
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE

J.K. LENSTRA & A.H.G. RINNOOY KAN
A RECURSIVE APPROACH TO THE GENERATION
OF COMBINATORIAL CONFIGURATIONS

~
MC

BW 50/75 JUL]

2e boerhaavestraat 49 amsterdam

SIBUOTH!iEK MA THEM A f!SCH CENTRUM
_ At'1ST!d<.DAM --

PJun:te.d a.:t ;the. Ma.:thema.:ti..c.al Ce.ntll.e., 49, 2e. BoeAhaa..veJ.dJr.aa..t, Am1.>:teJ1.dam.

The. Ma.:thema;ti..c.al Ce.ntll.e., 6ou.nde.d :the. 11-:th 06 Fe.b1r..ua1ty 1946, ,l6 a. non
p1r..06U -i.n1.>;ti..:tu.ti.on cu.ming a.:t :the. plr..omotion 06 pMe. ma.:thema.:ti..c.1.> a.nd ..i.:t6
a.pp.Uc.a.:ti..orv.~. I:t ,l6 1.>pon1.>01r..e.d by :the. Ne.:theJri.a.ndl.> GoveAnme.n:t :thlr..ough :the.
N etheJri.a.ndl.> 01r..g a.n-i.za.:ti..o n 6 oh.. :the. Adva.nc.eme.n:t o 6 PMe Rel.> e.a.Jr..c.h (Z . W. 0) ,
by :the. Mun-i.el.palliy 06 Aml.>:teAdam, by :the. Un-i.veJl.l.>Uy 06 Am1.>:teJ1.dam, by
:the. F 1r..e.e. Un_.[veJl.l.>Uy a.:t Am1.>:teJ1.dam, a.nd by -i.nd!11.>..tlue.1.>.

AMS (MOS) sub:ject classification scheme (1970): 05A05, 05A10, 90B35, 90C10

1

A RECURSIVE APPROACH TO THE GENERATION OF COMBINATORIAL CONFIGURATIONS

J. K. LENSTRA

Mathematisah Centrwrz, Amsterdam

A.H.G. RINNOOY KAN

Graduate School of Management, Delft

ABSTRACT

Algorithms for generating subsets, lattice-points, combinations and permuta

tions by means of both lexicographic and minimum-change methods are presented.

The use of a recursive approach not only leads to concise and elegant descrip

tions, but also facilitates progrannning and correctness proofs. The resulting

algorithms turn out to be certainly no less efficient than previous iterative

generators. Some applications of explicit enumeration to problems of combina

torial optimization, exploiting the minimum-change property, are indicated,

and a recursive approach to implicit enumeration methods is discussed.

KEY WORDS AND PHRASES: reCUPsion, generation of combinatorial configurations,

lexicographic generators, minimum-change generators, subsets, lattice-points,

Gray code, corrbinations, permutations, hamiltonian path, combinatorial opti

mization, exp Uait enumeration, implicit enumeration

CR CATEGORIES: 5.30, 5.32, 5.39, 5.40

ADDRESSES OF AUTHORS: J.K. Lenstra, Mathematisch Centrum, Tweede Boerhaave

straat 49, Amsterdam, The Netherlands; A.H.G. Rinnooy Kan, Graduate School of

Management, Poortweg 6-8, Delft, The Netherlands.

3

1. INTRODUCTION

In this paper we present a recursive approach to the generation of combina

torial configurations. More specifically, we consider the generation of

subsets, lattice-points, combinations and permutations by means of both

lexicographic and minimum-change methods. The first mentioned type of method

generates the configurations in a "dictionary" order, whereas the second

type produces a sequence in which successive configurations differ as little

as possible. In itself, these two approaches are not new. The relative advan

tages of minimum-change methods have been discussed previously: the entire

sequence is generated efficiently, each configuration being derived from its

predecessor by a simple change; moreover, a minimum-change generator "may

permit the value of the current arrangement to be obtained by a small correc

tion to the immediate previous value" [27).

The very "cleanliness" [21) of combinatorial problems allows a proper

demonstration of what we believe to be the advantages of a recursive approach

(cf. [1,2.1.5]). Apart from ~e elegance of the recursive descriptions, both

programming and correctness proofs are substantially facilitated by the recur

sive structure, whereas the algorithms turn out to be certainly no less effi

cient than previous iterative generators.

Our algorithms are defined as ALGOL 60 procedures. They contain no labels

and generate the entire sequence of configurations after one call. Each time

a new configuration has been obtained, a call of a procedure "problem" is made.

Parameters of this procedure are the configuration and, for minimum-change

generators, the positions in which it differs from its predecessor. It has to

be defined by the user to handle each configuration in the desired way.

Most previously published procedures [3;4;6;7;8;10;11;12;24;27;35) are

organized in such a way that each call generates only the next configuration.

This necessitates continual recomputation of the point that has been reached

in the sequence [26). A mechanism for performing this kind of computations

efficiently has been devised by Ehrlich [10;13). We do feel, however, that

much of the clarity of essentially recursive algorithms is lost within any

iterative implementation.

Our recursive generators are presented in sections 2, 3 and 4 and com

pared to previously published procedures in section 5. Section 6 contains some

4

applications of explicit enumeration to problems of combinatorial optimization,

exploiting the minimum-change property of generators. We conclude with some

remarks on a recursive approach to implicit enumeration methods in section 7.

2. SUBSETS AND LATTICE-POINTS

We start by discussing recursive generators of all subsets of a finite set. A

subset Sofa set {e1 , ••. ,en} will be represented by a binary n-vector x with
n

~ = 1 iff ek Es. These 2 vectors correspond to the vertices of the n-dimen-

sional cube. A hamiltonian path on then-cube defines a sequence of subsets in

which each subset is derived from its predecessor by adding or removing one

element. Such a sequence is called a binary Gray code [14;16;37].

The particular sequence which is generated by our algorithm is the bi

nary reflected Gray code. Starting from the empty subset, we may produce it

in the following way. First, we list the sequence for n-1 elements and add O's

as then-th components. Secondly, we list the (n-1)-sequence in reversed order,

adding l's as then-th components. Obviously, the sequence for 0 elements con

sists only of the empty configuration. Figure l(a) shows the code for n = 4.

In the above description we can replace "0" by "x*" and "1" by "1-x*"
n n '

where x* denotes an arbitrary starting configuration. The last configuration

in the sequence is adjacent to the first one, since they differ only in their

n-th component. It follows that the binary reflected Gray code defines a

hamiltonian circuit on then-cube.

If the rules are written down in a more formal way, the following minimum

change generator of subsets results.

procedure ss me (problem,n,x); value n,x;

integer n; integer array x; procedure problem;

begin inte,~ x1;

procedure gray(n); value n; integer n;

if n > 1 then

begi:Q_ gray(n-1);

end

begi:Q_

end;

x[n] := 1-x[n]; problem(x,n);

gray(n-1)

else
x[1]:= x1:= 1-x1; problem(x,1)

x1 := x[1];

problem(x,O); gray(n)

end ss me;

A call "ss me (problem,n,x*)" has the following effect:

- a hamiltonian path on the n-cube from x* to y* = (x*1 , ... ,x* 1 , 1-x*) is n- n
traversed;

- in vertex :x:* a call "problem(x*,0)" is made;

- in each vertex x, reached by a change of the k-th component, a call

"problem(x,k)" is made.

5

The latter two assertions are clear from inspection. To prove the first one,

it suffices to show that a call "gray(k)" accomplishes the following: starting

from a configuration x, all x' for which x' =I= x, x,Q, = xQ, fork< Q,::::; n, are

reached, each exactly once, while no other vertices are reached; the final

vertex y is 9iven by yk = 1-~, yQ, = xQ, for Q, =I= k. The proof, which is by

induction on k, is clear from the following diagram:

gray (k-1)

gray (k)

gray(k-1)

[r · · · ·1k-2. rl · rtl · · · · Y = X

(x1,··· 1 ~-2' 1-~-1' ~'~+1 1 ···,xn)

(xl' · · · '~-2 11-~-1 • 1-~'~+1' · · · ,xn)

[it ... ,l_2, t_l,l-ltl,••••L a Y

6

Here a broken arrow means that the component does not remain constant; an

unbroken arrow indicates that it remains unchanged.

In "ss me"' the deepest level of recursion has been written out explicitly.

This device has been applied to all our minimum-change generators and clearly

reduces the number of checks to see if the bottom of the recursion has been

reached already. It enables us also to deal separately with the first compo

nent of x, which is involved in half of the changes.

Iterative implementations of the binary reflected Gray code have been

given by Boothroyd [4] , Ehrlich [12] and Bitner et al. [3] .

A lexicographic generator of subsets is even simpler to construct. Configura

tions x are generated in such a way that xx 1 ... x 1 is an increasing binary
n n-

number. At each level of recursion exactly one component of xis defined and

at the bottom a call "problem(x)" is made. Again, the recursive approach makes

the correctness proof a trivial one.

procedure ss lex (problem,n); value n;

integer n; procedure problem;

begin integer_ array x[1 :n];

procedure node(n); value n; integer n;

if n = 0 then problem(x) else

begin x[n]:= O; node(n-1);

x[n]:= 1; node(n-1)

end· __ ,
node(n)

end ss lex;

The subset generators are easily adapted to the generation of lattice-points.

Ann-dimensional lattice is defined by two integer n-vectors t and u; its

vertices are given by the integer n-vectors x with tk $ xk $ uk fork= 1, ... ,n.

Then-cube is a lattice with tk = 0 and uk = 1 for all k. Thus, a sequence in

which each lattice-point is derived from its predecessor by increasing or de

creasing exactly one corrrponent by one may be obtained as a straightforward

7

generalization of the binary reflected Gray code. However, not each lattice

contains a hamiltonian circuit, as can be seen by taking n = 1, t 1 < u 1-1 or

n = 2, t 1 = t 2 = 0, u 1 = u2 = 2; the property that we can start in an arbi

trary vertex has been lost. Figure 1 shows some examples.

1 0000 1111 1111
u 1111 1234 4321

1 0000 1111 1111
2 1000 1211 2111
3 1100 1221 3111
4 0100 1121 4111
5 0110 1131 4211
6 1110 1231 3211
7 1010 1232 2211
8 0010 1132 1211
9 0011 1122 1311

10 1011 1222 2311
11 1111 1212 3311
12 0111 1112 4311
13 0101 1113 4321
14 1101 1213 3321
15 1001 1223 2321
16 0001 1123 1321
17 1133 1221
18 1233 2221
19 1234 3221
20 1134 4221
21 1124 4121
22 1224 3121
23 1214 2121
24 1114 1121

(a) (b) (c)

Figure 1 Reflected Gray codes.

Our minirrrum-change generator of lattice-points is presented below.

8

procedure lp me (problem,n,l,u); value n,l,u;
integer n; integer array l,u; ·procedure problem;
begin integer k,x1,11,u1; boolean array even[1:n]; integer array x[1:n];

procedure rise(n); value n; integer n;

if n > 1 then
begin boolean rm; integer :xn,un,m;

un:= u[n]; m:= n-1;
rm:= true; rise(m);
for :xn:= l[n]+1 step 1 until undo
begin x[n]:= :xn; problem(x,n,O);

rm:= 7rrn; if rm then rise(m) else fall(m)
end

end · else
for x1:= 11+1 step 1 until u1 do
begin x[1]:= x1; problem(x,1,0)
end;

procedure fall(n); value n; integer n;
if n > 1 then
begin boolean rm; integer:xn,ln.,m;

ln:= l[n]; m:= n-1;
rm:= even[n]; if rm then ri~e(m) else fall(m);

I

for :xn:= u[n]-1 step -1 until 1n do

begin x[n]:= :xn; problem(x,O,n);
rm:= 7rrn; if rm then rise(m) else fall(m)

end
end else

for x1:= u1-1 step -1 until 11 do

begin x[1]:= x1; problem(x,0,1)

end;

fork:= 2 step 1 until n do
begin x[k]:= 11:= l[k]; u1:= u[k]-11; even[k]:= (u1f2)x2 ~ u1

end; x[1]:= 11:= 1[1]; u1:= u[1];
problem(x,O,O); rise(n)

~ lp me;

One can check easily that a call "lp me (problem,n,l,u)" has the following

effect:

a hamiltonian path in the lattice, starting from Q,, is traversed;

- in vertex Q, a call "problem(R.,0,0)" is made;

- in each vertex x, reached by an increase (decrease) of one in the k-th

component, a call "problem(x,k,0)" ("problem(x,0,k)") is made.

9

In "lp me" we have distinguished explicitly between increases and decreases

in a component by means of two separate procedures calling themselves and

each other. Similar constructions have been applied to all remaining minimum

change generators in order to add to their transparency and efficiency.

A Zexicographic generator of Zattice-points is again particularly simply

described recursively. In this case, xx 1 ... x 1 is an increasing mixed-radix n n-
number.

procedure lp lex (problem,n,l,u); value n,l,u;

integer n; integer a.rra.v l,u; procedure problem;

begin int~ arra.v x[1:n];

procedure node(n); value n; integer n;

if n = O then problem(x) else -- -
begin integer un,m;

node(n)

end lp lex;

un:= u[n]; m:= n-1;

for x[n] := l[n] step 1 until un do node(m)

10

3 . COMBINATIONS

The approach, developed in section 2, will now be used to obtain generators

of combinations. A aombination C of m out of n elements e 1 , .•• ,en is repre

sented by a binary n-vector x with~= 1 iff ek € C. We define an undirected

graph G(n,m) whose vertices are given by these (n) vectors; (x,y) is an edge
m

of G(n,m) iff x and y differ in exactly two components. A hamiltonian path

in G(n,m) corresponds to a sequence of combinations in which eaah aombination

is derived from its predeaessor by adding one element and removing one ele

ment.

We will use the notation o1 for the concatenation oft o's; e.g.,

1203 = 11000. -If I is a sequence of combinations, then I denotes the reverse

of I and Io denotes I with o added everywhere as the last component.

From the binary reflected Gray code with the empty set as starting con

figuration we take the subsequence J(n,m) consisting of the subsets that

contain exactly m elements. We shall prove that J(n,m) is a hamiltonian path

in G(n,m) from x* = lmOn-m toy*= lm-lon-ml (note that x* and y* are adja-

cent) if 1 s ms n-1; J(n,0) and J(n,n) consist of only one vertex.

The proof proceeds by induction on n, the case n = 1 being obvious. For

n > 1, 1 s ms n-1, it follows from the recursive structure of the reflected

Gray code that

J(n,m) = J(n-1,m)O,J(n-1,m-1)1.

By the induction hypothesis these two parts are hamiltonian paths which look

as follows:

J(n,m) = {

if m > 1,

if m = 1.

Inspection shows that the transitions* are edges in G(n,m), so J(n,m) is a

hamiltonian path, as was to be proved. Figure 2 shows J(S,2) and J(S,3).

Combining the recursion scheme of "ss me" and the results presented

above, we obtain the ·following rrrinirrrum-ahange generator of aorribinations.

procedure cb me (problem,n,m); value n,m;

integer n,m; procedure problem;
begin integer k; integer array x[1:n];

procedure over(n,m); value n,m; integer n,m;

if m > 1 then
begin if n-1 > m then over(n-1,m);

x[n]:= 1; x[m-1]:= O; problem(x,n,m-1);
revo(n-1,m-1)

end else
form:= 2 step 1 wtil n do
begin x[m]:= 1; x[m-1]:= O; problem(x,m,m-1)
end;

procedure revo(n,m); value n,m; integer n,m;
if m > 1 then
begin over(n-1,m-1);

x[n]:= O; x[m-1]:= 1; problem(x,m-1,n);
if n-1 > m then revo(n-1,m)

end else

for m:= n step -1 wtil 2 do

begin x[m]:= O; x[m-1]:= 1; problem(x,m-1,m)
end;

fork:= 1 step 1 wtil m do x[k]:= 1;

for k:= m+1 step 1 wtil n do x[k] := O;
problem(x,O,O); if n > m Am> 0 ~ over(n,m)

end cb me;

A call "cb me (problem,n,m)" has the following effect:

- the hamiltonian path J(n,m) in G(n,m) from x* = lmOn-m toy*= lm-lon-ml

is traversed;

- in vertex x* a call "problem(x*,0,0)" is made;

- in each vertex x, reached by adding ek and removing et' a call

"problem(x,k,i)" is made.

11

12

These assertions are proved along the same lines as those for "ss me". Calls

"over(n,m)" and "revo(n,m)" generate J(n,m) and J(n,m) respectively, and the

case m = 1 has been handled separately.

The above method has been discovered independently by Tang and Liu [33;24].

It is instructive to compare their presentation to the above one; the justi

fication of their iterative description [33] and algorithm [24] is an arduous

task, involving the analysis of eleven special cases. Recently, Bitner et al.

[3] have given a recursive description and iterative implementation of the

same method.

As a more general result it is easily proved that in the subsequence of

the binary reflected Gray code consisting of those subsets which contain at

least m1 and_ at most m2 elements, each subset is derived from its predecessor

by adding one element and/or removing one element. The construction of a re

cursive generator of these configurations is left as a challenge to the reader.

At the samE~ time one might consider the problem of the sultan, who, being

in the possession of fourteen wives but only four spare places on his couch,

seeks for a ma.xinrum-change sequence of thousand-and-one different nights.

1 11000 11000 00011 11100 11100 00111
2 01100 10100 10001 10110 11010 10011
3 10100 01100 01001 01110 10110 01011
4 00110 01010 00101 11010 01110 01101
5 01010 10010 00110, 10011 01101 10101
6 10010 00110 10010 01011 10101 11001
7 0001 Jl 00101 01010 0,0111 11001 11100
8 00101 10001 01100 10101 10011 11010
9 01001 01001 10100 01101 01011 10110

10 10001 00011 11000 11011 00111 01110

J(S,2) K(S,2) L(S,2) J(S,3) K(S,3) L (5, 3)

Fi2ure 2 Mi.nimum-change combination sequences.

Now let G' (n,m) be a subgraph of G(n,m) on the same vertex set; an edge (x,y)

of G(n,m) is an edge of G' (n,m) iff all components of x and y between the

exchanged elements are zero. A hamiltonian path in G'(n,m) corresponds to an

order preserving sequence of combinations. One of these paths, K(n,m) from

1m0n-m to On-mlm is defined by

K(n,m) = K(n-1,m)O,K(n-2,m-1)01,K(n-2,m-2)11;

13

another one, L(n,m), starting from On-mlm and ending in lmOn-m if mis even
n-m·-1 m

and in O 1 0 ism is odd, is given by

{
L(n-1,m-1)1,L(n-1,m)O

L(n,m) =
L(n-1,m-1)1,K(n-1,m)O

if mis even,

if mis odd.

Figure 2 shows some examples. The inductive proofs and recursive implementations

are left to the reader.

The recursive definition of K(n,m) is due to Knuth [9]. An iterative des

cription, based on Lathroum's work, has been given by Chase [9]; see also

[13;10]. The iterative algorithms of Chase [8] and Ehrlich [11] generate

L(n,m) and K(n,m) respectively.

Finally, a Lexicographic generator of combinations produces the configurations

in such a way that xx 1 ... x 1 is an increasing binary number.
n n-

. procedure cb lex (problern,n,rn); value n,rn;

integer n,rn; procedure problem;

begin int,~ array x[1:n];

procedure node(n.,m); value n,rn; integer n,rn;

if m = O then

begin for n:= n step -1 until 1 do x[n] := O; problern(x)

end else

if m = n then

begin for n:= n step -1 until 1 do x[n] := 1; problern(x)

end else

begin x[n]:= O; node(n-1,rn);

x[n]:= 1; node(n-1,rn-1)

end· --·'

node(n,rn)

end cb lex;

14

4. PERMUTATIONS

We now consider the generation of permutations. Ann-permutation of a set

{xt,···,x~} is determined by an n-vector consisting of the elements in some

order. We define an undirected graph G(n) whose vertices are given by these

n! vectors; (x,y) is an edge of G(n) iff x and y differ only in two neigh

bouring components. A hamiltonian path in G(n) corresponds to a sequence of

permutations in which each permutation is derived from its predecessor by

transposing -two elements in adjacent positions.

We may construct such a sequence inductively as follows. For n = 1, it

consists of the 1-permutation. Let the sequence of (n-1)-permutations be

given. Placing x* at the right of the first (n-1)-permutation, we obtain
n

the first n-permutation. The n-1 next ones are obtained by successively inter-

changing x* with its left neighbour. After that, x* is found at the left of
n n

the first (n-1)-permutation. Replacing this (n-1)-permutation by its successor

in the (n-1)-sequence gives us the (n+l)-th n-permutation, and the n-1 next

ones arise from successive transpositions of x* with its right neighbour.
n

Then x* is found at the right of the second (n-1)-permutation, which is now
n

replaced by the third one, and the process starts all over again. It is

easily seen that the first and last permutations in the sequence are given

b * (* *) d * (* * * *) t. 1 . th y x = x 1 , ... ,xn an y = x2 ,x1 ,x3 , ... ,xn respec ive y; again, ey

are adjacent and we have found a hamiltonian circuit in G(n).

Figures 3 and 4(mc1) show the graphs G(n) for n ~ 4 and the sequence for

n = 4. Note that G(4) is the edge graph of a solid truncated octahedron, rep

licas of which fill entire 3-space. Similar statements of this remarkable

property hold for all n.

The following minimum-change generator of permutations produces the

sequence described above.

15

G, (1) G (2)

1 12 21 • • •
321

1342 1432

3124

3214

2341 2431

.Figure 3 Graphs G (n) .

16

procedure pm mc1 (problem,n,x); value n,x;

integer n; array x; procedure problem;
begin real xn; integer k,q; boolean array r[1:n];

procedure rite(i); value i; integer i;
if i < n then - -
begin boolean rj; real xi; integer ti,j;

xi:= x[q]; j:= i+1;
q:= q-1;

rj := r[j]; if rj then tlte(j) ~ left(j);
for ti:= 2 step 1 until i do
begin k:= q+ti;

x[k-1]:= x[k]; x[k]:= xi; problem(x,k-1);
rj:= 7rj; if rj then rite(j) else left(j)

end;
r[j] := 7rj

end else -
begin q:= O;

fork:= 2 step 1 until n do
begin x[k-1]:= x[k]; x[k]:= xn; problem(x,k-1)
end

procedure left(i); value i; integer i;
if i < n then

begin boolean rj; real xi; integer ti,j;
xi:= x[q+i]; j:= i+1;
rj := r[j]; if rj then rite(j) else left(j);

for ti:= i-1 step -1 until 1 do

begin k:= q+ti;
x[k+1]:= x[k]; x[k]:= xi; problem(x,k);
rj := 7rj; if rj then rite(j) else left(j)

end;

r[j] := 7rj;

q:= q+1

end else

begin for k: = n-1 step -1 until 1 do

begin x[k+1]:= x[k]; x[k]:= xn; problem(x,k)

end;

q:= 1

xn:= x[n]; q:= O; for k:= 2 step 1 until n do r[k] := false;

problem(x,O); if n 2: 2 then left(2)

end pm mc1;

A call "pm mcl (problem,n,x*)" has the following effect:

if n = 1, then a call "problem(x*,0)" is made, and else

17

a hamiltonian path in G(n) from x* toy*= (x;,xt,x;, ... ,x~) is traversed;

- in vertex x* a call "problem(x*,0)" is made;

- in each vertex x, reached by transposition of the elements in positions

k and k:J-1, a call "problem(x,k)" is made.

The latter two assertions are clear from inspection. The proof of the first

one may be left to the reader. As a hint, we note that just before a call

"rite(i)" or "left(i)" and immediately after the execution, x, rand q sat

isfy the following conditions: {jli ~ j ~ n, r,} has exactly q elements,
J

and if we write

{jli ~ j ~ n, r.} = {jl, ... ,jq} with jl > ... > jq' J
{jli ~ j ~ n, 'r.} = {j i, •.. ,j } with jq+i < ... < jn' J q+ n

then xk = x'!' for k = 1 , ••. , q, q+i, ••• , n.
Jk

Using the integer q to-determine the place of the transpositions is

simpler and more efficient than keeping track of the inverse permutation for

that purpose, as is done in [10;11]. As usual, we have distinguished between

two types of changes, in this case the leftward and rightward moves of the

elements. Since then-th element is transposed in (n-1)/n of the cases (cf.[10]),

it again pays to write out explicitly the bottom of the recursion.

Permutation generators have been surveyed by Lehmer [21], Ord-Smith [26;27]

and Wells [37]. The above method has been discovered independently by Trotter

[35] and by Johnson [18]; Trotter's iterative algorithm was for a number of

years the fastest permutation generator [27]. A more efficient iterative im

plementation has been presented by Ehrlich [11]; see also [13;10]. We will

discuss below a different minimum-change method which has been found by Wells

18

[36] and simplified by Boothroyd in recursive [s] and iterative [6;7] imple-

mentations. In 1971 [27], the latter algorithm [7] was found to be the fastest

of six generators, including [35] and [6].

1 1234 1234 4321 4321
2 1243 2134 3421 3421
3 1423 2314 4231 4231
4 4123 3214 2431 2431
5 4132 3124 3241 2341
6 1432 1324 2341 3241
7 1342 1342 4312 4312
8 1324 3142 3412 3412
9 3124 3412 4132 4132

10 3142 4312 1432 1432
11 3412 4132 3142 1342
12 4312 1432 1342 3142
13 4321 1423 4213 4123
14 3421 4123 2413 1423
15 3241 4213 4123 4213
16 3214 2413 1423 2413
17 2314 2143 2143 2143
18 2341 1243 1243 1243
19 2431 3241 3214 1324
20 4231 2341 2314 3124
21 4213 2431 3124 1234
22 2413 4231 1324 2134
23 2143 4321 2134 2314
24 2134 3421 1234 3214

mcl mc2 lex plex

Figure 4 Permutation·sequences.

Let G'(n) be an extension of G(n) on the same vertex set; (x,y) is an edge

of G' (n) iff x and y differ in only two components. A hamiltonian path in

G'(n) corresponds to a sequence of permutations in which each permutation

is clerived from its precleaessor by transposing two elements. Such a path is

defined by a sequence of n!-1 transpositions. Denoting the transposition of

the elements in positions k and i by k+-+i, we may define the transposition

sequence corresponding to the Wells-Boothroyd method by

T(n) = T(n-1) ,m1+-+n,T(n-1) ,m2+-+n, ••• ,T(n-1) ,mn_1+-+n,T(n-1)

where

n-k if n is even and k > 2,

n-1 if n is odd or ks 2;

19

note that T(1) is empty. Figure 4(mc2) shows the resulting sequence for n = 4.

The above description leads direct to our second minirrrum-cha:nge generator

of pePmUtations.

procedure pm mc2 (problem,n,x); ·value n,x;
integer n; arTay x; procedure problem;
begin real xk,xm;

procedure even(n); value n; integer n;
if n > 2 then
begin real xn; integer k,m;

m:= n-1; xn:= xm;
odd(m);
fork:= m, m, m-2 step -1 tmtil 1 do
begin x[n]:= xk:= x[k]; x[k]:= xn; xn:= xk; problem(x,k,n);

odd(m)
end

end else

begin x[2]:= x[1]; x[1]:= xm; problem(x,1,2)
end;

procedure odd(n); value n; integer n;
begin real xn; integer k,m;

m:= n-1; xn:= x[n]; xm:= x[m];
even(m);

fork:= m step -1 tmtil 1 do

begin x[n]:= xk:= x[m]; x[m]:= xm:= xn; xn:= xk; problem(x,m,n);
even(m)

end

problem(x,O ,O); if n ,::: 2 then

begin if (n+2)x2 = n ~ begin xm:= x[n]; even(n) end else odd(n)
end

end pm mc2;

20

A call "pm mc2 (problem,n,x*)" has the following effect:

if n = 1, then a call "problem(x*,0,0)" is made, and else

- a hamiltonian path in G' (n) from x* toy* is traversed, where

{ (* * * * * *) if m is even, x2 , ... ,x 3 ,x 1 ,x ,x 2 ,x1
y*

n- n- n n-
=

(* * * *) if m is odd; x 1 , ... ,x 2 ,x ,x 1 n- n n-
- in vertex x* a call "problem(x*,0,0)" is made;

- in each vertex x, reached by transposition of the elements in positions

k and Q,, a call "problem(x,k,t)" is made.

The inductive proof is left to the reader. We have distinguished between n

even and n odd, and the case n = 2 has been handled separately.

We make one final remark on minimum-change sequences of permutations.

Given an undirected graph H(n) on n vertices, we define an undirected graph

G8 (n) on the set of n-permutations; (x,y) is an edge of G8 (n) iff x can be

obtained from y by a single transposition of the elements in positions k and

Q,, where (k,Q,) is an edge of H(n). One can prove that G8 (n) contains a

hamiltonian circuit iff H(n) contains a spanning tree. The "only if"-part

is obvious; the "if"-part follows by an inductive argument. In the Trotter

Johnson algorithm the "transposition graph" H(n) is a tree with edge set

{(k,k+l) lk = 1, ..• ,n-1}; it is properly contained in the transposition graph

of the Wells-Boothroyd method.

The lexicographic generator of permutations below produces the configurations

in such a way that xnxn-l ... x 1 is an increasing n-a:t'y number. A slight modifi

cation leads to a more efficient pseudo-lexicographic generator of pernrutations.

Figure 4(1ex,plex) shows the lexicographic and pseudo-lexicographic sequences

for n = 4.

:grocedure pm lex (problem,n); value n;

integer n; procedure problem;
begin integer h; integer arr~y x[1:n];

procedure node(n); value n; integer n;

if n = 1 then problem(x) else -- -
begin integer k,m,xn;

m:= n-1; xn:= x[n];

node(m);

for k:= m step -1 until 1 do

begin x[n]:= h:= x[k]; x[k]:= xn; xn:= h;

node(m)

end;

.f2.r. k:= n step -1 until 2 do x[k] := x[k-1]; x[1] := xn

for h:= n step -1 until 1 do x[h] := n+1-h;

node(n)

~ pm lex;

procedure pm plex (problem,n); value n;

integer n; procedure problem;

begin integer h; integer array x[1:n];

procedure node(n); value n; integer n;

if n = 1 then problem(x) else

begin integer k,m,xk,xn;

end· ::::.:;;:.)

m:= n-1; xn:= x[n];

node(m);

for k:= m step -1 until 1 do

begin x[n]:= xk:= x[k]; x[k]:= xn;

node(m);

· x[k] := xk

end;

x[n] := xn

for h:= n step -1 until 1 9.2. x[h] := n+1-h;

node(n)

end pm plex;

21

22

5. COMPUTATIONAL COMPARISON

The algorithms presented in sections 2, 3 and 4 have been compared to ALGOL 60

versions of the following minimum-change algorithms:

- Ehrlich's "loopless" algorithms "ss pc1273" [12], "cb acm466" [11] and

"pm acm466" [11], which generate subsets according to the binary reflected

Gray code, combinations by an order-preserving method and permutations by

adjacent transpositions respectively;

- Liu and Tang's algorithm "cb acm452" [24] which generates combinations by

the method, based on the Gray code;

- Chase's algorithm "cb acm382" [8] for the order-preserving generation of

combinations;

- Trotter's algorithm "pm acm115" [35;27] which generates permutations by

adjacent transpositions;

- Boothroyd's algorithms "pm bcb6" [5] and "pm bcj30" [7;27] which are re-

cursive and iterative generators of permutations by transpositions.

Table 1 shows the result of the comparison. The running times have been

measured during one uninterrupted run on the Electrologica X8 computer of

the Mathematisch Centrum; a procedure with an empty body was chosen for the

actual parameter "problem". Our minimum-change algorithms turn out to be

faster than corresponding previously published procedures. Although the time

differences are not spectacular, a recursive approach should certainly not

be rejected on grounds of computational inefficiency a priori.

Results like the above ones unavoidably remain computer and compiler

dependent. It is of interest to note in this context that some experiments

using PASCAL on the Control Data Cyber 73-28 of the SARA Computing Centre in

Amsterdam showed a nineteen-fold increase in speed for the recursive "ss me"

and a fourteen-f.old increase for the iterative "ss pcl273". On the other

hand, the running times of the iterative generators may be reduced by up to

twenty percent by a different transformation of these generators into PASCAL

procedures producing all configurations at one call.

In order to develop a computer independent measure of efficiency, let

us define

a= lim number of array subscript evaluations
n-+oo number of generated configurations

array access being a dominant factor in this type of ALGOL GO-procedure [27].

Por recursive algorithms, evaluation of a is accomplished by the solution of

23

configurations algorithm reference time a restrictions

SUBSETS n ;;::; 1

n = 15 ss lex h. l., section 2 51.6 2

ss me h.l., section 2 36.7 1~

ss pc1273 Ehrlich [12] 51.7 .:::4,S10

LATTICE-POINTS n;;::; 1, ,e,k s ~

n = 15 lp lex h.l., section 2 89.5 5

,e,k = 0, ~ = 1 lp me h.l., section 2 50.2 2~

n = 8 lp lex h. l., section 2 154.3 7.87

,e,k = 1, ~ = k lp me h. l., section 2 81.5 2.80

n = 8 lp lex h.l., section 2 57.6 1

,e,k = 1, ~= n+l-k lp me h.l., section 2 35.5 1

COMBINATIONS n;;::; 1, 0 s m s n

n = 15 cb lex h.l., section 3 7.6 4~

m= n/3 cb me h. l., section 3 3.6 2

cb acm452 Liu & Tang [24] 7.5 .:::6

cb acm382 Chase [8] 8.8 .:::6

cb acm466 Ehrlich [11] 6.9 .:::8,S16 1 s ms n-1

n = 15 cb lex h.l., section 3 7.7 4~

m= 2n/3 cb me h.l., section 3 4.7 2

cb acm452 Liu & Tang [24] 7.8 .:::6

. cb acm382 Chase [BJ 8.7 .:::6

cb acm466 Ehrlich [11] 7.1 .:::8,S16 1 s ms n-1

PERMUTATIONS n;;::; 1

n = 8 pm lex h.l., section 4 92.4 6.44

pm plex h. l., section 4 82.5 5.44

pm mcl h. l., section 4 42.9 3

pm acm115 Trotter [35;27] 91.3 .:::7 n ;;::; 2

pm acm466 Ehrlich [11] 58.1 3 n;;::; 3, n ~ 4

pm mc2 h.l., section 4 54.3 3.35

pm bcb6 Boothroyd [SJ 103.3 6. 72

pm bcj30 Boothroyd [7;27] 83.6 >3.16 n;;::; 5

Table 1 Comparison of various generators.

time: running time in seconds; a: average array access (in the limit).

24

recursive expressions. For all iterative algorithms except Ehrlich's ones,

only lower bounds can be given; it is not clear if finite limits exist.

6. EXPLICIT ENUMERATION

The generators can be used to solve many combinatorial optimization problems

through enumeration and evaluation of all feasible solutions. Needless to

say, only very small problems can be solved by such a brute force approach,

even if the minimum-change property of the generators is exploited. However,

they can be applied to validate more complicated solution methods by checking

their results on small problems.

More specifically, the procedures "ss me" and "lp me" can be used to

solve integer programming problems. Krol [19] reports that a lexicographic

method that he is curiously unable to describe, is superior to several im

plicit enumeration algorithms. A more sophisticated approach to this type

of problem arises in the context of cutting-plane algorithms [15]. It in

volves a complete enumeration of the vertices on a facet of the integer

lattice that contains (or is likely to contain} a feasible integer point.

If such a point x* is indeed found,_ the cut ex :2: cx*+1 can be added to the

lp-tableau; else, we can cut off the enumerated facet.

Explicit enumeration of permutations x = (x1 , .•. ,xn) can be used to

solve sequencing problems P of the form minx zp(x). An example is the qua

dratic assignment problem (QAP):

'\'i=n '\'j=n
2 QAP (x) = li==l li=1 ex. x. dij

. -- l J

where c and dare non-negative nxn-matrices. If we take d .. = 1 for i > j,
lJ

d .. = 0 otherwise, we obtain the acyclic subgraph problem (ASP) [22]. Analo
lJ

gously, the choice a12 = a23 = = d = d = 1, d. . = 0 otherwise,
n-1,n nl lJ

leads to the well--known travelling salesman problem, that is called symmetric

if c .. = c. . for all i, j.
lJ J 1.

If we define the reflection of x by x = (xn, ... ,x1), it is obvious that

ZASP(x) = Ii~j cij - ZASP(x) for the ASP and ZTSP(x) = ZTSP(x) for the sym

metric TSP. It follows that for these two problems it suffices to enumerate

a reflection-free set of permutations. Further, since

zTSP((~+l'·••1xn,x1 , ... ,~)) = zTSP(x) for any k, we may fix one of the

components of x when solving a TSP. The (n-1) !/2 solutions to a symmetric

TSP are the hamiltonian circuits in a complete undirected graph; they are

called rosary permutations [17;28;32].

25

In the Trotter-Johnson algorithm, discussed in section 4, the elements

xi and x~ are transposed half-way. If a permutation xis generated before

this transposition, then its reflection x occurs thereafter. Hence the first

n!/2 permutations form a reflection-free set (cf. [18]). Generally, the

n!/(m-1) ! permutations preserving the original order of x!,···,x!_1, can be

generated by a simple adaptation of "pm mcl":

procedure pp mc1 (problem,n,m,x);

begin
. . . . ,

end pp mc1;

if n 2:, m then left(m)

. . . . ,

The above sequencing problems may now be solved by calls "pm mcl (qap,n,x)",

"pp mcl (asp,n,3,x)" and "pp mcl (tsp,n-1,if symmetric then 3 else 2,x)",

where "qap", "asp" and "tsp" are procedures which compute the cost changes

occurring in these problems.

Several suboptimal approaches to combinatorial optimization problems involve

the systematic exploration of a neighbourhood of some given solution, starting

anew from improved solutions until no further improvement is found and a local

optimum has been obtained [29].

For instance, a solution x to the TSP is called m-opt if it is impossible

to obtain a better solution by replacing m of its links (x. ,x. 1) by a differ-
l. l.+

ent set of m links [23]. A 3-opt method, derived from "cb me" by replacing the

general recursion mechanism by a set of three nested for-loops and inserting

the appropriate statements instead of the "problem"-calls, proved to be more

efficient than the algorithm presented by Lin [23].

Analogously, one can obtain efficient suboptimal algorithms for the QAP

and the ASP. The approach might be applicable also to other types of difficult

optimization problems, e.g. in the area of machine scheduling.

26

7. IMPLICIT ENU~ERATION

The lexicographic procedures presented in sections 2, 3 and 4 can easily be

adapted to be used for implicit enumeration purposes by adding a lower bound

calculation on all possible completions of a partial configuration. In the

early fifties, Lehmer used such an approach to solve the linear assignment

problem(!) [34]; similarly, the enumeration scheme of "pm plex" has been

applied to the travelling salesman problem [2]. The fact that our recursive

generators coupl,ed with a simple lower bound may well outperform sophisti

cated implicit enumeration algorithms that suffer from a large computational

overhead (see [31]) underlines the applicability of recursive programming to

implicit enumeration methods of the branch-and-bound type in general. We

shall present an ALGOL-like description of branch-and-bound procedures,

indicating in which case a recursive approach might suitably be used. For

a specification of the necessary properties of the elements which constitute

a branch-and-bound procedure, we refer to the axiomatic framework in [25]

and its correction in [30]. Some examples of these methods have been surveyed

in [20].

Suppose then, that given a set x of feasible solutions and a criterion

function c: X + JR, we want to find an x* e: X such that c (x*) = min X c (x) .
XE

A branch-and-bound procedure to fipd such an optimal solution can be char-

acterized as follows.

- Throughout the execution of the procedure, the best solution x* found so

far provides an upperbound c(x*) on the value of the optimal solution.

- A branching rule b associates to Y c X a family b(Y) of subsets such that

UY'e:b(Y) Y' = Y; the subsets Y' are the descendants of the parent subset

Y. This rule only has to be defined on a set X with Xe: X and b(Y) c X for

any Ye: X.
- A bounding rule lb: X + JR provides a lower bound lb(Y) ~ c(x) for all

x e: Ye: X. Elimination of Y occurs if lb(Y) ~ c(x*).

- A predicate;: X + {~,false} indicates if during the examination of Y

(e.g. during the calculation of lb(Y)} a feasible solution x(Y) is gener

ated which has to be evaluated. Improvement of x* occurs if c(x*) > c(x(Y)).

- A search strategy chooses a subset from the collection of generated subsets

which have so far neither been eliminated nor led to branching.

27

It turns out that, of the three search disciplines that have been used most

frequently, only two are suitable for recursive implementation. To illustrate

this point, we shall now present three general procedures:

- "bb jumptrack" implements a frontier search where a subset with minimal

lower bound is selected for examination;

- "bb backtrack!" implements a depth-first search where the descendants of a

parent subset are examined in an arbitrary order; this type of tree search

is known as newest active node search;

- "bb backtrack2" implements a depth-first search where the descendants are

chosen in order of non-decreasing lower bounds; this type is sometimes

called rest;Picted flooding.

During the tree search, the parameters na and nb count the numbers of subsets

that are eliminated and that lead to branching respectively. We define the

operation ":f:E" in the statement "s:fE S" to mean thats:= s* with f(s*) =

min f(s); hence, 11 :E" indicates an arbitrary choice.
SES

procedure bb jumptrack (X,c,x*,b,lb,;,na,nb);

begin local Y,Y' ,B c X, Y,Y' EX, LB: X-+ ~;
na:= nb:= O; Y:= ~;

LB(X) := lb(X); if ;(X} then r':cE {x"',x(X)};

if LB(X) ~ c(x*) then na:= 1 else Y:= {X};

while Y * 0 do

end

Y:LBE Y;
nb:= nb+l; B:= b(Y); Y:= (Y-{Y})uB;

while B =I: 0 do

begin Y':E B; B:= B-{Y'};

LB(Y'):= lb(Y'); if ;(Y') then x*:cE {x*,x(Y')}

end;

Y':= {Y 1 jY 1 E Y, LB(Y') ~ c(x*)};

na:= na+IY' I; Y:= Y-Y'

end bb jumptrack;

28

procedure bb backtrackl (X,c,x*,b,lb,s,na,nb);

begin local Y' E X;

procedurei node (Y) ;

begin local B c X, LB E lR;

end;

LB:= lb (Y); if s (Y) then x*: CE {x* ,x(Y)};

i.f LB~ c(x*) then na:= na+l else

!:,egin nb:= nb+l; B:= b (Y);

while B =I= 9J do

begin Y':E B; B:= B-{y•};

if LB< c(x*) then node(Y')

end

end

na:= nb:= O;

node (X)

end bb backtrack!;

procedure bb backtrack2 (X,c,x*,b,lb,s,na,nb);

begin local B c X, Y' EX, LB: X + lR;

procedure node(Y);

begin local Y c X;

end;

nb:= nb+1; Y:= B:= b(Y);

while B =I= 9J do

bE~gin Y 1 :E B; B:= B-{Y'};

LB(Y') := lb(Y'); if s(Y') then x*:cE {x*,x(Y')}

end;

while Y =I= /a do

beigin Y':LBE Y; Y:= Y-{Y'};

if LB(Y') ~ c(x*) then na:= na+1 else node(Y')

end

na:= nb:= O;

LB(X) := lb(X); .!!. ,(x) then x*:ce: {x*',x(X)};

.l.f LB(X) .· c(x*) then na:• 1 else node(X)

1111'1 t,t, l111cktrm.:k1.1

29

Anyone familiar with branch-and-bound will have noticed that the above descrip

tions only provide a minimal algorithmic framework. Numerous problem-dependent

variations may be included in an actual procedure. For instance, elimination

of Y may be possible already during the calculation of lb(Y) or may be based

on dominance rules or feasibility considerations. In a minor (and in our ex

perience quite successful) variation on "bb backtrack!", the subsets Y' are

not chosen arbitrarily but according to some heuristic, e.g. preliminary lower

bounds lb'(Y'). Many similar variations are possible and need not be discussed

here.

From our experience with branch-and-bound we may conclude, however, that

again the recursive approach produces transparent and elegant procedures, in

which much administrative work is taken over by the compiler without a notice

able negati vei effect on overall efficiency. Even in the larger area of implicit

enumeration, a recursive approach merits serious consideration.

ACKNOWLEDGEMENTS

The authors grratefully acknowledge the valuable help and suggestions from

J.D. Alanen, P. van Emde Boas,,B.J. Lageweg, H.W. Lenstra, Jr., I. Pohl and

the Editor.

REFERENCES

1. Barron, D.W. Recursive Techniques in Programming. Macdonald, London, 1968.

2. Barth, W. Ein ALGOL 60 Programm zur Losung des Traveling Salesman Problems.

Abla:uf- und Planungsforschung 9 (1968), 99-105.

3. Bitner, J.R., Ehrlich, G., and Reingold, E.M. Efficient generation of the

binary reflected Gray code and its applications. Department of Computer Science,

University of Illinois at Urbana-Champaign, 1975.

4. Boothroyd, J. Algorithm 246, Graycode. Comm. ACM ? (Dec. 1964), 701.

5. Boothroyd, J. Algorithm 6, Perm. Comput. Bull. 9 (Dec. 1965), 104.

30

6. Boothroyd, J. Algorithm 29, Permutation of the elements of a vector.

Corrrput. J. 10 (Nov. 1967), 311.

7. Boothroyd, J. Algorithm 30, Fast permutation of the elements of a vector.

Corrrput. J. 10 (Nov. 1967), 311-312.

8. Chase, P.J. Algorithm 382, Combinations of M out of N objects. Comm. ACM

13 (June 1970), 368.

9. Chase, P.J. Transposition graphs. SIAM J. Corrrput. 2 (June 1973), 128-133.

10. Ehrlich, G. Loopless algorithms for generating permutations, combinations,

and other combinatorial configurations. J. ACM 20 (July 1973), 500-513.

11. Ehrlich, G. Algorithm 466, Four combinatorial algorithms. Comm. ACM 16

(Nov. 1973), 690-691.

12. Ehrlich, G. Reflected binary Gray code. Private communication. Dec. 1973.

13. Even, s. Algorithmic Combinatorics. Macmillan, New York etc., 1973.

14. Gardner, M. The curious properties of the Gray code and how it can be

used to solve puzzles. Sci. Amer. 227 (Aug. 1972), 106-109.

15. Garfinkel, R.S., and Nemhauser, G.L. Integer Programming. Wiley, New York

etc., 1972.

16. Gilbert, E.N. Gray codes and paths on then-cube. Bell System Tech. J. 37

(May 1958), 815-826.

17. Harada, K. Generation of rosary permutations expressed in hamiltonian

circuits. Comm. ACM 14 (June 1971), 373-379.

18. Johnson, S.M. Generation of permutations by adjacent transposition. Math.

Corrrp. 17 (July 1963), 282-285.

19. Krol, G. Heit Gemillimeterde Hoofd. Querido, Amsterdam, 1967, 133-138.

20. Lawler, E.L .. , and Wood, D.E. Branch-and-bound methods: a survey. Operations

Res. 14 (July 1966), 699-719.

21. Lehmer, D.H. The machine tools of combinatorics. In: Beckenbach, E.F.

(Ed.). Applied Combinatorial Mathematics. Wiley, New York, 1964, 5-31.

22. Lenstra Jr., H.W. The acyclic subgraph problem. Report BW 26/73, Mathe

matisch Centrum, Amsterdam, 1973.

23. Lin, S. Computer solutions of the traveling salesman problem. Bell

System Tech. J. 44 (Dec. 1965), 2245-2269.

24. Liu, C.N., and Tang, D.T. Algorithm 452, Enumerating combinations of m

out of n objects. Comm. ACM 16 (Aug. 1973), 485.

25. Mitten, L.G. Branch-and-bound methods: general formulation and properties.

31

Operations Res. 18 (Jan. 1970), 24-34.

26. Ord-Smith, R.J. Generation of permutation sequences: part 1. Comput. J.

13 (May 1970), 152-155.

27. Ord-Smith, R.J. Generation of permutation sequences: part 2. Comput. J.

14 (May 1971), 136-139.

28. Read, R .. C. A note on the generation of rosary permutations. Comm. ACM 15

(Aug. 1972), 775.

29. Reiter, S., and Sherman, G. Discrete optimizing. J. SIAM 13 (Sep. 1965),

864-889.

30. Rinnooy Kan, A.H.G. On Mitten's axioms for branch-and-bound. Working

Paper W/74/4!5/03, Graduate School of Management, Delft, 1974.

31. Rinnooy Kan, A.H.G., Lageweg, B.J., and Lenstra, J.K. Minimizing total

costs in one--machine scheduling. Operations Res. , to appear.

32. Roy, M.K. Reflection-free permutations, rosary permutations, and adjacent

transposition algorithms. Comm. ACM 16 (May 1973), 312-313.

33. Tang, D.T., and Liu, C.N. Distance-2 cyclic chaining of constant-weight

codes. IEEE~rrans. Computers C-22 (Feb. 1973), 176-180.

34. Tompkins, C. Machine attacks on problems whose variables are permutations.

In: Proc. Sy~rrpos. Appl. Math. 6, Amer. Math. Soc., Providence, 1956.

35. Trotter,, H.F. Algorithm 115, Perm. Comm. ACM 5 (Aug. 1962), 434-435.

36. Wells, M.B. Generation of permutations by transposition. Math. Comp. 15

(Apr. 1961), 192-195.

37. Wells, M.B. Elements of Combinatorial Computing. Pergamon, Oxford etc.,

1971.

