the existence of stationary optimal policies with respect to dis­

counted expected and average expected return is shown. Also sensitive dis­

count optimal policies do exist and limit decision rules, as the discount­

factor tends: to one, of discounted optimal rules are bias qr equivalently 

average-overtaken optimal. Finally, an iteration procedure to compute sensi­

tive discount optimal policies is given. 

KEY WORDS & PHRASES: Discrete time dynamic programm~ng; denumerable state 

space; compact decision sets; existence and computa­

tion of optimal policies. 





I. INTRODUCTION 

It is clear that from practical viewpoint the class of discrete time 

Markov decision processes with a finite number of states and per state a 

finite number of decisions, is most important. And so it is evident that 

most of the research is devoted to this finite case. 

However there are interesting models in which it is natural to have 

a denumerable state space. For example inventory models with backlogging 

for which the stochastic demand between two decision epochs is unbounded, 

or qeueuing models for which an unbounded stochastic number of customers 

may enter service facility between decision points. With these models in 

mind we intend to extend a number of important results from the finite to 

the denumerable case. The condition (see section 2) which we assume is in 

the finite case equivalent to the existence of some state, say state 0, 

such that state O is accessible under each policy from each state. 

If the state space is denumerable then as is well known there is difference 

between accessiblity, with recurrence and positive recurrence. What we need 

is the strongest form of recurrence i.e. positive recurrence. 

There are many models for which this assumption is not satisfied for 

all policies. For example take the waiting line model where at discrete 

times a decision can be taken on the service rate and where the decision 

to close the service facility is allowed. Well as is evident, when the latter 

is always chosen that no state is recurrent. The procedure which enables 

to obtain conclusions with the results of this paper is then to restrict 

the class of decision rules. To make this more explicit for the above 

model. Restrict the class of decision rules to those which always switch 

the service facility on when the number of customers waiting is larger than 

some large integer N. Sometimes one is not interested at all in decision 

rules not in this class since they. are far from being part of optimal poli­

cies. If this is not the case there is still the freedom to adjust the in­

teger N, allowing to obtain conclusions in the larger class of policies 

for which the switch-on level has a finite limes superior as time tends to 

infinity. 

Each of the sections 3,4, and 5 start with sununarizing the results c0n­

tained in that section. In the remainder of this section we introduce notions 
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and notations used in this paper. 

We are concerned with a dynamic system which at times t = 1,2, ••• , is 

observed to be in one of a possible number of states. Let E denote the 

countable space of all possible states. If at time t the system is observed 

in state i then a decision must be chosen from a given set P(i). The prob­

ability that the system moves to a new state j (the so-called transition 

probability) is a function only of the last observed state i and the sub­

sequently taken decision. In order to avoid an over-burdened notation we 

shall identify the decision to be taken with the probability measure on E 

that is induced by it. Thus for each i €Ethe set P(i) consists of prob­

ability measures p(i,.). 

Let P be the set of all stochastic matrices P with p(i,.) € P(i) for 

each i EE. Hence P has the product property: with P., i EE the set P 
.th 1 .th also contains that P with for every i EE the 1 row of P equal to the 1 

row of P .• · 
1 

A policy R for controlling the system is a sequence of decision rules 

for the times t = 1,2, ••• , where the decision rule for time tis the in­

struction at time t which prescribes the decision to be taken. This in­

struction may depend on the history, i.e., the states and decisions at 

times 1, ••. , t-1 and the state at time t. When the decision rule is inde­

pendent of the past history except for the present state then it can be 

identified with a PEP. A memoryless or Markov policy Risa sequence 

P1,P2, ••• , € P, where Pt denote~ the decision rule at time t. Pt also gives 

the transition probabilities at time t. It follows from a theorem in 

DERMAN & STRAUCH [3], generalized in STRAUCH & VEINOTT [10] that we do not 

loose generality by restricting the class of policies to the Markov poli­

cies, (see also section 13 of HORDIJK [5]). In this paper we shall only 

use Markov policies. 

A memoryless policy which takes at all times the same decision rule, 
. ~ 
1.e., P := (P,P, ••• ), PEP is called a stationary policy. 

When in state i decision p(i,.) is taken then an immediate return de­

pending on i and p(i,.) is incurred. Let rp(i) be the immediate return 

when taking decision p(i,.) the i th row of matrix Pin state i and write 

rp for the vector with i th component rp(i). Note that if P, Q € P with 
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p(i,.) = q(i,.) then rp(i) = rn(i). 
'< 

The expectation of the return at time n when starting 1.n state 1. at time 

one and using; policy R = (P 1 ,P2 , .•• ) will be denoted by ]Ei,R r(~), where 

~ (random variables are underlined) is the state at time n. ]ER r(~) de­

notes the vector with i th component :JE. R r(x ) • It is easily seen that 1., -n 

We shall use the notation P!-l for the matrix P1 ••• Pt-J" 

We need a notion of convergence on P. A sequence P ,n = 1,2, .•• ,, is 
n 

convergent to P if limp (i,j) = p(i,j) n-+oo n for all i and j. In this case we 

shall say that lim P = P. P with this product topology (see section 13 of n-+<x> n 
[5]) is a metric space. We assume that Pis compact and rp is continuous 

fo. P i.e. for each i E E lim rp (i) = rp(i) as P converges to P. Note 
n n 

that these assumption are automatically fulfilled if P(i) is finite for all 

i EE. For vectors x,y we write x s y resp. x < y if x(i) s y(i) for all i 

resp. x(i) s y(i) for 211 1. and x(i) # y(i) for some i; for vectors 

x,x, n = 1,2, ... , we write lim x = 0 if lim x (i) = 0 for all i EE and n n-+oo n n-+<x> n 
lim x = x if lim x (i) = x(i) for all i EE. n-+oo n n-+<x> n 

2. ASSUMPTIONS 

We assume the existence of a state, say state O, and the existence 

of finite nonnegative vectors y0 ,y 1,y2, •••• 

Such that y0 (i) ~ supp lrp(i) I and y0 (i) ~ I for aU 1. EE and for 

m=0,1, .•• 

(2.0.1) 

for all PEP and 

(2.0.2) Py is continuous in P, 
m 

where 0P is the matrix obtained from P by replacing the elements of the 
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O-th aoZwrrn by zeros i.e. 

oP<i,j) = {o 
p(i,j) 

j = 0 

j 'f o. 

For a finite state space the above assumption is equivalent to the 

condition that state O can be reached from each state under each station­

ary policy. For E denumerable we need that state O is positive recurrent 

under each stationary policy. More precisely (2.0.1) form is equivalent to 

assuming that the supremum over all stationary policies of the total ex­

pected return, with immediate return in state i equal toy (i), until 
m , 

reaching state O is finite. In fact, y 1(i) can be taken as that supremum m+ 
when starting state is i. 

Assumptions of the above type were first introduced in HORDIJK [SJ. 

As pointed out there (see sections 2.6, 2.7 and 5.12) for the special case 

that P consists of one element Pandy is the unit vector e (i.e. e(i) = 1 
m 

for all i € E) then condition (2.0.J) is closely related to a Foster-condi-

tion [4], and is equivalent to a condition called a Liapunov function cri­

terion in KUSHNER [7]. 

The essential property what makes this condition work is the fact that 

Ym+l is a ym-excessive function with respect to P (see chapter 2 of [5]). 

Before we go on and use these conditions we want to point out that 

they are fulfilled in the following models (Without problems the reader 

can skip the subsections 2.1 and 2.2). 

2.1. STATIONARY INVENTORY MODEL WITH BACKLOGGING 

Let I.t denote the level of inventory at time t and let~ be the amount 

ordered after observing I.t. Assume· that delivery of the ordered units is 

instantaneous. Thus after the moment of ordering, the inventory level is 

I.t + ~- Suppose the sequence of demands ~t' t = 1,2, ••• , for the product 

during each of the periods is a sequence of independent and identically 

distributed random variables with 



Prob. [d =j] = p. 
-t J 

for j = 0, 1 , ... 
00 

with I 
j=0 

p. = 1. 
J 

We allow negative inv~ntcry, i.e. backlogging of demand, and consequently 

have a denum1erable state space. 

The decision which has to be made at times t = 1,2, ••• is the amount 

to be ordered. Now let pk(i,j) denote the transition probability to in­

ventory level j when i units are available and k units are ordered. Then 

= Prob. [demand equals i+k-j] = 

= { Pi+k-j for i + k ~ j 

0 otherwise. 

5 

In all practical cases there will be a finite storage capacity. Also an in­

finitely large backlogging will not be convenient and so it seems that the 

following condition is natural. The set K(i) of available ordering deci­

sions in state i satisfies. 

(2.1.1) K(i) = {k a~ 1. + k ~ b} for all i EE for some integers a,b. 

If moreover p. > 0, j = 0,1, ... , then each stationary policy has no 
J 

disjoint closed sets and state a is always accessible. 

Now if we take state a a~ the special state of assumption (2.0.1) then 

it is straightforward to check that given y we can choose y 1 as follows 
rn m+ 

where 

and 

Moreover, 

= 1-q h ym + --

q := min 
0~i:c:;b-a 

h 
m 

q m 

p. 
l. 

a:c:;i:c:;b}. 
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Note that since K(i) is finite for all i EE assumption (2.0.2) is trivially 

fulfilled. 

2.2. WAITING LINE MODEL WITH CONTROLLABLE INPUT 

Assume that the arrival process is a Poisson process with expected 

number of arrivals per unit time AP where p dencte2 the service price. Thus 

the input process can be controlled by the service price. It seems reason­

able to assume that A decreases asp increases. Let us assume further that p 
the price plies between the bounds p 1 and p2, i.e. p 1 $ p $ p2 • Let F be the 

distribution of the service times. The times at which a decision on the 

price has to be taken are the times a person completes service. The state 

at that time is the number of people the departing customer leaves behind. 

We assume that the service time is independent of p. 

The transition probabilities corresponding to price p equal 

t .. I (p) 

for j < i - 1, 

(2.2.1) p(i,j) = 

for j ~ i - 1, 
3-1.+ 

where k (p) d~notes the probability of r people arriving during service 
r 

period, i.e. 

(2.2.2) 

For future reference we state that (2.2.2) implies 

00 

(2.2.3) I 
r=k 

where it is assumed that Es k exists. Since k r (p), = 0.1, .•• , is r a con-

tinuous function of A it follows directly that Pis compact if A is a p p 
continuous function of p. 



The following assumptions are made: 

(2.2.4) 

(2.2.5) 

(2.2.6) 

-1 
p := 1 - A Es > O, 

P1 -

AP is a continuous function of p for p 1 ~ p ~ p2, 

rp(i) is a continuous function of P for all i EE. 

We denote i(n) for the factorial product TT~=~ (i-k). 

Similar to the Binomium of Newton we have for integers x,y 

For matrix P corresponding to price p and i ~ 1 (note that p(O,j) = 

= p(l,j) for all j) 

(2.2. 7) I 
j=I 

a, 

( . . ) . (n) ' p i,J J = l 
k • (n) 
j-i+l(p)J 

where from (2.2.3) µk(p) 

With 

we find that 

(2.2.8) 

j=i-1 

a, 

= I 
r=O 

k (p)(r+i-1) (n) 
r 

= I (~) µk(p)(i-l)(n-k)' 
k=O 

= Ak E sk 
p 

7 
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where 

Assume that for some a> p 

* (P) k k' µk+2 s: a • 

Then 

for n ~ k. 

With induction we prove fork= 1,2, ••• 

(2.2.9) 
00 

i(k) + I p(i,j) fk(j) s: fk(i), 
j=l 

for some function fk with 

and for the ck's some nondecreasing sequence of constants. 

The proof of (2.2.9) for k=l is similar to the one given below and will 

be omitted. Now assume (2.2.9) is true fork= 1,2, ••• , n-2. 

Then from (2.2.7) and (2.2.8), 

* .(n-1) n (n) * (2.2.10) - nµ 1(p) i - l k µk(p) 
k=2 

00 

i<n-2> + I 
j=l 

( . . ) . (n) • (n) 
p i,J J = i • 

* (k) From (2.2.9) and µk+ 2(p) s: (an) 

(2.2.11) I (\~) µ:(p)i(n-k) + .I p(i,j)f(j) s: f(j), 
k=2 J=l 

for some function f with f(i) s: cn[k!2 (~) (an)(k-2) ((n+l-k)ai)(n+l-k)] 

Summing the inequalities (2.2.10) and (2.2.ll)(i.e. left side plus left 

side and right side plus right side) and multiplying by pn-l, note that 
-1 * from assumption (2.2.4) pn (-nµ 1(p)) ~ 1, gives 



where 

Hence 

00 

i<n-i) + I p(i,j)f*{j) s f*(i), 
j=I 

9 

s pn- 1c [i(n) + n r (:=!) (an)(k-Z)((n-I)ai)(n-I-(k-2))] 
n k=2 

(2.2. 12) s pn-1c [i(n) + n((n-l)ai+an)(n-l)] 
n 

s c (nai)(n) 
n 

for i :?!: n :?!: 2. 

For c 1 we can take the maximum of (2.2.12) for i = 1, ••. , n-1. To n+ 
conclude it is straightforward from relation (2.2.9) that the assumptions 

(2.0.1) and (2.0.2) are satisfied when supp lrp(i)I as function of i is 

bounded by some polynomial in i. 

3. DISCOUNTED EXPECTED AND AVERAGE EXPECTED RETURN 

In this section we focus attention on discounted and average expected 

return. We do not need the assumptions of section 2 in all strength in this 

section. It is sufficient to assume that relations (2.0.1) and (2.0.2) are 

true form= 0 and m = 1. 

For the veator with i-th aomponent the sum of aZZ expeated disaounted 

returns when starting in state i and using policy R = (P 1,P2, ••• ) we write 

00 

a 
V = 

R 
, t-1 
l a pl 

t=l 

where 0 <a< is the disaount faator. 

We shall prove below that the above sum is absolutely convergent and 

so v~ is properly defined. 



10 

3 • I • LEMMA. Fi•om 

(3. I. I ) 

for x ~ 0 and for all PEP it follows for arbitrary policy R = (P!,P2 , •.• ) 

that the totaZ expected return (with irronediate return vector x) until 

state O is reached is bounded by y i.e. 

00 

(3.1.2) 

PROOF. Iterating the inequality 

(3. 1.3) 

successively for PT' PT_ 1, ••• ,P 1 we obtain 

T 

I op 1 · · · Pt- 1 x + op 1 op rY ::::; Y • 
t=I 

Since y ~ 0 and hence 0P1 ... 0PTy ~ 0 for all T, we find as T + 00 rela­

tion (3.1.2). D 

Using the last exit decomposition of state O (see CHUNG [2] p.46) the 

above stated absolute convergence follows now easily. Indeed, 

3.2. LEMMA. For any policy R = (P 1 ,P2 , •.. ) and any i E E, 

(3.2.J) 

PROOF. From relation (2.0.1) with m = 0 and lemma 3.1 we conclude that for 

any policy R = (P 1,P2 , ... ) 

00 

Hence for any i EE, using the last exit decomposition of state 0 



00 00 

I I 
k=I t=k 

For policy R = (P 1 ,P2 , ... ) the veator of average e:r:peated retUPn is 

defined as 

(3.2.3) 
I T 

g = limsup T L P1 ••• Pt-I rp • 
R T-+<>o t= 1 t 

Again the cesaro limit gR is properly defined, since, 

3.3. LEMMA. For any poliay R = (P1,P2, .•. ) and any i EE, 

(3.3.1) P 1 • • • PT-1 I r P I ( i) :,; Ty 1 ( 0) 
T 

The proof uses similar arguments as in lemma 3.2. 

Since v; is properly defined we can introduce the components wise 

supremum, 

(3.3.2) a 
V 

a = supR vR. 

From (3.2.1) we have 

(3.3.3) < 00 for all i. 

Under more general assumptions it can be shown that va satisfies the 

optimality equation (for a proof see [SJ) 

(3.3.4) 
a a v = sup [rp + aPv] 

PEP 

We assumed in the introduction that rp is continuous. From (3.3.3) and 

I I 
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Pe::; Py0 and Py0 is continuous in P, we conclude that also Pva is contin­

uous. Since a continuous function has a maximal value on a compact set we 

obtain for certain Q E P 

(3.3.5) a a 
rQ + aQv = v, 

Such a Q is called va-aonserving. 

3.4. THEOREM. For va-aonserving matrix Q it holds that Qm is a-disaounted 

optimal. 

PROOF. For any T, iterating the equality (3.3.5) gives 

~ t-1Qt-1 TQT a 
l a rQ + a v = 

t=1 

a 
V • 

With (3.3.3) we can similar to relation (3.3.1) deduce that 

Hence 

and 

which 

(QTva(1.') _< T(1 )- 1 (0) -a Yz . 

lim TQT a 
CX V = 0 

T-+m 

m 

I t-1 t-1 a 
a Q rQ = V 

t=1 

completes the proof. D 

Since va-conserving matrices do exist we conclude that the existence 

of a stationary policy which is optimal with respect to the a-discounted 

expected return within the class of all policies is guaranteed under our 

assumptions. Moreover, such a policy can be obtained from a va-conserving 

decision rule. 

Next, we want to establish a solution of the optimality equation for 
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the average expected return. The technique we shall use is originally due to 

TA¥LOR [II] and further developed by ROSS rs]. First we need a technical lemma. 

3.5. LEMMA. For aZZ O <a< 1 the foZZCJ/JJing inequalities are true 

(3.5.1) 

(3.5.2) 

PROOF. Inequality (3.5.J) is immediate from (3.2.1). 

Let T be the entry time of state O after time J i.e. 

(3.5.3) T =min{~= 0}. 
k~2 

Then Tis a Markov time. For Q a v0 -conserving policy we have that va is 

a potential with respect to substochastic matrix aQ, Hence from a well known 

theorem in Markov potential theory (see chapter 2 of [5]), 

(3.5.4) [
T-1 

va = EQ 00 l r(_! ) 
t= 1 t 

Or in a different notation 

(3.5.5) a 
V = 

Hence from (3.1.2) with y0 for x and y 1 for y, for any i € E 

(3.5.6) 

Further by the well known inequality (1-aT) ~ (1-a)•T 

(3.5.7) 

The expected time until entering state O can be seen as a total ex­

pected return until entering state O with as innnediate return vector the 

unit vector (see [5] 2.7). 
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Hence from (3.1. I) withe for x we find form the assumption in section 

2 that 

(3.5.8) 

Combination of the inequalities (3.5.1), (3.5.6), (3.5.7) and (3.5.8) 

yields (3.5.2). 0 

3.6. OPTIMALITY EQUATION FOR AVERAGE EXPECTED RETURN 

Equation (3.3.4) specified for the i-th component gives 

(3.6.1) va(i) = sup [rp(i) +al p(i,j)va(j)J. 
PEP j 

Consequently by subtracting va(O) from both sides 

va(i) - va(O) = sup [rp(i) - (1-a)va(O) +al p(i,j)(va(j) - va(O»J. 
PEP j 

Since lennna (3.5) implies the boundedness of lva(i) - va(O)I for i EE 

and (1-a)va(O) as function of a, the diagonal procedure provides a sequence 

{a} with O < a < 1, a + 1 as n + 00 and a constant vector i.e. all com-n n n 
ponents are equal, g together with a function v such that 

a a a 
lim (1-a )v n(O) = g(O) and lim v n(i) - v n(O) = v(i). 

n 
n➔oo n➔oo 

Moreover, from (3.5.2) 

(3.6.3) 

and hence with the dominated convergence theorem 

a a 
lim L p(i,j)(v n(j)-v n(O)) = L p(i,j)v(j). 
n➔oo j j 

With (3.6.1) we conclude 



v ~ sup [r - g + Pv]. 
PEP p 

Moreover, since Py1 is a continuous function of Pit follows from a 

generalized dominiated convergence theorem (see ROYDEN [9] proposition 18 

p.231) that for Q such that Q = lim Q and Q is va-conserving hence n-+«> an a 

a a 

15 

an a a 
rQa (i) - (1-an)v (0) + an l qa (i,j)(v n(j)-v n(O)), 

n j n 

v n(i) - v n(O) = 

the following equation holds 

v = rQ - g + Qv. 

Such a Q we call (g,v)-consewing. 

By starting from the beginning with a suitable subsequence of dis­

count factors tending to I we conclude: 

Each Zimitpoint as a tends to one of v0 -conserving decision :r>uZes is 

(g,v)-consewing (cf. leuma 3.10). 

Before we can prove that a (g,v)-conserving decision rule provides a 

stationary average optimal policy, we need two technical lemmas: 

3.7. LEMMA. Let x0 := yl 

and 

x 1 = max 0Pxn 
n+ PEP 

then x is a decreasing sequence and 
n 

lim x = 0. 
n 

PROOF. Since from assumption (2.0.!) y0 + 0Py1 ~ y 1 for all PEP and 

y0 > 0 we have that 
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Now suppose xn:,; xn-I then 0Pxn:,; 0Pxn-I for all PEP and hence 

X • n 

Thus by induction x, n = 0,1, ..• , is a decreasing sequence. Consequently 
n 

x := lim x 
n n-+oo 

exists. Let P be such that x +I= 0P x and subsequence n. such that P 
n n nn k ~ 

has a limit say P. Then again using a generalized bounded convergence 

theorem we conclude that 

Hence for all T 

However 

00 00 

'i' t-1 
l Op X:,; 

t=l 

- t-1 
'L op Y 1 :,; Y 2 • 

t=l 

Hence 

x = 1 im PT x = 0 • 0 
T-+oo 

3.8. LEMMA. Fo't' a:ny policy R = (P 1,P2 , ••• ) it holds 

(3.8.1) lim P1 ••• PT y 1/T = 0 
T-+oo 

PROOF. Using again the last exit decomposition of state Owe find with 

lennna 3.7 



(3.8.2) 
T+l 

pl ••• PT Y1(i) = l pl .•• pk-l(i,O) Opk ••• OPT yl(O) 
k=l 

T+l 
~ l pl 

k=l 

Using a lennna on Norlund-means (cf. [2] p.22) we find 

T+l 

(3.8.3) 
l pl pk-l(i,O)xT-k(O) 

lim _k_=-\--+-,l _________ = lim ~(O) = 0. 
T-+<» , T-+<» 

l p I ••• pk-I (i,O) 
k=l 

Combination of (3.8.2), (3.8.3) with the inequality 

T+l 
l p I • • • p k-1 ( i, 0) ~ T + 1 

k=l 

implies relation (3.8.1). D 

3.9. THEOREM. For (g,v)-aonserving decision rule Q it holds that Q~ has 

maximal average e::cpeated return. Moreover, 

PROOF. For Q the equality rQ - g + Qv = v holds. Iterating this equality 

T times gives 

With lemma 3.8 and (3.6.3) we find 

T t-1 I Q rQ = g. 
t=l 

17 

Further for arbitrary policy R = (P1,P2, ••• ) we find by interating the in­

equality 
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Again with lemma 3.8 and (3.6.3) we obtain 

-I 
limsup T 

T-;~ 

T 

l Pl ••• P I rp ~ g. 
t=l t- t 

D 

Since each limitpoint as a tends to one of va-conserving decision 

rules is (g,v)-conserving we conclude with the above theorem. 

Each limitpoint as a tends to I of discounted-optimal policies is 

a:verage-optimaZ. 

As we shall show in the next section it is under general conditions 

even bias-optimal (or equivalently 0-discount optimal). 

In subsection 3.6 we obtained v(i) as the limit of va(i) - va(O) as a 

tends to one through certain sequence a. Actually the limit does exist. 
n 

3. 10. LEMMA. 

v(i) = lim [va(i) - va(O)]. 
atl 

PROOF. Suppose w is another limit vector. Then from 3.6 again 

and with 3.6 ~nd theorem 3.9 

(3.10.1) w = max (rp-g+Pw). 
PeP 

Since v(O) = w(O) = 0 we have for Q a (g,v)-conserving rule 

w C: 

and 

V = 



Hence 

Similar for q* a (g,w)-conserving rule 

Consequently 

Iv - wl s max 0Plv - wl. 
PEP 

Now from Iv - wl s 2(l+y1(0))y 1 and lemma 3.7 we conclude that v - w = 0. 

So all limit vectors are equal and the proof is complete. D 

4. LAURENT EXPANSION AND SENSITIVE OPTIMALITY CRITERIA 

19 

In this section we focus on the discounted expected return for dis­

countfactors a near 1 or equivalently small interest rates p (p=(l-a)a-l or 

a= (l+p)-I). Under the assumptions of section 2 we can expand the discounted 

expected return for stationary policies as a Laurent series in powers of p. 

The existence of n-discount optimal policies will be shown. Moreover, limit 

points as a-tends to I of discounted optimal decision rules are 0-discount 

optimal, at least in the class of stationary policies. 

We first start with a technical lemma, which with a different proof 

can also b~ found in [6]. 

4.1. LEMMA. There is a sequence of constant vectors g0,g1, •.• , with 

lgm(O)I s +~= 1(l+yk(O))ym+l(O) a sequence of vectors v0 ,v 1, •.• , with 

lvml s ~=I (l+yk(O))ym+I' and a monotone decreasing sequence of nonempty 

compact subsets of P say P = P_ 1, P0 , P1, ••• such that for 

(4.1.1) 
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and 

(4.1.2) ~m := - v - g + Pv - v, P m-1 m m m 

it holds that 

(4. I. 3) 

and 

(4. 1.4) 

~m = 0 p for PEP 
m 

m 
max ~p = 0. 

PEPm-l 

m = 1,2, .•• 

PROOF. The proof proceeds by induction on rn. The g, v we found in section 

3 suffice as g0 , v0 • Define 

Since (g,v)-conserving policies do exist, we have that P0 is not empty. 

It is easily seen that P0 is closed and hence as a closed subset of a com­

pact metric space again compact. 

Assume go, VO' 81, v1,··•,Sm-l' 
The way of constructing g and v is m m 

vm-l and P1, P0 , ••• ,Pm-l are found. 
strictly similar to that of g,v in 

section 3. In short we will rep~at the various steps of finding g and v. m m 
Introduce 

00 

a I t-1 t-1 V = sup - a P V }" m 
PEPm-I t=l m-

Since for all 1 € E 

rn-1 
(4.1.5) Iv _ 1(i)I ~ TT (l+yk(O))ym(i) 

m k=l 

we find similar to (3.2.1) that 

(4. 1.6) 
m 

TT (l+yk(O))yrn+l(i). 
k=l 
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Moreover, similar to (3.5.2) 

m+l 
(4.1.7) lva(i) - va(o}I ~ TT (l+yk(O))ym+l(i). 

m m k=l 

Since va is a bounded vector, Pva is continuous in P and hence the optimality 
m m 

equation reads 

a 
V = 

m 
max [-v 1 + aPva]. 

m- m 
Pe:Pm-1 

Rewriting this as in 3.6 gives 

va(i) - va(O) = max [-v 1(i) - (1-a)va(O) + l p(i,j)(va(j)-va(O))J. 
m m Pe:P m- m . m m 

m-1 J 

Now choose sequence a of discountfactors tending to I (possible, from 
n 

(4.1.6) and (4.1 .7) such that 

and 

Then 

g (i) := lim (1-a )va(O) 
m n m n-+<x> 

v (i) := lim (va(i)-va(O)). 
m m m 

V = 
m 

n-+<x> 

max [-v 1 - g + Pv J m- m m 
Pe:P m-1 

which is relation (4.1.4) form. 

Define 

then P is a nonvoid closed subset of the compact set P 1• D 
m m-

4.2. In HORDIJK & SLADKY [6] for Many integer the following partial Laurent 

expansion is derived for the total discounted expected return 

BfBLIOTHEE!< M.DTHEMATISCH CtJi1 KUM 

-AMSTERDAM--
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-1 M-l 00 t t-1 M 
= P go+ l pm[um + l a PR Wm J + O(p ), 

m=O t=l pt 
(4.2.1) 

-1 
where R = (P 1,P2 , ••• ), p = a (1-a) and u = v + 2. 

m-1 m-1 'ill 

Following VEINOTT [12] we say that policy R* is n-disaount optimal 

with n = -1, 0, 1,2, ••• , if 

(4.2.2) liminf (1-a)-n[v;* - v:] ~ O, 
atl 

for each policy R. 
I 

Let vT(R) denote the vector of expected returns under policy 

R = (P 1,P2, ••• ) up to time T i.e. 

T t-1 
l PR rp' 

~I t 
(4.2.3) 

and define recursively for n ~ 

T 
(4.2.4) L v~(R). 

t=I 

Again following Veinott we call policy R* n-average optimal if 

(4.2.5) liminf ~ [v~+2(R*) - v;+2(R)] ~ O 
T-+<><> 

for each policy R. 

Using Laurent expansion (4.2.1) we proved in [6] when the number of 

actions is finite in each state then policy R* is n-discount optimal if and 

only if it is n-average optimal. Moreover, for decision-rule PEP I it n+ 
• 00 • • 

holds that stationary policy P is n-discount optimal. Note that (-1)-

average optimality is optimality with respect to the average expected return. 

In section 3 we proved that limits of discounted optimal decision rules, as 

the discountfactor tends to one, are average optimal. It is easily checked 

that those limits are elements of P0 and hence we could have used the above 

cited results by proving the average optimality of these limits. However, 

via the approach of section 3 we get rid of the assumption P(i) finite for 

all i EE. 
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In the sequel of this section we shall prove that those limits are 0-dis­

count optimal in the class of statio_nary policies. From the results of [6] we 

know then in many cases they are in fact 0-discount optimal in the class of 

all policies. In the literature 0-discount optimal is also called bias 

optimal or I-optimal the equivalent criterion 0-average optimal is also 

called average overtaken optimal. 

We first need some technical lemmas. 

4.3. LEMMA. The vectoPs g, v, n = 0,1,2, ••• a,re unique. If fop some n 
n n 

and vectoPs hand w with h constant vectoP, w(O) = 0 and lwl :,; cyk foP 

some constant c and integep k, 

(4.3.)) w = max •-v - h + Pw] 
PEP - n 

n 

then 

h = 

and 

PROOF. Similar to theorem 3.9 it holds that 

= h = 
I T 

sup lim T l 
PEP T-+oo t=I 

n 

The proof that v = w proceeds similar to the proof that the solution w n+I 
of (3.10.l) is unique in lemma 3.10. 0 

Also similar to 3.10 we have for any n 

Since we know now that g, v are essentially unique we can express 
n n 

them also in a different way. 

4.4. LEMMA. Define constant vectoP has 
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(4.4.1) h(i) := sup 
RER 

n 
00 

, t-1 
l OPR e(O) 

t=l 

with R = (P 1,P2 , ••• ) 

as 

E R if Pk E P for k = n n 
1 , 2, • • • and de fine vector w 

w := sup 
RER 

n 

Then h = gn+l and w = vn+l" 

PROOF. By straightforward verification it can be shown that (h,v) satis­

fies the conditions of lemma 4.3. 0 

A well known mean ergodic theorem says that the average expected re­

turn is equal to the expected return until reaching state O divided by the 

expected time until reaching state O. Hence that the right hand of (4.4.1) 

is equal to the maximal average expected return is not surprising. 

4.5. LEMMA. For any PEP there exist a sequence of vectors 

such that aZZ g's are constant vectors, 

(4.5.1) 

and 

(4.5.2) -u (P) + Pu 1(P) = u 1(P) n n+ n+ for n = 0,1, ••• 

Moreover, g (P), u (P), n = 0,1, .•• are continuous as functions of P. n n 

PROOF. Apply lennna 4.1 for the specialized case that P consists of one 

element P i.e. P = {P}. It is clear then that for the sequence 

g0 (P), v0(P), g 1(P), v 1(P), ••• , now depending on P, holds that 



form= 1,2, •••• 

Now defining u (P) = v (P) + g 1(P) we obtain (4.5.2). From lemma 4.4 m m m+ 
we know that 

Since from lemma 4.1 

m+l 

00 

L Opt-1(-vm(P))(O) 
t=l 

lvm(P)I ~ TT (l+yk(O))ym+l 
k=l 

and since 

it follows from lemma 3.7 with Ym+2 for y1 that for any£> 0 there is an 

integer T(E) such that T 

L Opt-1(-vm(P))(O) 

I t=l gm+ 1 (P) ( O) - __ T ______ _ 

2 opt-le(O) 
t=l 

for all P e: P. 
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Hence g 1(P) is continuous as function of P. With similar arguments it is m+ 
straightforward to show that also v (P) is continuous in P and so is 

m 
u (P). 0 

m 

4.6. THEOREM. Far a:ny matrix Pe: P, all integers M 

(4.6.1) 
a 

a.vpco = 

00 

\ t t-1 
l a P rp 

t=l t 

-1 PROOF. With lemma 4.5, and p = a (1-a), 

00 

(4.6.2) 
\ t t-1 
l a. p rp = 

t=l 

00 

L atPt-l[rp - go(P) + Puo(P) - uo(P)] + 
t=l 
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00 

= p-lgo(P) + uo(P) - p I atPt-luo(P) , 
t=I 

and similar for any m = 0,1, ••• 

00 00 

(4.6.3) - I 
t=I 

, t t-1 
= um+l(P) - pl a P u 1(P). 

t=I m+ 

Substitution of (4.6.3) form= 0 in (4.6.2) then substitution of (4.6.3) 

form= I in the result etc. gives (4.6.1) with restterm 

00 

(4.6.4) M , t t-1 
- p l a p uM-l(P). 

t=I 

Since 

we find with lemma 4.1 that 

M 00 t t-1 I I M - I M+ I 
p l a P uM_ 1(P) ~ p (I-a) TI (l+yk(O))'%:+t· 

t=l k=I 

M-1 Hence the restterm is O(p ) uniformly in P € P. D 

It is said that vector (x1, ••• ,xn) is ZexiaogPaphia ZapgeP than OP 

equal to vector (y 1, ••• ,yn) if the first nonzero element of 

(x1-y1,x2-y2, ••• ,xn-yn) is positive. 

From Laurent expansion (4.6.1) it is easily seen that P00 is n-discount 

optimal in the class of stationary policies if and only if for all i € E 

(g0(P)(i),u0(P)(i), ... ,un(P)(i)) is lexicographic maximal. 

From results of [6] we know that P € P I is n-discount optimal. From n+ 
lemmas 4.1, 4.3 and 4.5 it follows for P € Pn+l that gk(P) = gk, 

k = 1, ••• ,n+l and vk(P) = vk, k = l, ••• ,n+I and hence ~(P) = ~, k = l, ••• ,n. 

Combining these results we find that 

where the maximum is componentswise and lexicographic. 



We can now give the final result of this section. 

4.7. THEOREM. If P00 is a -discounted optimal, lim a = n n n-+<x> n and lim P = P n-+<x> n 00 

then 

Henae P is 0-disaount or equivalently bias-optimal. 
-00 

PROOF. In section 3 we showed that g(P) ~ g(P) for all P € P. Now for Q 
00 

00 

such that g(Q) = g(P) we find with theorem (4.6) and the fact that P is 
oo n 

a -discount optimal 
n 

p- 1g0(P) + u0(P) + p (u1(P) + O) ~ n n n n n 

where 

Since u0 (P) and u1(P) and continuous in P we find as n tends to infinity 

that u0 (P00 ) ~ u0 (Q). □ 

5. ITERATION PROCEDURE 
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In section 4 we discussed the existence of n-discount optimal policies. 

In BREIMAN [I] a device for computing average optimal policies in binary 

decision problems is given. In this section we give a similar iteration 

procedure for computing n-discount optimal policies. 

Given vp, P € p* with lvpl ~ cyk for some integer k and some constant 
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* c and compact product set P c P compute for constant vector g 

and 

then 

xo(g) := max*(vp-g) 
Pe:P 

x(g) := lim x (g) 
n n-+<><> 

exists. The limit x(g) depends continuously on g and there is exactly one 

* * g such that the zero component is zero i.e. x(g )(O) = O. If for some g 

* * we find x(g)(O) > 0 then g > g if x(g)(O) < 0 then g < g. 

* * The pair (g ,x(g )) is the unique solution (g,w) with g constant vec-

* * tor and lwl s c yk+l for some constant c of the equation 

(5.0.1) 

Hence if vp = rp, PE 

* 4.3 g = go and x(g) = Vo 

p* and p* = P then as in section 3 and in lemma 

and similar if vp = vn and p* = Pn for some n 

* * then g = gn+l and s(g) = vn+t· 
So this scheme provides an iteration procedure to compute g0 , v0 and 

also g v and P when g, v and P are known. 
n+l' n+l n+l n n n 

To prove that lim x (g) exists, let w be the solution of (5.0.1) i.e. 
n-+<><> n 

(cf. lemma 4.4) 

then as in the proof of lemma 3.10 

Ix 1(g) - wj s max 0Pjx (g) - wj. 
n+ PEP* n 

Similar to the proof of lemma 3.7 we find then 

lim X (g) = W. 
n 

n-+<><> 



As in lemmas 4.3 and 4.4 

Hence 

* ifg>g. 

* g (O) = sup* 
Re:R 

w(O) = sup* 
Re:R 

29 

That x(g) is continuous in g follows again from the fact that x(g) can 

be approximated uniformly for all g's in any bounded interval by xT(g) i.e. 

for any£> 0 and any state i and all g's such that - 00 < g 1 ~ g(O) ~ 

~ g2 < + 00 for any g1, g2 there is an integer T such that (cf. lemma 4.5) 
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