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ABSTRACT 

Algorithms for generating subsets, lattice-points, combinations and permuta

tions by means of both lexicographic and minimum-change methods are presented. 

The use of a recursive approach not only leads to concise and elegant descrip

tions, but also facilitates progrannning and correctness proofs. The resulting 

algorithms turn out to be certainly no less efficient than previous iterative 

generators. Some applications of explicit enumeration to problems of combina

torial optimization, exploiting the minimum-change property, are indicated, 

and a recursive approach to implicit enumeration methods is discussed. 
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1. INTRODUCTION 

In this paper we present a recursive approach to the generation of combina

torial configurations. More specifically, we consider the generation of 

subsets, lattice-points, combinations and permutations by means of both 

lexicographic and minimum-change methods. The first mentioned type of method 

generates the configurations in a "dictionary" order, whereas the second 

type produces a sequence in which successive configurations differ as little 

as possible. In itself, these two approaches are not new. The relative advan

tages of minimum-change methods have been discussed previously: the entire 

sequence is generated efficiently, each configuration being derived from its 

predecessor by a simple change; moreover, a minimum-change generator "may 

permit the value of the current arrangement to be obtained by a small correc

tion to the immediate previous value" [27). 

The very "cleanliness" [21) of combinatorial problems allows a proper 

demonstration of what we believe to be the advantages of a recursive approach 

(cf. [1,2.1.5]). Apart from ~e elegance of the recursive descriptions, both 

programming and correctness proofs are substantially facilitated by the recur

sive structure, whereas the algorithms turn out to be certainly no less effi

cient than previous iterative generators. 

Our algorithms are defined as ALGOL 60 procedures. They contain no labels 

and generate the entire sequence of configurations after one call. Each time 

a new configuration has been obtained, a call of a procedure "problem" is made. 

Parameters of this procedure are the configuration and, for minimum-change 

generators, the positions in which it differs from its predecessor. It has to 

be defined by the user to handle each configuration in the desired way. 

Most previously published procedures [3;4;6;7;8;10;11;12;24;27;35) are 

organized in such a way that each call generates only the next configuration. 

This necessitates continual recomputation of the point that has been reached 

in the sequence [26). A mechanism for performing this kind of computations 

efficiently has been devised by Ehrlich [10;13). We do feel, however, that 

much of the clarity of essentially recursive algorithms is lost within any 

iterative implementation. 

Our recursive generators are presented in sections 2, 3 and 4 and com

pared to previously published procedures in section 5. Section 6 contains some 
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applications of explicit enumeration to problems of combinatorial optimization, 

exploiting the minimum-change property of generators. We conclude with some 

remarks on a recursive approach to implicit enumeration methods in section 7. 

2. SUBSETS AND LATTICE-POINTS 

We start by discussing recursive generators of all subsets of a finite set. A 

subset Sofa set {e1 , ••. ,en} will be represented by a binary n-vector x with 
n 

~ = 1 iff ek Es. These 2 vectors correspond to the vertices of the n-dimen-

sional cube. A hamiltonian path on then-cube defines a sequence of subsets in 

which each subset is derived from its predecessor by adding or removing one 

element. Such a sequence is called a binary Gray code [14;16;37]. 

The particular sequence which is generated by our algorithm is the bi

nary reflected Gray code. Starting from the empty subset, we may produce it 

in the following way. First, we list the sequence for n-1 elements and add O's 

as then-th components. Secondly, we list the (n-1)-sequence in reversed order, 

adding l's as then-th components. Obviously, the sequence for 0 elements con

sists only of the empty configuration. Figure l(a) shows the code for n = 4. 

In the above description we can replace "0" by "x*" and "1" by "1-x*" 
n n ' 

where x* denotes an arbitrary starting configuration. The last configuration 

in the sequence is adjacent to the first one, since they differ only in their 

n-th component. It follows that the binary reflected Gray code defines a 

hamiltonian circuit on then-cube. 

If the rules are written down in a more formal way, the following minimum

change generator of subsets results. 



procedure ss me (problem,n,x); value n,x; 

integer n; integer array x; procedure problem; 

begin inte,~ x1; 

procedure gray(n); value n; integer n; 

if n > 1 then 

begi:Q_ gray(n-1); 

end 

begi:Q_ 

end; 

x[n] := 1-x[n]; problem(x,n); 

gray(n-1) 

else 
x[1]:= x1:= 1-x1; problem(x,1) 

x1 := x[ 1]; 

problem(x,O); gray(n) 

end ss me; 

A call "ss me (problem,n,x*)" has the following effect: 

- a hamiltonian path on the n-cube from x* to y* = (x*1 , ... ,x* 1 , 1-x*) is n- n 
traversed; 

- in vertex :x:* a call "problem(x*,0)" is made; 

- in each vertex x, reached by a change of the k-th component, a call 

"problem(x,k)" is made. 

5 

The latter two assertions are clear from inspection. To prove the first one, 

it suffices to show that a call "gray(k)" accomplishes the following: starting 

from a configuration x, all x' for which x' =I= x, x,Q, = xQ, fork< Q,::::; n, are 

reached, each exactly once, while no other vertices are reached; the final 

vertex y is 9iven by yk = 1-~, yQ, = xQ, for Q, =I= k. The proof, which is by 

induction on k, is clear from the following diagram: 

gray (k-1) 

gray (k) 

gray(k-1) 

[ r · · · ·1k-2. rl · rtl · · · · Y = X 

(x1,··· 1 ~-2' 1-~-1' ~'~+1 1 ···,xn) 

(xl' · · · '~-2 11-~-1 • 1-~'~+1' · · · ,xn) 

[it ... ,l_2, t_l,l-ltl,••••L a Y 
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Here a broken arrow means that the component does not remain constant; an 

unbroken arrow indicates that it remains unchanged. 

In "ss me"' the deepest level of recursion has been written out explicitly. 

This device has been applied to all our minimum-change generators and clearly 

reduces the number of checks to see if the bottom of the recursion has been 

reached already. It enables us also to deal separately with the first compo

nent of x, which is involved in half of the changes. 

Iterative implementations of the binary reflected Gray code have been 

given by Boothroyd [ 4] , Ehrlich [ 12] and Bitner et al. [ 3 ] . 

A lexicographic generator of subsets is even simpler to construct. Configura

tions x are generated in such a way that xx 1 ... x 1 is an increasing binary 
n n-

number. At each level of recursion exactly one component of xis defined and 

at the bottom a call "problem(x)" is made. Again, the recursive approach makes 

the correctness proof a trivial one. 

procedure ss lex (problem,n); value n; 

integer n; procedure problem; 

begin integer_ array x[ 1 :n]; 

procedure node(n); value n; integer n; 

if n = 0 then problem(x) else 

begin x[n]:= O; node(n-1); 

x[n]:= 1; node(n-1) 

end· __ , 
node(n) 

end ss lex; 

The subset generators are easily adapted to the generation of lattice-points. 

Ann-dimensional lattice is defined by two integer n-vectors t and u; its 

vertices are given by the integer n-vectors x with tk $ xk $ uk fork= 1, ... ,n. 

Then-cube is a lattice with tk = 0 and uk = 1 for all k. Thus, a sequence in 

which each lattice-point is derived from its predecessor by increasing or de

creasing exactly one corrrponent by one may be obtained as a straightforward 
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generalization of the binary reflected Gray code. However, not each lattice 

contains a hamiltonian circuit, as can be seen by taking n = 1, t 1 < u 1-1 or 

n = 2, t 1 = t 2 = 0, u 1 = u2 = 2; the property that we can start in an arbi

trary vertex has been lost. Figure 1 shows some examples. 

1 0000 1111 1111 
u 1111 1234 4321 

1 0000 1111 1111 
2 1000 1211 2111 
3 1100 1221 3111 
4 0100 1121 4111 
5 0110 1131 4211 
6 1110 1231 3211 
7 1010 1232 2211 
8 0010 1132 1211 
9 0011 1122 1311 

10 1011 1222 2311 
11 1111 1212 3311 
12 0111 1112 4311 
13 0101 1113 4321 
14 1101 1213 3321 
15 1001 1223 2321 
16 0001 1123 1321 
17 1133 1221 
18 1233 2221 
19 1234 3221 
20 1134 4221 
21 1124 4121 
22 1224 3121 
23 1214 2121 
24 1114 1121 

(a) (b) (c) 

Figure 1 Reflected Gray codes. 

Our minirrrum-change generator of lattice-points is presented below. 
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procedure lp me (problem,n,l,u); value n,l,u; 
integer n; integer array l,u; ·procedure problem; 
begin integer k,x1,11,u1; boolean array even[1:n]; integer array x[1:n]; 

procedure rise(n); value n; integer n; 

if n > 1 then 
begin boolean rm; integer :xn,un,m; 

un:= u[n]; m:= n-1; 
rm:= true; rise(m); 
for :xn:= l[n]+1 step 1 until undo 
begin x[n]:= :xn; problem(x,n,O); 

rm:= 7rrn; if rm then rise(m) else fall(m) 
end 

end · else 
for x1:= 11+1 step 1 until u1 do 
begin x[1]:= x1; problem(x,1,0) 
end; 

procedure fall(n); value n; integer n; 
if n > 1 then 
begin boolean rm; integer:xn,ln.,m; 

ln:= l[n]; m:= n-1; 
rm:= even[n]; if rm then ri~e(m) else fall(m); 

I 

for :xn:= u[n]-1 step -1 until 1n do 

begin x[n]:= :xn; problem(x,O,n); 
rm:= 7rrn; if rm then rise(m) else fall(m) 

end 
end else 

for x1:= u1-1 step -1 until 11 do 

begin x[1]:= x1; problem(x,0,1) 

end; 

fork:= 2 step 1 until n do 
begin x[k]:= 11:= l[k]; u1:= u[k]-11; even[k]:= (u1f2)x2 ~ u1 

end; x[1]:= 11:= 1[1]; u1:= u[1]; 
problem(x,O,O); rise(n) 

~ lp me; 



One can check easily that a call "lp me (problem,n,l,u)" has the following 

effect: 

a hamiltonian path in the lattice, starting from Q,, is traversed; 

- in vertex Q, a call "problem(R.,0,0)" is made; 

- in each vertex x, reached by an increase (decrease) of one in the k-th 

component, a call "problem(x,k,0)" ("problem(x,0,k)") is made. 

9 

In "lp me" we have distinguished explicitly between increases and decreases 

in a component by means of two separate procedures calling themselves and 

each other. Similar constructions have been applied to all remaining minimum

change generators in order to add to their transparency and efficiency. 

A Zexicographic generator of Zattice-points is again particularly simply 

described recursively. In this case, xx 1 ... x 1 is an increasing mixed-radix n n-
number. 

procedure lp lex (problem,n,l,u); value n,l,u; 

integer n; integer a.rra.v l,u; procedure problem; 

begin int~ arra.v x[ 1:n]; 

procedure node(n); value n; integer n; 

if n = O then problem(x) else -- -
begin integer un,m; 

node(n) 

end lp lex; 

un:= u[n]; m:= n-1; 

for x[n] := l[n] step 1 until un do node(m) 
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3 . COMBINATIONS 

The approach, developed in section 2, will now be used to obtain generators 

of combinations. A aombination C of m out of n elements e 1 , .•• ,en is repre

sented by a binary n-vector x with~= 1 iff ek € C. We define an undirected 

graph G(n,m) whose vertices are given by these (n) vectors; (x,y) is an edge 
m 

of G(n,m) iff x and y differ in exactly two components. A hamiltonian path 

in G(n,m) corresponds to a sequence of combinations in which eaah aombination 

is derived from its predeaessor by adding one element and removing one ele

ment. 

We will use the notation o1 for the concatenation oft o's; e.g., 

1203 = 11000. -If I is a sequence of combinations, then I denotes the reverse 

of I and Io denotes I with o added everywhere as the last component. 

From the binary reflected Gray code with the empty set as starting con

figuration we take the subsequence J(n,m) consisting of the subsets that 

contain exactly m elements. We shall prove that J(n,m) is a hamiltonian path 

in G(n,m) from x* = lmOn-m toy*= lm-lon-ml (note that x* and y* are adja-

cent) if 1 s ms n-1; J(n,0) and J(n,n) consist of only one vertex. 

The proof proceeds by induction on n, the case n = 1 being obvious. For 

n > 1, 1 s ms n-1, it follows from the recursive structure of the reflected 

Gray code that 

J(n,m) = J(n-1,m)O,J(n-1,m-1)1. 

By the induction hypothesis these two parts are hamiltonian paths which look 

as follows: 

J(n,m) = { 

if m > 1, 

if m = 1. 

Inspection shows that the transitions* are edges in G(n,m), so J(n,m) is a 

hamiltonian path, as was to be proved. Figure 2 shows J(S,2) and J(S,3). 

Combining the recursion scheme of "ss me" and the results presented 

above, we obtain the ·following rrrinirrrum-ahange generator of aorribinations. 



procedure cb me (problem,n,m); value n,m; 

integer n,m; procedure problem; 
begin integer k; integer array x[1:n]; 

procedure over(n,m); value n,m; integer n,m; 

if m > 1 then 
begin if n-1 > m then over(n-1,m); 

x[n]:= 1; x[m-1]:= O; problem(x,n,m-1); 
revo(n-1,m-1) 

end else 
form:= 2 step 1 wtil n do 
begin x[m]:= 1; x[m-1]:= O; problem(x,m,m-1) 
end; 

procedure revo(n,m); value n,m; integer n,m; 
if m > 1 then 
begin over(n-1,m-1); 

x[n]:= O; x[m-1]:= 1; problem(x,m-1,n); 
if n-1 > m then revo(n-1,m) 

end else 

for m:= n step -1 wtil 2 do 

begin x[m]:= O; x[m-1]:= 1; problem(x,m-1,m) 
end; 

fork:= 1 step 1 wtil m do x[k]:= 1; 

for k:= m+1 step 1 wtil n do x[k] := O; 
problem(x,O,O); if n > m Am> 0 ~ over(n,m) 

end cb me; 

A call "cb me (problem,n,m)" has the following effect: 

- the hamiltonian path J(n,m) in G(n,m) from x* = lmOn-m toy*= lm-lon-ml 

is traversed; 

- in vertex x* a call "problem(x*,0,0)" is made; 

- in each vertex x, reached by adding ek and removing et' a call 

"problem(x,k,i)" is made. 

11 
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These assertions are proved along the same lines as those for "ss me". Calls 

"over(n,m)" and "revo(n,m)" generate J(n,m) and J(n,m) respectively, and the 

case m = 1 has been handled separately. 

The above method has been discovered independently by Tang and Liu [33;24]. 

It is instructive to compare their presentation to the above one; the justi

fication of their iterative description [33] and algorithm [24] is an arduous 

task, involving the analysis of eleven special cases. Recently, Bitner et al. 

[3] have given a recursive description and iterative implementation of the 

same method. 

As a more general result it is easily proved that in the subsequence of 

the binary reflected Gray code consisting of those subsets which contain at 

least m1 and_ at most m2 elements, each subset is derived from its predecessor 

by adding one element and/or removing one element. The construction of a re

cursive generator of these configurations is left as a challenge to the reader. 

At the samE~ time one might consider the problem of the sultan, who, being 

in the possession of fourteen wives but only four spare places on his couch, 

seeks for a ma.xinrum-change sequence of thousand-and-one different nights. 

1 11000 11000 00011 11100 11100 00111 
2 01100 10100 10001 10110 11010 10011 
3 10100 01100 01001 01110 10110 01011 
4 00110 01010 00101 11010 01110 01101 
5 01010 10010 00110, 10011 01101 10101 
6 10010 00110 10010 01011 10101 11001 
7 0001 Jl 00101 01010 0,0111 11001 11100 
8 00101 10001 01100 10101 10011 11010 
9 01001 01001 10100 01101 01011 10110 

10 10001 00011 11000 11011 00111 01110 

J(S,2) K(S,2) L(S,2) J(S,3) K(S,3) L (5, 3) 

Fi2ure 2 Mi.nimum-change combination sequences. 

Now let G' (n,m) be a subgraph of G(n,m) on the same vertex set; an edge (x,y) 

of G(n,m) is an edge of G' (n,m) iff all components of x and y between the 

exchanged elements are zero. A hamiltonian path in G'(n,m) corresponds to an 

order preserving sequence of combinations. One of these paths, K(n,m) from 

1m0n-m to On-mlm is defined by 

K(n,m) = K(n-1,m)O,K(n-2,m-1)01,K(n-2,m-2)11; 
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another one, L(n,m), starting from On-mlm and ending in lmOn-m if mis even 
n-m·-1 m 

and in O 1 0 ism is odd, is given by 

{ 
L(n-1,m-1)1,L(n-1,m)O 

L(n,m) = 
L(n-1,m-1)1,K(n-1,m)O 

if mis even, 

if mis odd. 

Figure 2 shows some examples. The inductive proofs and recursive implementations 

are left to the reader. 

The recursive definition of K(n,m) is due to Knuth [9]. An iterative des

cription, based on Lathroum's work, has been given by Chase [9]; see also 

[13;10]. The iterative algorithms of Chase [8] and Ehrlich [11] generate 

L(n,m) and K(n,m) respectively. 

Finally, a Lexicographic generator of combinations produces the configurations 

in such a way that xx 1 ... x 1 is an increasing binary number. 
n n-

. procedure cb lex (problern,n,rn); value n,rn; 

integer n,rn; procedure problem; 

begin int,~ array x[1:n]; 

procedure node(n.,m); value n,rn; integer n,rn; 

if m = O then 

begin for n:= n step -1 until 1 do x[n] := O; problern(x) 

end else 

if m = n then 

begin for n:= n step -1 until 1 do x[n] := 1; problern(x) 

end else 

begin x[n]:= O; node(n-1,rn); 

x[n]:= 1; node(n-1,rn-1) 

end· --·' 

node(n,rn) 

end cb lex; 
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4. PERMUTATIONS 

We now consider the generation of permutations. Ann-permutation of a set 

{xt,···,x~} is determined by an n-vector consisting of the elements in some 

order. We define an undirected graph G(n) whose vertices are given by these 

n! vectors; (x,y) is an edge of G(n) iff x and y differ only in two neigh

bouring components. A hamiltonian path in G(n) corresponds to a sequence of 

permutations in which each permutation is derived from its predecessor by 

transposing -two elements in adjacent positions. 

We may construct such a sequence inductively as follows. For n = 1, it 

consists of the 1-permutation. Let the sequence of (n-1)-permutations be 

given. Placing x* at the right of the first (n-1)-permutation, we obtain 
n 

the first n-permutation. The n-1 next ones are obtained by successively inter-

changing x* with its left neighbour. After that, x* is found at the left of 
n n 

the first (n-1)-permutation. Replacing this (n-1)-permutation by its successor 

in the (n-1)-sequence gives us the (n+l)-th n-permutation, and the n-1 next 

ones arise from successive transpositions of x* with its right neighbour. 
n 

Then x* is found at the right of the second (n-1)-permutation, which is now 
n 

replaced by the third one, and the process starts all over again. It is 

easily seen that the first and last permutations in the sequence are given 

b * ( * *) d * ( * * * *) t. 1 . th y x = x 1 , ... ,xn an y = x2 ,x1 ,x3 , ... ,xn respec ive y; again, ey 

are adjacent and we have found a hamiltonian circuit in G(n). 

Figures 3 and 4(mc1) show the graphs G(n) for n ~ 4 and the sequence for 

n = 4. Note that G(4) is the edge graph of a solid truncated octahedron, rep

licas of which fill entire 3-space. Similar statements of this remarkable 

property hold for all n. 

The following minimum-change generator of permutations produces the 

sequence described above. 
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G, (1) G (2) 

1 12 21 • • • 
321 

1342 1432 

3124 

3214 

2341 2431 

.Figure 3 Graphs G (n) . 
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procedure pm mc1 (problem,n,x); value n,x; 

integer n; array x; procedure problem; 
begin real xn; integer k,q; boolean array r[1:n]; 

procedure rite(i); value i; integer i; 
if i < n then - -
begin boolean rj; real xi; integer ti,j; 

xi:= x[q]; j:= i+1; 
q:= q-1; 

rj := r[j ]; if rj then tlte(j) ~ left(j); 
for ti:= 2 step 1 until i do 
begin k:= q+ti; 

x[k-1]:= x[k]; x[k]:= xi; problem(x,k-1); 
rj:= 7rj; if rj then rite(j) else left(j) 

end; 
r[j] := 7rj 

end else -
begin q:= O; 

fork:= 2 step 1 until n do 
begin x[k-1]:= x[k]; x[k]:= xn; problem(x,k-1) 
end 

procedure left(i); value i; integer i; 
if i < n then 

begin boolean rj; real xi; integer ti,j; 
xi:= x[q+i]; j:= i+1; 
rj := r[j ]; if rj then rite(j) else left(j); 

for ti:= i-1 step -1 until 1 do 

begin k:= q+ti; 
x[k+1]:= x[k]; x[k]:= xi; problem(x,k); 
rj := 7rj; if rj then rite(j) else left(j) 

end; 

r[j] := 7rj; 

q:= q+1 

end else 



begin for k: = n-1 step -1 until 1 do 

begin x[k+1]:= x[k]; x[k]:= xn; problem(x,k) 

end; 

q:= 1 

xn:= x[n]; q:= O; for k:= 2 step 1 until n do r[k] := false; 

problem(x,O); if n 2: 2 then left(2) 

end pm mc1; 

A call "pm mcl (problem,n,x*)" has the following effect: 

if n = 1, then a call "problem(x*,0)" is made, and else 

17 

a hamiltonian path in G(n) from x* toy*= (x;,xt,x;, ... ,x~) is traversed; 

- in vertex x* a call "problem(x*,0)" is made; 

- in each vertex x, reached by transposition of the elements in positions 

k and k:J-1, a call "problem(x,k)" is made. 

The latter two assertions are clear from inspection. The proof of the first 

one may be left to the reader. As a hint, we note that just before a call 

"rite(i)" or "left(i)" and immediately after the execution, x, rand q sat

isfy the following conditions: {jli ~ j ~ n, r,} has exactly q elements, 
J 

and if we write 

{jli ~ j ~ n, r.} = {jl, ... ,jq} with jl > ... > jq' J 
{jli ~ j ~ n, 'r.} = {j i, •.. ,j } with jq+i < ... < jn' J q+ n 

then xk = x'!' for k = 1 , ••. , q, q+i, ••• , n. 
Jk 

Using the integer q to-determine the place of the transpositions is 

simpler and more efficient than keeping track of the inverse permutation for 

that purpose, as is done in [10;11]. As usual, we have distinguished between 

two types of changes, in this case the leftward and rightward moves of the 

elements. Since then-th element is transposed in (n-1)/n of the cases (cf.[10]), 

it again pays to write out explicitly the bottom of the recursion. 

Permutation generators have been surveyed by Lehmer [21], Ord-Smith [26;27] 

and Wells [37]. The above method has been discovered independently by Trotter 

[35] and by Johnson [18]; Trotter's iterative algorithm was for a number of 

years the fastest permutation generator [27]. A more efficient iterative im

plementation has been presented by Ehrlich [11]; see also [13;10]. We will 

discuss below a different minimum-change method which has been found by Wells 
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[36] and simplified by Boothroyd in recursive [s] and iterative [6;7] imple-

mentations. In 1971 [27], the latter algorithm [7] was found to be the fastest 

of six generators, including [35] and [6]. 

1 1234 1234 4321 4321 
2 1243 2134 3421 3421 
3 1423 2314 4231 4231 
4 4123 3214 2431 2431 
5 4132 3124 3241 2341 
6 1432 1324 2341 3241 
7 1342 1342 4312 4312 
8 1324 3142 3412 3412 
9 3124 3412 4132 4132 

10 3142 4312 1432 1432 
11 3412 4132 3142 1342 
12 4312 1432 1342 3142 
13 4321 1423 4213 4123 
14 3421 4123 2413 1423 
15 3241 4213 4123 4213 
16 3214 2413 1423 2413 
17 2314 2143 2143 2143 
18 2341 1243 1243 1243 
19 2431 3241 3214 1324 
20 4231 2341 2314 3124 
21 4213 2431 3124 1234 
22 2413 4231 1324 2134 
23 2143 4321 2134 2314 
24 2134 3421 1234 3214 

mcl mc2 lex plex 

Figure 4 Permutation·sequences. 

Let G'(n) be an extension of G(n) on the same vertex set; (x,y) is an edge 

of G' (n) iff x and y differ in only two components. A hamiltonian path in 

G'(n) corresponds to a sequence of permutations in which each permutation 

is clerived from its precleaessor by transposing two elements. Such a path is 

defined by a sequence of n!-1 transpositions. Denoting the transposition of 

the elements in positions k and i by k+-+i, we may define the transposition 

sequence corresponding to the Wells-Boothroyd method by 

T(n) = T(n-1) ,m1+-+n,T(n-1) ,m2+-+n, ••• ,T(n-1) ,mn_1+-+n,T(n-1) 

where 

n-k if n is even and k > 2, 

n-1 if n is odd or ks 2; 
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note that T(1) is empty. Figure 4(mc2) shows the resulting sequence for n = 4. 

The above description leads direct to our second minirrrum-cha:nge generator 

of pePmUtations. 

procedure pm mc2 (problem,n,x); ·value n,x; 
integer n; arTay x; procedure problem; 
begin real xk,xm; 

procedure even(n); value n; integer n; 
if n > 2 then 
begin real xn; integer k,m; 

m:= n-1; xn:= xm; 
odd(m); 
fork:= m, m, m-2 step -1 tmtil 1 do 
begin x[n]:= xk:= x[k]; x[k]:= xn; xn:= xk; problem(x,k,n); 

odd(m) 
end 

end else 

begin x[2]:= x[1]; x[1]:= xm; problem(x,1,2) 
end; 

procedure odd(n); value n; integer n; 
begin real xn; integer k,m; 

m:= n-1; xn:= x[n]; xm:= x[m]; 
even(m); 

fork:= m step -1 tmtil 1 do 

begin x[n]:= xk:= x[m]; x[m]:= xm:= xn; xn:= xk; problem(x,m,n); 
even(m) 

end 

problem(x,O ,O); if n ,::: 2 then 

begin if (n+2)x2 = n ~ begin xm:= x[n]; even(n) end else odd(n) 
end 

end pm mc2; 
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A call "pm mc2 (problem,n,x*)" has the following effect: 

if n = 1, then a call "problem(x*,0,0)" is made, and else 

- a hamiltonian path in G' (n) from x* toy* is traversed, where 

{ ( * * * * * *) if m is even, x2 , ... ,x 3 ,x 1 ,x ,x 2 ,x1 
y* 

n- n- n n-
= 

( * * * * ) if m is odd; x 1 , ... ,x 2 ,x ,x 1 n- n n-
- in vertex x* a call "problem(x*,0,0)" is made; 

- in each vertex x, reached by transposition of the elements in positions 

k and Q,, a call "problem(x,k,t)" is made. 

The inductive proof is left to the reader. We have distinguished between n 

even and n odd, and the case n = 2 has been handled separately. 

We make one final remark on minimum-change sequences of permutations. 

Given an undirected graph H(n) on n vertices, we define an undirected graph 

G8 (n) on the set of n-permutations; (x,y) is an edge of G8 (n) iff x can be 

obtained from y by a single transposition of the elements in positions k and 

Q,, where (k,Q,) is an edge of H(n). One can prove that G8 (n) contains a 

hamiltonian circuit iff H(n) contains a spanning tree. The "only if"-part 

is obvious; the "if"-part follows by an inductive argument. In the Trotter

Johnson algorithm the "transposition graph" H(n) is a tree with edge set 

{(k,k+l) lk = 1, ..• ,n-1}; it is properly contained in the transposition graph 

of the Wells-Boothroyd method. 

The lexicographic generator of permutations below produces the configurations 

in such a way that xnxn-l ... x 1 is an increasing n-a:t'y number. A slight modifi

cation leads to a more efficient pseudo-lexicographic generator of pernrutations. 

Figure 4(1ex,plex) shows the lexicographic and pseudo-lexicographic sequences 

for n = 4. 

:grocedure pm lex (problem,n); value n; 

integer n; procedure problem; 
begin integer h; integer arr~y x[1:n]; 



procedure node(n); value n; integer n; 

if n = 1 then problem(x) else -- -
begin integer k,m,xn; 

m:= n-1; xn:= x[n]; 

node(m); 

for k:= m step -1 until 1 do 

begin x[n]:= h:= x[k]; x[k]:= xn; xn:= h; 

node(m) 

end; 

.f2.r. k:= n step -1 until 2 do x[k] := x[k-1]; x[1] := xn 

for h:= n step -1 until 1 do x[h] := n+1-h; 

node(n) 

~ pm lex; 

procedure pm plex (problem,n); value n; 

integer n; procedure problem; 

begin integer h; integer array x[1:n]; 

procedure node(n); value n; integer n; 

if n = 1 then problem(x) else 

begin integer k,m,xk,xn; 

end· ::::.:;;:.) 

m:= n-1; xn:= x[n]; 

node(m); 

for k:= m step -1 until 1 do 

begin x[n]:= xk:= x[k]; x[k]:= xn; 

node(m); 

· x[k] := xk 

end; 

x[n] := xn 

for h:= n step -1 until 1 9.2. x[h] := n+1-h; 

node(n) 

end pm plex; 

21 
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5. COMPUTATIONAL COMPARISON 

The algorithms presented in sections 2, 3 and 4 have been compared to ALGOL 60 

versions of the following minimum-change algorithms: 

- Ehrlich's "loopless" algorithms "ss pc1273" [12], "cb acm466" [11] and 

"pm acm466" [11], which generate subsets according to the binary reflected 

Gray code, combinations by an order-preserving method and permutations by 

adjacent transpositions respectively; 

- Liu and Tang's algorithm "cb acm452" [24] which generates combinations by 

the method, based on the Gray code; 

- Chase's algorithm "cb acm382" [8] for the order-preserving generation of 

combinations; 

- Trotter's algorithm "pm acm115" [35;27] which generates permutations by 

adjacent transpositions; 

- Boothroyd's algorithms "pm bcb6" [5] and "pm bcj30" [7;27] which are re-

cursive and iterative generators of permutations by transpositions. 

Table 1 shows the result of the comparison. The running times have been 

measured during one uninterrupted run on the Electrologica X8 computer of 

the Mathematisch Centrum; a procedure with an empty body was chosen for the 

actual parameter "problem". Our minimum-change algorithms turn out to be 

faster than corresponding previously published procedures. Although the time 

differences are not spectacular, a recursive approach should certainly not 

be rejected on grounds of computational inefficiency a priori. 

Results like the above ones unavoidably remain computer and compiler 

dependent. It is of interest to note in this context that some experiments 

using PASCAL on the Control Data Cyber 73-28 of the SARA Computing Centre in 

Amsterdam showed a nineteen-fold increase in speed for the recursive "ss me" 

and a fourteen-f.old increase for the iterative "ss pcl273". On the other 

hand, the running times of the iterative generators may be reduced by up to 

twenty percent by a different transformation of these generators into PASCAL 

procedures producing all configurations at one call. 

In order to develop a computer independent measure of efficiency, let 

us define 

a= lim number of array subscript evaluations 
n-+oo number of generated configurations 

array access being a dominant factor in this type of ALGOL GO-procedure [27]. 

Por recursive algorithms, evaluation of a is accomplished by the solution of 
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configurations algorithm reference time a restrictions 

SUBSETS n ;;::; 1 

n = 15 ss lex h. l., section 2 51.6 2 

ss me h.l., section 2 36.7 1~ 

ss pc1273 Ehrlich [ 12] 51.7 .:::4,S10 

LATTICE-POINTS n;;::; 1, ,e,k s ~ 

n = 15 lp lex h.l., section 2 89.5 5 

,e,k = 0, ~ = 1 lp me h.l., section 2 50.2 2~ 

n = 8 lp lex h. l., section 2 154.3 7.87 

,e,k = 1, ~ = k lp me h. l., section 2 81.5 2.80 

n = 8 lp lex h.l., section 2 57.6 1 

,e,k = 1, ~= n+l-k lp me h.l., section 2 35.5 1 

COMBINATIONS n;;::; 1, 0 s m s n 

n = 15 cb lex h.l., section 3 7.6 4~ 

m= n/3 cb me h. l., section 3 3.6 2 

cb acm452 Liu & Tang [24] 7.5 .:::6 

cb acm382 Chase [8] 8.8 .:::6 

cb acm466 Ehrlich [11] 6.9 .:::8,S16 1 s ms n-1 

n = 15 cb lex h.l., section 3 7.7 4~ 

m= 2n/3 cb me h.l., section 3 4.7 2 

cb acm452 Liu & Tang [24] 7.8 .:::6 

. cb acm382 Chase [BJ 8.7 .:::6 

cb acm466 Ehrlich [ 11] 7.1 .:::8,S16 1 s ms n-1 

PERMUTATIONS n;;::; 1 

n = 8 pm lex h.l., section 4 92.4 6.44 

pm plex h. l., section 4 82.5 5.44 

pm mcl h. l., section 4 42.9 3 

pm acm115 Trotter [35;27] 91.3 .:::7 n ;;::; 2 

pm acm466 Ehrlich [11] 58.1 3 n;;::; 3, n ~ 4 

pm mc2 h.l., section 4 54.3 3.35 

pm bcb6 Boothroyd [SJ 103.3 6. 72 

pm bcj30 Boothroyd [7;27] 83.6 >3.16 n;;::; 5 

Table 1 Comparison of various generators. 

time: running time in seconds; a: average array access (in the limit). 
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recursive expressions. For all iterative algorithms except Ehrlich's ones, 

only lower bounds can be given; it is not clear if finite limits exist. 

6. EXPLICIT ENUMERATION 

The generators can be used to solve many combinatorial optimization problems 

through enumeration and evaluation of all feasible solutions. Needless to 

say, only very small problems can be solved by such a brute force approach, 

even if the minimum-change property of the generators is exploited. However, 

they can be applied to validate more complicated solution methods by checking 

their results on small problems. 

More specifically, the procedures "ss me" and "lp me" can be used to 

solve integer programming problems. Krol [19] reports that a lexicographic 

method that he is curiously unable to describe, is superior to several im

plicit enumeration algorithms. A more sophisticated approach to this type 

of problem arises in the context of cutting-plane algorithms [15]. It in

volves a complete enumeration of the vertices on a facet of the integer 

lattice that contains (or is likely to contain} a feasible integer point. 

If such a point x* is indeed found,_ the cut ex :2: cx*+1 can be added to the 

lp-tableau; else, we can cut off the enumerated facet. 

Explicit enumeration of permutations x = (x1 , .•. ,xn) can be used to 

solve sequencing problems P of the form minx zp(x). An example is the qua

dratic assignment problem (QAP): 

'\'i=n '\'j=n 
2 QAP (x) = li==l li=1 ex. x. dij 

. -- l J 

where c and dare non-negative nxn-matrices. If we take d .. = 1 for i > j, 
lJ 

d .. = 0 otherwise, we obtain the acyclic subgraph problem (ASP) [22]. Analo
lJ 

gously, the choice a12 = a23 = = d = d = 1, d. . = 0 otherwise, 
n-1,n nl lJ 

leads to the well--known travelling salesman problem, that is called symmetric 

if c .. = c. . for all i, j. 
lJ J 1. 

If we define the reflection of x by x = (xn, ... ,x1), it is obvious that 

ZASP(x) = Ii~j cij - ZASP(x) for the ASP and ZTSP(x) = ZTSP(x) for the sym

metric TSP. It follows that for these two problems it suffices to enumerate 



a reflection-free set of permutations. Further, since 

zTSP((~+l'·••1xn,x1 , ... ,~)) = zTSP(x) for any k, we may fix one of the 

components of x when solving a TSP. The (n-1) !/2 solutions to a symmetric 

TSP are the hamiltonian circuits in a complete undirected graph; they are 

called rosary permutations [17;28;32]. 
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In the Trotter-Johnson algorithm, discussed in section 4, the elements 

xi and x~ are transposed half-way. If a permutation xis generated before 

this transposition, then its reflection x occurs thereafter. Hence the first 

n!/2 permutations form a reflection-free set (cf. [18]). Generally, the 

n!/(m-1) ! permutations preserving the original order of x!,···,x!_1, can be 

generated by a simple adaptation of "pm mcl": 

procedure pp mc1 (problem,n,m,x); 

begin 
. . . . , 

end pp mc1; 

if n 2:, m then left(m) 

. . . . , 

The above sequencing problems may now be solved by calls "pm mcl (qap,n,x)", 

"pp mcl (asp,n,3,x)" and "pp mcl (tsp,n-1,if symmetric then 3 else 2,x)", 

where "qap", "asp" and "tsp" are procedures which compute the cost changes 

occurring in these problems. 

Several suboptimal approaches to combinatorial optimization problems involve 

the systematic exploration of a neighbourhood of some given solution, starting 

anew from improved solutions until no further improvement is found and a local 

optimum has been obtained [29]. 

For instance, a solution x to the TSP is called m-opt if it is impossible 

to obtain a better solution by replacing m of its links (x. ,x. 1) by a differ-
l. l.+ 

ent set of m links [23]. A 3-opt method, derived from "cb me" by replacing the 

general recursion mechanism by a set of three nested for-loops and inserting 

the appropriate statements instead of the "problem"-calls, proved to be more 

efficient than the algorithm presented by Lin [23]. 

Analogously, one can obtain efficient suboptimal algorithms for the QAP 

and the ASP. The approach might be applicable also to other types of difficult 

optimization problems, e.g. in the area of machine scheduling. 
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7. IMPLICIT ENU~ERATION 

The lexicographic procedures presented in sections 2, 3 and 4 can easily be 

adapted to be used for implicit enumeration purposes by adding a lower bound 

calculation on all possible completions of a partial configuration. In the 

early fifties, Lehmer used such an approach to solve the linear assignment 

problem(!) [34]; similarly, the enumeration scheme of "pm plex" has been 

applied to the travelling salesman problem [2]. The fact that our recursive 

generators coupl,ed with a simple lower bound may well outperform sophisti

cated implicit enumeration algorithms that suffer from a large computational 

overhead (see [31]) underlines the applicability of recursive programming to 

implicit enumeration methods of the branch-and-bound type in general. We 

shall present an ALGOL-like description of branch-and-bound procedures, 

indicating in which case a recursive approach might suitably be used. For 

a specification of the necessary properties of the elements which constitute 

a branch-and-bound procedure, we refer to the axiomatic framework in [25] 

and its correction in [30]. Some examples of these methods have been surveyed 

in [20]. 

Suppose then, that given a set x of feasible solutions and a criterion 

function c: X + JR, we want to find an x* e: X such that c (x*) = min X c (x) . 
XE 

A branch-and-bound procedure to fipd such an optimal solution can be char-

acterized as follows. 

- Throughout the execution of the procedure, the best solution x* found so 

far provides an upperbound c(x*) on the value of the optimal solution. 

- A branching rule b associates to Y c X a family b(Y) of subsets such that 

UY'e:b(Y) Y' = Y; the subsets Y' are the descendants of the parent subset 

Y. This rule only has to be defined on a set X with Xe: X and b(Y) c X for 

any Ye: X. 
- A bounding rule lb: X + JR provides a lower bound lb(Y) ~ c(x) for all 

x e: Ye: X. Elimination of Y occurs if lb(Y) ~ c(x*). 

- A predicate;: X + {~,false} indicates if during the examination of Y 

(e.g. during the calculation of lb(Y)} a feasible solution x(Y) is gener

ated which has to be evaluated. Improvement of x* occurs if c(x*) > c(x(Y)). 

- A search strategy chooses a subset from the collection of generated subsets 

which have so far neither been eliminated nor led to branching. 
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It turns out that, of the three search disciplines that have been used most 

frequently, only two are suitable for recursive implementation. To illustrate 

this point, we shall now present three general procedures: 

- "bb jumptrack" implements a frontier search where a subset with minimal 

lower bound is selected for examination; 

- "bb backtrack!" implements a depth-first search where the descendants of a 

parent subset are examined in an arbitrary order; this type of tree search 

is known as newest active node search; 

- "bb backtrack2" implements a depth-first search where the descendants are 

chosen in order of non-decreasing lower bounds; this type is sometimes 

called rest;Picted flooding. 

During the tree search, the parameters na and nb count the numbers of subsets 

that are eliminated and that lead to branching respectively. We define the 

operation ":f:E" in the statement "s:fE S" to mean thats:= s* with f(s*) = 

min f(s); hence, 11 :E" indicates an arbitrary choice. 
SES 

procedure bb jumptrack (X,c,x*,b,lb,;,na,nb); 

begin local Y,Y' ,B c X, Y,Y' EX, LB: X-+ ~; 
na:= nb:= O; Y:= ~; 

LB(X) := lb(X); if ;(X} then r':cE {x"',x(X)}; 

if LB(X) ~ c(x*) then na:= 1 else Y:= {X}; 

while Y * 0 do 

end 

Y:LBE Y; 
nb:= nb+l; B:= b(Y); Y:= (Y-{Y})uB; 

while B =I: 0 do 

begin Y':E B; B:= B-{Y'}; 

LB(Y'):= lb(Y'); if ;(Y') then x*:cE {x*,x(Y')} 

end; 

Y':= {Y 1 jY 1 E Y, LB(Y') ~ c(x*)}; 

na:= na+IY' I; Y:= Y-Y' 

end bb jumptrack; 
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procedure bb backtrackl (X,c,x*,b,lb,s,na,nb); 

begin local Y' E X; 

procedurei node (Y) ; 

begin local B c X, LB E lR; 

end; 

LB:= lb (Y); if s (Y) then x*: CE {x* ,x(Y)}; 

i.f LB~ c(x*) then na:= na+l else 

!:,egin nb:= nb+l; B:= b (Y); 

while B =I= 9J do 

begin Y':E B; B:= B-{y•}; 

if LB< c(x*) then node(Y') 

end 

end 

na:= nb:= O; 

node (X) 

end bb backtrack!; 

procedure bb backtrack2 (X,c,x*,b,lb,s,na,nb); 

begin local B c X, Y' EX, LB: X + lR; 

procedure node(Y); 

begin local Y c X; 

end; 

nb:= nb+1; Y:= B:= b(Y); 

while B =I= 9J do 

bE~gin Y 1 :E B; B:= B-{Y'}; 

LB(Y') := lb(Y'); if s(Y') then x*:cE {x*,x(Y')} 

end; 

while Y =I= /a do 

beigin Y':LBE Y; Y:= Y-{Y'}; 

if LB(Y') ~ c(x*) then na:= na+1 else node(Y') 

end 

na:= nb:= O; 

LB(X) := lb(X); .!!. ,(x) then x*:ce: {x*',x(X)}; 

.l.f LB(X) .· c(x*) then na:• 1 else node(X) 

1111'1 t,t, l111cktrm.:k1.1 
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Anyone familiar with branch-and-bound will have noticed that the above descrip

tions only provide a minimal algorithmic framework. Numerous problem-dependent 

variations may be included in an actual procedure. For instance, elimination 

of Y may be possible already during the calculation of lb(Y) or may be based 

on dominance rules or feasibility considerations. In a minor (and in our ex

perience quite successful) variation on "bb backtrack!", the subsets Y' are 

not chosen arbitrarily but according to some heuristic, e.g. preliminary lower 

bounds lb'(Y'). Many similar variations are possible and need not be discussed 

here. 

From our experience with branch-and-bound we may conclude, however, that 

again the recursive approach produces transparent and elegant procedures, in 

which much administrative work is taken over by the compiler without a notice

able negati vei effect on overall efficiency. Even in the larger area of implicit 

enumeration, a recursive approach merits serious consideration. 
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