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Regenerative Markov decision models

by

A. Hordijk

ABSTRACT

Discrete time Markov decision processes with a countable state space
are investigated. Under a condition guaranteeing the recurrence to a fixed
state, the existence of stationary optimal policies with respect to dis-
counted expected and average expected return is shown. Also sensitive dis-
count optimal policies do exist and limit decision rules, as the discount-
factor tends to one, of discounted optimal rules are bias qr equivalently
average-overtaken optimal. Finally, an iteration procedure to compute sensi-

tive discount optimal policies is given.

KEY WORDS & PHRASES: Discrete time dynamic programming; denumerable state
space; compact decision sets; existence and computa—

tion of optimal policies.






1. INTRODUCTION

It is clear that from practical viewpoint the class of discrete time
Markov decision processes with a finite number of states and per state a
finite number of decisions, is most important. And so it is evident that
most of the research is devoted to this finite case.

However there are interesting models in which it is natural to have
a denumerable state space. For example inventory models with backlogging
for which the stochastic demand between two decision epochs is unbounded,
or qeueuing models for which an unbounded stochastic number of customers
may enter service facility between decision points. With these models in
mind we intend to extend a number of important results from the finite to
the denumerable case. The condition (see section 2) which we assume is in
the finite case equivalent to the existence of some state, say state 0,
such that state 0 is accessible under each policy from each state.

If the state space is denumerable then as is well known there is difference
between accessiblity, with recurrence and positive recurrence. What we need
is the strongest form of recurrence i.e. positive recurrence.

There are many models for which this assumption is not satisfied for
all policies. For example take the waiting line model where at discrete
times a decision can be taken on the service rate and where the decision
to close the service facility is allowed. Well as is evident, when the latter
is always chosen that no state is recurrent. The procedure which enables
to obtain conclusions with the results of this paper is then to restrict
the class of decision rules. To make this more explicit for the above
model. Restrict the class of decision rules to those which always switch
the service facility on when the number of customers waiting is larger than
some large integer N. Sometimes one is not interested at all in decision
rules not in this class since they are far from being part of optimal poli-
cies. If this is not the case there is still the freedom to adjust the in-
teger N, allowing to obtain conclusions in the larger class of policies
for which the switch-on level has a finite limes superior as time tends to
infinity.

Each of the sections 3,4, and 5 start with summarizing the results con-

tained in that section. In the remainder of this section we introduce notions



and notations used in this paper.

We are concerned with a dynamic system which at times t = 1,2,..., 1s
observed to be in one of a possible number of states. Let E denote the
countable space of all possible states. If at time t the system is observed
in stéte i then a decision must be chosen from a given set P(i). The prob-
ability that the system moves to a new state j (the so-called transition
probability) is a function only of the last observed state i and the sub-
sequently taken decision. In order to avoid an over-burdened notation we
shall identify the decision to be taken with the probability measure on E
that is induced by it. Thus for each i € E the set P(i) consists of prob-
ability measures p(i,.).

Let P be the set of all stochastic matrices P with p(i,.) € P(i) for
each i € E. Hence P has the product property: with P, i € E the set P
also contains that P with for every i € E the ith row of P equal to the ith
row of Pi'

A policy R for controlling the system is a sequence of decision rules
for the times t = 1,2,..., where the decision rule for time t is the in-
struction at time t which prescribes the decision to be taken. This in-
struction may depend on the history, i.e., the states and decisions at
times 1,..., t—1 and the state at time t. When the decision rule is inde-
pendent of the past history except for the present state then it can be
identified with a P € P. A memoryless or Markov policy R is a sequence
P],Pz,..., € P, where Pt denotes the decision rule at time t. Pt also gives
the transition probabilities at time t. It follows from a theorem in
DERMAN & STRAUCH [3], generalized in STRAUCH & VEINOTT [10] that we do not
loose generality by restricting the class of policies to the Markov poli-
cies, (see also section 13 of HORDIJK [5]). In this paper we shall only
use Markov policies.

A memoryless policy which takes at all times the same decision rule,
i.e., P := (P,P,...), P e P is called a stationary policy.

When in state i decision p(i,.) is taken then an immediate return de-
rending on i and p(i,.) is incurred. Let rP(i) be the immediate return
when taking decision p(i,.) the ith row of matrix P in state i and write

rp for the vector with ith component rP(i). Note that if P, Q € P with



p(i,.) = q(i,.) then rP(i) =r,(i).
a4
The expectation of the return at time n when starting in state i at time

one and using policy R = (PI’PZ"") will be denoted by']Ei r(§n), where
95

R
x (random variables are underlined) is the state at time n. E_r(x ) de-
—n th R "™—n
notes the vector with i~ component Ei Rr(§n). It is easily seen that
9
]ER r(gn) = PIPZ Pn—l rPn.
We shall use the notation P;—l for the matrix P1 oo Pt—l'

We need a notion of convergence on P. A sequence Pn,n =1,2,...,, 1is
convergent to P if %ig pn(i,j) = p(i,j) for all i and j. In this case we
shall say that %ig Pn = P. P with this product topology (see section 13 of
[5]1) is a metric space. We assume that P is compact and rp is continuous
in P i.e. for each i € E 1lim rPn(i) = rP(i) as Pn converges to P. Note
that these assumption are automatically fulfilled if P(i) is finite for all
i € E. For vectors X,y we write X < y resp. x < y if x(i) < y(i) for all i
resp. x(i) < y(i) for all i and x(i) # y(i) for some i; for vectors
X,X , 0 = 1,2,..., we write %ig x = 0 if %ig xn(i) = (0 for all 1 € E and

lim x = x if lim x (i) = x(i) for all i € E.
n>®© n n>®© n
2. ASSUMPTIONS
We assume the existerce oj“ a state, say state 0, and the existence

of finite nonnegative vectors YooY sYgreee -
Such that yo(i) > supp, IrP(i)l and yo(i) > 1 for all i € E and for

(2-0.1) ym + OPym+1 < ym+1’

for all P € P and

(2.0.2) Py 78 continuous in P,
m

where of 1s the matrix obtained from P by replacing the elements of the



0-th column by zeros <.e.

Op(i,j) =
p(i,]) i# 0.

For a finite state space the above assumption is equivalent to the
condition that state O can be reached from each state under each station-
ary policy. For E denumerable we need that state 0 is positive recurrent
under each stationary policy. More precisely (2.0.1) for m is equivalent to
assuming that the supremum over all stationary policies of the total ex-
pected return, with immediate return in state i equal to ym(i), until
reaching state 0 is finite. In fact, ym+](i) can be taken as that supremum
when starting state is 1i.

Assumptions of the above type were first introduced in HORDIJK [5].

As pointed out there (see sections 2.6, 2.7 and 5.12) for the special case

that P consists of one element P and Y is the unit vector e (i.e. e(i) =1
for all i € E) then condition (2.0.1) is closely related to a Foster-condi-
tion [4], and is equivalent to a condition called a Liapunov function cri-

terion in KUSHNER [7].

The essential property what makes this condition work is the fact that

Y.

1 is a ym—excessive function with respect to P (see chapter 2 of [5]).

Before we go on and use these conditions we want to point out that
they are fulfilled in the following models (Without problems the reader

can skip the subsections 2.1 and 2.2).

2.1. STATIONARY INVENTORY MODEL WITH BACKLOGGING

Let p denote the level of inventory at time t and let ét be the amount
ordered after observing Yo Assume that delivery of the ordered units is
instantaneous. Thus after the moment of ordering, the inventory level is
Y, + ét' Suppose the sequence of demands.gt, t=1,2,..., for the product
during each of the periods is a sequence of independent and identically

distributed random variables with



Prob. [d =j] = p. for j =0,1,... with Z p. = 1.
—t ] 20 J
3=0
We allow negative invcntery, i.e. backlogging of demand, and consequently
have a denumerable state space.
The decision which has to be made at times t = 1,2,... is the amount
to be ordered. Now let pk(i,j) denote the transition probability to in-

ventory level j when 1 units are available and k units are ordered. Then

mk(i’j) = Prob. [demand equals i+k-j] =

. > s
Pi k- for i + k 2 ]

]

0 otherwise.

In all practical cases there will be a finite storage capacity. Also an in-
finitely large backlcgging will not be convenient and so it seems that the
following condition is natural. The set K(i) of available ordering deci-

sions in state 1 satisfies.
(2.1.1) K(i) = {k : a<i+ k < b} for all i € E for some integers a,b.

If moreover pj >0, j=0,1,..., then each stationary policy has no
disjoint closed sets and state a is always accessible.
Now if we take state a as the special state of assumption (2.0.1) then

it is straightforward to check that given y, we can chocse Yo+ 25 follows

+1
= 1-q
Ymt1 = Im * q hm ’
where q := min P-
0<i<b-a

and

Moreover,



-1
1+q)"
b ho( )

Note that since K(i) is finite for all i € E assumption (2.0.2) is trivially
fulfilled.

2.2. WAITING LINE MODEL WITH CONTROLLABLE INPUT

Assume that the arrival process is a Poisson process with expected
number of arrivals per unit time Ap where p denctec the service price. Thus
the input process can be controlled by the service price. It seems reason-
able to assume that Ap decreases as p increases. Let us assume further that
the price p lies between the bounds P, and Py» i.e. P; <P <Py Let F be the
distribution of the service time s. The times at which a decision on the
price has to be taken are the times a person completes service. The state
at that time is the number of people the departing customer leaves behind.

We assume that the service time is independent of p.

The transition probabilities corresponding to price p equal

0 for j<i-1,
(2.2.1) p(i,j) =
kj-i+l(p) for j 21 -1,
where kr(p) dcnotes the probability of r people arriving during service
period, i.e.

oo

“ApS -1
(2.2.2)  k_(p) = J e (Aps)r (r!')”" dF(s).
0

For future reference we state that (2.2.2) implies

o

(2.2.3) ] r@-D... (k) k() = A; E s,

=k
where it is assumed that ]ZEF exists. Since kr(p), r=0.1,..., is a con-
tinuous function of Ap it follows directly that P is compact if Ap is a

continuous function of p.



The following assumptions are made:

(2.2.4) p”:=1-xPE§>o,

1

(2.2.5) AP is a continuous function of p for P, <p< Pys
(2.2.6) rP(i) is a continuous function of P for all i € E.
(n)

We denote i for the factorial product ﬂz;é (i-k).

Similar to the Binomium of Newton we have for integers x,y
n
P ORI (3) MOMCYD
k=0

For matrix P corresponding to price p and i > 1 (note that p(0,j) =

= p(1,j) for all j)

(2.2.7) jzl P(i,j)j(n) - jzi_l kj-i+1(p)j(n)
) EO k_(p) (x+i-1) ™
r=
n w
" el e kr‘P)(§> £ (5-1) 070
i kgo (E) “k(P)(i—l)(n'k)’
where from (2.2.3) Uk(p) = Ai IEEF

With
190~ oy ) 2 ggony &

we find that

n n
2.2.8) (E) n () oD O 2 (E) AT
k=0 k=0



where
* * * .
Ho(P) = uy(p) =1 and 1, (P) = - ku, _, P).
Assume that for some a > p
* 1
uk+2(P) <a k.

Then

(k)

v
t

u;+2(p) < (an) for n

1

With induction we prove for k 1,2,...

IA

. £, (i),

2.2.90 i+ T L £,G)
]=1

for some function fk with

£,) < o - (Gernai) D

and for the ck's some nondecreasing sequence of constants.

The proof of (2.2.9) for k=1 is similar to the one given below and will
be omitted. Now assume (2.2.9) is true for k = 1,2,..., n-2.

Then from (2.2.7) and (2.2.8),

n ©
(2.2.10) - m¥@) i@ -y (“) o i ) o6, ® = i@,
! =2 \K/ K j=1

From (2.2.9) and u;+2(p) < (an)(k)

T (n) * . (n-k) ot . . . .
(2.2.11) ) () w1 + 1 p,DEG) < £,
k=2 j=1
n
for some function f with £(i) < cn[ z (E) (an)(k-z) ((n+]-k)ai)(n+l_k)]
k=2
Summing the inequalities (2.2.10) and (2.2.11)(i.e. left side plus left

side and right side plus right side) and multiplying by pn-l, note that
from assumption (2.2.4) pn_l(-nuT(p)) > 1, gives



i T @ ETG) s £,

j=1

vhere

£ (1) = on i + £(0)1.
Hence

£ < pn le (1™ +n k§2 (E:;) (an) €72 ((a-1)ai) (P17 (k72
(2.2.12) son'e [i™ + n((a-Daivan) ®7V)

<c (nai)™  fori=n> 2.
For c_.. we can take the maximum of (2.2.12) for i = I,..., n-1. To

n+1l
conclude it is straightforward from relation (2.2.9) that the assumptions

(2.0.1) and (2.0.2) are satisfied when supp er(i)l as function of i is

bounded by some polynomial in i.

3. DISCOUNTED EXPECTED AND AVERAGE EXPECTED RETURN

In this section we focus attention on discounted and average expected
return. We do not need the assumptions of section 2 in all strength in this
section. It is sufficient to assume that relations (2.0.1) and (2.0.2) are
true for m = 0 and m = 1.

For the vector with i-th component the sum of all expected discounted

returns when starting in state i and using policy R = (PI’P ) we write

gseee

o P, ... P, ry,
1 t-1 Pt
where 0 < o < 1 Zs the discount factor.
We shall prove below that the above sum is absolutely convergent and

so v; is properly defined.
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3.1. LEMMA. From
(3.1.1) X + OPYSYQ

for x 2 0 and for all P € P it follows for arbitrary policy R = (P,,P,,.
that the total expected return (with immediate return vector x) until
state 0 s reached is bounded by y Z.e.

(3.1.2) P ... ;P x<y

1 01 0 t-1

ho~18

t

PROOF. Iterating the inequality
(3.1.3) x + 0Py <vy

.,P, we obtain

successively for P, P 1

> "T-1°"°

Il 113
g
rd
Y
<+
"o

o

i
&«
A
<

0°1 """ Tt-1 01

t=1

Since y 2 0 and hence 0P1 . 0PTy 2 0 for all T, we find as T > « rela-
tion (3.1.2). O

Using the last exit decomposition of state 0 (see CHUNG [2] p.46) the

above stated absolute convergence follows now easily. Indeed,

3.2. LEMMA. For any poliecy R = (P ,P_,...) and any i € E,

1°°2

G2 e e iy 1) s (1-0 7'y, (0)

PROOF. From relation (2.0.1) with m = 0 and lemma 3.1 we conclude that for

any policy R = (PI’PZ"")

Il ~1 8

R N N OERNOY

t=k t

Hence for any i € E, using the last exit decomposition of state 0



t=1
S
tZ] kZ] a P] oo Pk_](l,O)OPk e OPt—lIrPtI(O)
I I <07 ly 0. O
k=1 t=k

For policy R = (Pl’Pz"") the vector of average expected return is
defined as

o~
d
la)
2]

(3.2.3) = limsup T

g
R e T

1 t
Again the cesaro limit 8 is properly defined, since,

3.3. LEMMA. For any policy R = (P],Pz,...) and any i € E,

(3.3.1) P. ... PT—l|rPTI(i) < Ty](O)

The proof uses similar arguments as in lemma 3.2.

. o . . . .
Since vp is properly defined we can introduce the components wise

supremum ,
[0 o
(3.3.2) V' = supp Vp.
From (3.2.1) we have
(3.3.3) VYD) < (l—a)_ly](O) <® for all i.

Under more general assumptions it can be shown that v* satisfies the

optimality equation (for a proof see [5])

(3.3.4) vr o= sup [rP + aPv™]
PeP

We assumed in the introduction that r, is continuous. From (3.3.3) and
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. . . a . .
Pe < Pyo and Py0 is continuous in P, we conclude that also Pv is contin-
uous. Since a continuous function has a maximal value on a compact set we
obtain for certain Q ¢ P

(3.3.5) r,. + ana = va,

Q

Such a Q is called va—eonserving.

3.4. THEOREM. For v%-conserving matrix Q 2t holds that Q°° 18 a~discounted
S2anen g

optimal.
PROOF. For any T, iterating the equality (3.3.5) gives

0’.t-th-lrQ + otTQTVa - VOL.
1

I~

t

With (3.3.3) we can similar to relation (3.3.1) deduce that
T . -1
(Qv*(i) < T(1-0) 'y, (0).

Hence

lim aTQTva =0

T

and

at_th—]r - Va
1 Q

o~ 8

t

which completes the proof. [J

Since va-conserving matrices do exist we conclude that the existence
of a stationary policy which is optimal with respect to the a-discounted
expected return within the class of all policies is guaranteed under our
assumptiones. Moreover, such a policy can be obtained from a va-conserving
decision rule.

Next, we want to establish a solution of the optimality equation for
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the average expected return. The technique we shall use is originally due to

TAYLOR [11] and further develoned by ROSS [8]. First we need a technical lemma.

3.5. LEMMA. For all 0 < a < 1 the following inequalities are true
(3.5.1) (A=) VO] = y,(0)
(3.5.2) VY@ = vHO)| < (I+y 0Ny, (1)

PROOF. Inequality (3.5.1) is immediate from (3.2.1).

Let 1 be the entry time of state 0 after time 1 i.e.

(3.5.3) 7 = min { = 0}.
k=2 %
Then 1 is a Markov time. For Q a Gu—conserving policy we have that v’ is
a potential with respect to substochastic matrix aQ. Hence from a well known
theorem in Markov potential theory (see chapter 2 of [5]),

-1

(3.5.4) v’ = By tzl r(x,) + ]Eva“(:_cl) :

Or in a different notation

3.5.5) v*= § of! OQt'l rq * Eqmal"‘ v*(0).

Hence from (3.1.2) with Yo for x and v, for y, for any i € E

1

(3.5.6)  [v*(@) - v*(@] <y, (i) + (l-IEchxl_l)|va(O)|.
Further by the well known inequality (l—aT) < (1-a) T

(3.5.7)  (=Egua™ H[v*0)| s (1= [v*(0) | By, (z-1).

Q=
The expected time until entering state 0O can be seen as a total ex-
pected return until entering state 0 with as immediate return vector the

unit vector (see [5] 2.7).
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Hence from (3.1.1) with e for x we find form the assumption in section

2 that

(3.5.8) ]EQZS Y-

Combination of the inequalities (3.5.1), (3.5.6), (3.5.7) and (3.5.8)
yields (3.5.2). |

3.6. OPTIMALITY EQUATION FOR AVERAGE EXPECTED RETURN

Equation (3.3.4) specified for the i-th component gives
(3.6.1)  v*() = sup [ry(i) + o ] p(i,i)v*(§)1.
PeP ]
Consequently by subtracting va(O) from both sides
vi(i) = v¥(0) = sup [r,(i) = (1=a)v*(0) + o J p(i,§) (v*(3) - v (0N 1.
PeP j

Since lemma (3.5) implies the boundedness of lva(i) - Va(O)I for i € E
and (l—u)va(O) as function of a, the diagonal procedure provides a sequence
{an} with 0 < a < 1, a > l as n > » and a constant vector i.e. all com—

ponents are equal, g together with a function v such that
@ , a a
lim (l—an)v (0) = g(0) and 1lim v (i) - v (0) = v(1i).

n-—>o° n->-o

Moreover, from (3.5.2)
(3.6.3) |v| < (1+y,(0))y,
and hence with the dominated convergence theorem

a o
Lim § p(i,5) (v TH-v 1)) = L p(i,1)v(i).
n>e j J

With (3.6.1) we conclude
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v 2 sup [r_ - g + Pv].
PeP

Moreover, since Pyl is a continuous function of P it follows from a

generalized dominiated convergence theorem (see ROYDEN [9] proposition 18

. . a_ .
p-231) that for Q such that Q = 11mn+°° Qan and Qa 1s v —conserving hence
%n .. “n . %n % o
v m v 0) = rg () - (e )v 0) +a T g (1, (v "()-v MO,
o ?
n j 0

the following equation holds
v=r,-g+ Qu.
Q g +Q

Such a Q we call (g,v)-conserving.

By starting from the beginning with a suitable subsequence of dis-
count factors tending to 1 we conclude:
Each limitpoint as o tends to one of va—conserving decision rules is

(g,v)-conserving (cf. lemma 3.10).

Before we can prove that a (g,v)-conserving decision rule provides a

stationary average optimal policy, we need two technical lemmas:

3.7. LEMMA. Let Xy =Y,

and

X = max .Px
n+l PeP 0

then X 18 a decreasing sequence and
lim x_ = 0.
n
n->

PROOF. Since from assumption (2.0.1) Yo * 0Pyl < Y, for all P € P and
Yo > 0 we have that

X, = max Py, <y. = x_.
PeP 01 1 0
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<
Now suppose xn < xn_] then 0Pxn < OPxn—l for all P € P and hence
X = max .Px < max .Px =X .
n+l PeP 0 PeP 0 "n-1 n

Thus by induction X, n= 0,1,..., is 2 decreasing sequence. Consequently

exists. Let P be such that x
n n+1

has a limit say P. Then again using a generalized bounded convergence

= Oann and subsequence n such that Pnk
theorem we conclude that
x = _Px.

0

Hence for all T

However

o~ 8
)
-
|
]
IA
ho~18
)
rt
|
<
<
N

Hence
x = 1lim PTx = 0. g
T

3.8. LEMMA. For any policy R = (P],Pz,...) it holds

(3.8.1) lim P1 ... P

T

T yl/T =0

PROOF. Using again the last exit decomposition of state 0 we find with

lemma 3.7
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T+1
(3.8.2) P, ... Py (i) = kzl P, ... P _ (i,0) P ... Py y (0

T+1
kzl P, ... P (1,0)x_ (0)

IA

Using a lemma on Norlund-means (cf. [2] p.22) we find

T+1
kZ] Pooe.. Pk_l(l,O)xT_k(O)
(3.8.3) lim T = 1lim xT(O) = 0.
T . T
z Pl .o Pk_](l,O)

Combination of (3.8.2), (3.8.3) with the inequality

T+1

P ...P _(i,0) < T + 1
WL k-1

implies relation (3.8.1). [

3.9. THEOREM. For (g,v)-conserving decision rule Q it holds that Q°° has

maximal average expected return. Moreover,

ngo =8
PROOF. For Q the equality rQ - g+ Qv = v holds. Iterating this equality
T times gives

T

z Qt 1 rQ - g.T + QT+1V = v.

t=1

With lemma 3.8 and (3.6.3) we find

t-1

)
Qe r,=8.
t=1 Q

lim T
T->c0
Further for arbitrary policy R = (PI’PZ"") we find by interating the in-

equality
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successively for PT’ PT—l""’Pl that

T
) P, ...P _r, -gT+P ...Pv<uv.
ooy 1 t=1 P 1 T

Again with lemma 3.8 and (3.6.3) we obtain

limsup T_l
T t

o~
J
o
o]
IA
oQ
(|

1 ' t

Since each limitpoint as a tends to one of va—conserving decision
rules is (g,v)—conserving we conclude with the above theorem.

Each limitpoint as o tends to 1 of discounted-optimal policies <is
average-optimal.

As we shall show in the next section it is under general conditions

even bias-optimal (or equivalently O-discount optimal).

In subsection 3.6 we obtained v(i) as the limit of va(i) - va(O) as o

tends to one through certain sequence a . Actually the limit does exist.

3.10. LEMMA.
v(i) = lim [v*(1) - v*(0)1.
atl

PROOF. Suppose w is another limit vector. Then from 3.6 again
lw| < (1+y,(0))y,
and with 3.6 and theorem 3.9

(3.10.1) W = max (rP-g+Pw).
PeP

Since v(0) = w(0) = 0 we have for Q a (g,v)—-conserving rule

w2 rQ - g+ OQw
and

v = rQ - g+ 0Qv.
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Hence
v-w£< 0Q(v—w).
Similar for Q* a (g,w)—conserving rule
*
w-=-v < _Q (w-v).
0
Consequently

Iv - w| < max P|v - w|.

PeP

]
o

Now from |v = w| < 2(l+yl(0))y] and lemma 3.7 we conclude that v - w

So all limit vectors are equal and the proof is complete. a

4. LAURENT EXPANSION AND SENSITIVE OPTIMALITY CRITERIA

In this section we focus on the discounted expected return for dis-
countfactors o near | or equivalently small interest rates p (o=(l—a)a_] or
o =(1+p)_1L Under the assumptions of section 2 we can expand the discounted
expected return for stationary policies as a Laurent series in powers of p.
The existence of n-discount optimal policies will be shown. Moreover, limit
points as o-tends to 1 of discounted optimal decision rules are 0-discount

optimal, at least in the class of stationary policies.

We first start with a technical lemma, which with a different proof

can also be found in [6].

4.1. LEMMA. There is a sequence of constant vectors Y-SR with

lg (0)] < ﬂE=l(1+Yk(0))ym+](0) a sequence of vectors Vi ,v ,..., with

Ivml < HE:: (1+yk(0))ym+l, and a monotone decreasing sequence of nonempty
compact subsets of P say P = P—l’ Pb, P],... such that for

0 - — -
(4.1.1) wp := rp g + on v
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and

m
(4.1.2) wP =V T8yt Pvm A m

1,‘2’...

1t holds that

m—
(4.1.3) wP =0 for P € Ph

and

(4.1.4) max ¢§ = 0.
PeP
m—1
PROOF. The proof proceeds by induction on m. The g, v we found in section

3 suffice as 8y Vo Define

PO = {P e P: - on = vo}
Since (g,v)-conserving policies do exist, we have that PO is not empty.
It is easily seen that PO is closed and hence as a closed subset of a com-
pact metric space again compact.
EREEEY-SPPR A and P], PO""’Pm—
The way of constructing gy and v is strictly similar to that of g,v in

Assume go, VO’ gl, v ] are found.

section 3. In short we will repeat the various steps of finding & and v
Introduce

at—]Pt_lv

a
v. = sup - .
T pep t=1 m-1

m-]

Since for all i € E

e~ 8

m—-1 '
(4.1.5) Ivm__l(i)l < kr=11 (1+y, (0))y_ (1)

we find similar to (3.2.1) that

_ m
.1.6) VD] s 0-0Th W Gy )y ().
k=1
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Moreover, similar to (3.5.2)
o o m+1
(4.1.7) v (1) - v (0] < T 0y, ().

. a . a . . . . .
Since v, is a bounded vector, Pvm is continuous in P and hence the optimality

equation reads

v = max [-v + aPv>].

m m-1 m

PeP
m-1
Rewriting this as in 3.6 gives
a,. a - _ PR .. O .\ _ O
v (i) = v_(0) Pl;l;x [-v__, (1) - (I-e)v_(0) + § p(i,3) (v _()-v_(0)) 1.
m-1

Now choose sequence @ of discountfactors tending to ! (possible, from

(4.1.6) and (4.1.7) such that

g (i) := lim (1—an)v$(0)

n->co
and
. . G, uy_ QO
Vm(l) := lim (vm(l) vm(O)).
n->o
Then
v. = max [-v - g + Pv_ ]
m m-1 m m
Per_]

which is relation (4.1.4) for m.
Define

P_ = (PeP
m m-

P —vm_l—gm+Pvm—vm=O)

O

then Pm is a nonvoid closed subset of the compact set Pﬁ—l'

4.2, In HORDIJK & SLADKY [6] for M any integer the following partial Laurent

expansion is derived for the total discounted expected return

ATISCH Cuwi iUM

BIBLIOTHEEK MATHE!
—ee AMISTERDAM-
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M-1 ©

-1 - M
(4.2.1) avg =0 gy + 7 oo™u + ) ofpt Pum g+ 0(e™,
= m R P
m=0 t=1 t
-1
where R = (P],Pz,...), p =0 (l-a) and u_, = vm—l + g,

Following VEINOTT [12] we say that policy R” is n-discount optimal
withn=-1, 0, 1,2,..., if

(4.2.2) liminf (1—a>‘“[v;

. - vg] >0,
atl

for each policy R.
Let v%(R) denote the vector of expected returns under policy

R = (PI’P ) up to time T i.e.

PIRRE

1 T
(4.2.3) VT(R) = Z PR s
t=1 t

and define recursively for n 2 1

T
n+l n
(4.2.4) vp (R) = tzl v (R).

Again following Veinott we call policy R n-average optimal if

n+2

* n+2
T (RY) - Vo (R)] =0

(4.2.5)  liminf  [v
T
for each policy R.
Using Laurent expansion (4.2.1) we proved in [6] when the number of
actions is finite in each state then policy R is n-discount optimal if and
only if it is n—average optimal. Moreover, for decision-rule P ¢ Pn+1 it
holds that stationary policy P” is n-discount optimal. Note that (-1)-
average optimality is optimality with respect to the average expected return.
In section 3 we proved that limits of discounted optimal decision rules, as
the discountfactor tends to one, are average optimal. It is easily checked
that those limits are elements of PO and hence we could have used the above
cited results by proving the average optimality of these limits. However,

via the approach of section 3 we get rid of the assumption P(i) finite for

all 1 € E.
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In the sequel of this section we shall prove that those limits are O-dis-
count optimal in the class of stationary policies. From the results of [6] we
know then in many cases they are in fact O-discount optimal in the class of
all policies. In the literature O-discount optimal is also called bias
optimal or l-optimal the equivalent criterion O-average optimal is also

called average overtaken optimal.
We first need some technical lemmas.

4.3. LEMMA. The vectors g vV, n = 0,1,2,... are unique. If for some n
and vectors h and w with h constant vector, w(0) = 0 and |w| < ey, for

some constant c and integer k,

(4.3.1) W = max f-vn - h + Pw]

PeP
n

then
h = gn+]

and
wvo=vog

PROOF. Similar to theorem 3.9 it holds that

T
.1 t-1
g = h = sup lim z P (-v.).
n+l PP Tow | =1 n
n
The proof that Ve~V proceeds similar to the proof that the solution w

of (3.10.1) is unique in lemma 3.10. g

Also similar to 3.10 we have for any n

. . a,. a
v (i) = 1lim [v (i) - v_(0)1.
n n
otl
Since we know now that g,» Vv, are essentially unique we can express

them also in a different way.

4.4. LEMMA. Define constant vector h as
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I oPr (v ) (0)
(4.4.1) h(i) := sup t=l .
ReRn Z OPE-]e(O)
t=1

wth=@V%““)e%if%e?nﬂrk=hL“.mdkﬁmvwwrw

as

o ot
W = sup z 0PR (—vn-h).
ReR t=1
n
Then h = 8 41 and w = Vol

PROOF. By straightforward verification it can be shown that (h,v) satis-

fies the conditions of lemma 4.3. d

A well known mean ergodic theorem says that the average expected re-
turn is equal to the expected return until reaching state 0 divided by the
expected time until reaching state 0. Hence that the right hand of (4.4.1)

is equal to the maximal average expected return is not surprising.

4.5. LEMMA, For any P € P there exist a sequence of vectors
go(P), UO(P)’ g](P), UO(P)"°°
such that all g's are constant vectors,

(4.5.1) r, - gO(P) + PuO(P) = uO(P)

and

(4.5.2) —un(P) + Pun+](P) =u (P) for n = 0,1,...

n+l
Moreover, gn(P), un(P), n = 0,1,... are continuous as functions of P.

PROOF. Apply lemma 4.1 for the specialized case that P consists of one
element P i.e. P = {P}. It is clear then that for the sequence

gO(P), vO(P), gl(P), v](P),..., now depending on P, holds that
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-vm(P) -8

m+](P) + Pv (P) =v +](P) form=1,2,... .

m+1 m
Now defining um(P) = vm(P) + gm+](P) we obtain (4.5.2). From lemma 4.4

we know that

t-1
A ACHO

(®)(0) =L X

t-1
: OP e(0)

e~ 8
o

gm.+1

He~18

t

Since from lemma 4.1

m+1
lv,®)] < T A+ 0y,

and since

-1 T
LooP Ymer S of Yawo

it follows from lemma 3.7 with Ve for Y, that for any ¢ > 0 there is an
integer T(e) such that

t-1

o ) |
T

7 Pt leco)

t=1 0

o~

e (®)0) - & <e, for all P ¢ P.

m+ ]

Hence gm+](P) is continuous as function of P. With similar arguments it is
straightforward to show that also Vm(P) is continuous in P and so is
um(P). il
4.6. THEOREM. For any matrix P e€ P, all integers M

a vt t-l -1 Mol o M-1
(4.6.1) AV g, = z o P r, =0 gO(P) + Z 0 um(P) + 0(p ).

1 t m=0

PROOF. With lemma 4.5, and p = a—](l—a),

(4.6.2)

-1 ©  t.t-1
+o gg(P) +u (P) —p ) aP uyp),
t=1
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_ -l vt
=0 gy(P) + uy(P) ptZl o P u (),

and similar for any m = 0,1,...

t_t-1 _ vt t-l
(4.6.3) - o P um(P) = um+l(P) - ptzl o P um+1(P).

o~ 8

t=1

Substitution of (4.6.3) for m = 0 in (4.6.2) then substitution of (4.6.3)

for m = 1 in the result etc. gives (4.6.1) with restterm

(4.6.4) -p z o P u (P).

Since
u_ ®] < v, @]+ [g,®]

we find with lemma 4.1 that

M+1

M (47, (0) gy, -
=1

t t-1 M -1
o P uM_l(P)| < p (1-0)

1 k

°
=
o~ 8

t

Hence the restterm is O(DM-]) uniformly in P ¢ P. O

It is said that vector (xl,...,xn) is lexicographic larger than cr
equal to vector (yl,...,yn) if the first nonzero element of
(xl—y],xz—yz,...,xn—yn) is positive. )

From Laurent expansicn (4.6.1) it is easily seen that P is n-discount
optimal in the class of stationary policies if and only if for all i ¢ E
(gO(P)(i),uO(P)(i),...,un(P)(i)) is lexicographic maximal.

From results of [6] we know that P ¢ Pn+ is n-discount optimal. From

1
lemmas 4.1, 4.3 and 4.5 it follows for P ¢ Pn+] that gk(P) = 8>

k=1,...,n+l and vk(P) = k =1,...,n+*] and hence uk(P) = U, k=1,...,n.

v
k’
Combining these results we find that

(go,uo,.--,un) = iax (gO(P),uO(P),--.,un(P)),
eP

where the maximum is componentswise and lexicographic.
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We can now give the final result of this section.

4.7. THEOREM. If P is an-dtscounted optimal, lim @ =1 and %ig Pn =P

then
(8 (B)uy(P)) = (gg,up).

Hence P_ is O-discount or equivalently bias-optimal.

PROOF. In section 3 we showed that g(P_) = g(P) for all P € P. Now for Q
such that g(Q) = g(P_) we find with theorem (4.6) and the fact that P: is

an—discount optimal
-1
P, 8P ) + ug(®P ) +p (u (P ) +0) 2
-1

where

) P
Py = @ (1 an).

A

With gO(Pn) gO(Pm) = gO(Q) it follows then

=

0(®) = u (@ =0 _(u(B) - u (@ +0).

Since uO(P) and u](P) and continuous in P we find as n tends to infinity

that uO(Pm) > uO(Q). 0

5. ITERATION PROCEDURE

In section 4 we discussed the existence of n-discount optimal policies.
In BREIMAN [1] a device for computing average optimal policies in binary
decision problems is given. In this section we give a similar iteration
procedure for computing n-discount optimal policies.

. * . .
Given v, P ¢ P with IVPI < Yy for some integer k and some constant

P!
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*
¢ and compact product set P c P compute for constant vector g

x.(g) := max (VP'g)
0 PeP”

and

Xn+1(g) = ?:;*(VP_g+OPXn(g))

then

x(g) := lim xn(g)
N>
exists. The limit x(g) depends continuously on g and there is exactly one
g* such that the zero component is zero i.e. x(g*)(O) = 0. If for some g
we find x(g)(0) > O then g > g if x(g)(0) < O then g < g.
The pair (g*,x(g*)) is the unique solution (g,w) with g constant vec-

* *
tor and |w| < ¢ Vit for some constant ¢ of the equation

(5.0.1) W = max_ (vP—g+0Pw).

PeP
Hence if Vp = Tps P e P* and P* = P then as in section 3 and in lemma
4.3 g* = g and x(g ) = M and similar if Vo =V and P” = Pn for some n
* *
then g = 8 41 and s(g ) = Vot

So this scheme provides an iteration procedure to compute 8y> Vo and

also g and Pn+ when gn, v and Pn are known.

n+1° T+l 1

To prove that %ig xn(g) exists, let w be the solution of (5.0.1) i.e.

(cf. lemma 4.4)

t-1
w = sup 0PR (vP -g)
t

ReR t

e~ 8

1
then as in the proof of lemma 3.10

[xn+](g) -w| < gag* 0P|xn(g) - wl.

Similar to the proof of lemma 3.7 we find then

lim xn(g) = w.
n->oo
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As in lemmas 4.3 and 4.4

© t-l
L ofg vp (O
* t=1 t
g (0) = sup, —
ReR t-1
Z OPR e(0)

t
—

Hence

S el
w(0) = sup, ) P (v, -8)(0) <0
ReR  t=1 t
if g > g*.
That x(g) is continuous in g follows again from the fact that x(g) can

be approximated uniformly for all g's in any bounded interval by xT(g) i.e.

for any € > 0 and any state i and all g's such that - « < g < g(0) <

<g, <t for any g;, g, there is an integer T such that (cf. lemma 4.5)

|x(g) (1) - XT(g)(i)l < e.
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