
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE

E. L. LAWLER

,9PTIMAL SEQUENCING OF JOBS SUBJECT TO
SERIES PARALLEL PRECEDENCE CONSTRAINTS

~
MC

BW 54/75 NOVEMBER

2e boerhaavestraat 49 amsterdam

\c,t..t,'.. ei

~=-/,.,~,3: Er~~2,.:\fv1~

Ptinted a:t .the Ma:themauc.a1. Cen.tJr,e., 49, 2 e. Boe.Jl.haaveJ.i.tJr.cta.t, Am6.te.Jl.dam.

The. Mtdhemauc.a1. Ce.n.tJr,e., oou.nde.d .the. 11-.th 06 Fe.bnua1ty 1946, ,,u a. non
pno oil ino:tltu.:Uo n cu.ming tU .the. pnomotio n o 6 pune. mtdhemauc.6 a.nd ..i..t6
a.ppUc.auonf... I.t ,L6 .6pon601Le.d by :the. Ne.:theJila.nd.6 Gove/l.nme.nt :thnough :the.
Ne.:theJila.nd.6 Onga.n..i.zauon 6on :the. Adva.nc.eme.nt ofi Pune. ReJ.ie.aJtc.h (Z.W.O),
by :the. Mu.n,Lc.ipMily 06 Am.o:te.Jl.dam, by :the. Unive.Mil.y 06 Am.o:te.Jl.dam, by
:the. FJr.e.e. Un..i.ve.Mil.y a:t Am.o:te.Jl.dam, a.nd by indu..o:tJueJ.i.

AMS (MOS) subject classification scheme (1970): 90B35

OPTIMAL SEQUENCING OF JOBS SUBJECT TO

SERIES PARALLEL PRECEDENCE CONSTRAINTS

E. L. LAWLER

ABSTRACT

Suppose that n jobs are to be performed by a single machine subject to

precedence constraints that can be characterized as "series parallel". Each

job j has associated with it a known processing time p. and weight w .. The
J J

objective is sequence the jobs so as to minimize total weighted completion

time. It is shown that this problem can be solved by an algorithm with

worst case running time of O(n log n). This result is implicit in results

of Sidney, and algorithms of Baker, Horn, and Adolphson and Hu, which dealt

with precedence constraints in the form of rooted trees.

KEY WORDS & PHRASES: maahine sequenaing, preaedenae aonstraints, series

paraUel, polynomial algorithm.

AUTHOR'S ADDRESS: Department of Electrical Engineering and Computer Sciences,

The University of California, Berkeley, California 94720, USA.

l . INTRODUCTION

Suppose n jobs are to be performed by a single machine. Each job j has

associated with it a known processing time

... ,n. For any given sequence of jobs, o =

tion time of job o(i) is

1

co(i) = kl! Pa(k)'

p. > 0 and weight w.,
J J

(o(l),o(2), ... ,o(n)),

and the total weighted completion time of a is

n

l wo(i)co(i)'
i= I

J = 1,2, .••

the comple-

In the absence of further constraints, the problem of finding a se

quence which minimizes total weighted completion time is solved by a simple

rule due to W.E. SMITH [11]: For each job j, form the ratio

w.
(! • = _J_

J p.
J

and then place the jobs in monotone nonincreasing ratio order. Clearly,

this task can be accomplished 1n O(n log n) running time.

Now suppose that precedence constraints are specified, in the form of

an (irreflexive) partial order '~". Jobs i must precede job j if i ~ j.

For arbitrary precedence constraints, the problem is quite difficult

and may be NP-complete in the sense of COOK and KARP [6], even if all job

weights are equal. At the time this 1s written, NP-completeness remains an

open question [9]. (Note that this is in constrast to the problem of mini

mizing the maxinrwn weighted completion time, subject to arbitrary precedence

constraints, for which there is an efficient algorithm [7].)

However, if the precedence constraints are suitably restricted, the

2

problem is much easier. CONWAY, et al, [4] dealt with precedence constraints

in the form of "parallel chains". BAKER [3] and HORN [5] solved the problem

for more general precedence constraints in the form of rooted trees (or

"arborecences"), either rooted to a point or from a point. ADOLPHSON and

HU [I], working in the context of the "optimal linear ordering" problem

(cf. Section 6), showed that Horn's algorithm can be implemented in

O(n log n) running time. SIDNEY [10] has obtained a number of theorems

concerning arbitrary precedence constraints, but his results do not suggest

a polynomial bounded algorithm for the general case.

In this paper, we make use of some of Sidney's results to obtain an

algorithm for solving the sequencing problem in the case that the precedence

constraints can be characterized as "series parallel". We also show that this

algorithm can be implemented with worst case running time of O(n log n).

Since rooted trees are special cases of series parallel constraints, this

result provides a proper generalization of previous results.

2. SERIES PARALLEL DIGRAPHS ,

We represent a given set of precedence constraints by a digraph

G = (N,A) in the obvious way. That is, each node j EN corresponds to a

job and each arc (i,j) EA corresponds to a pair of jobs in the relation,

i.e. i ~ j. We now proceed to define series parallel precedence constraints

1n terms of digraphs.

The class of transitive series parallel digraphs is defined recur

sively as follows:

(2.1) A digraph consisting of a single node, e.g. G = ({i},0), is transi

tive series parallel.

(2.2) If G1 = (N 1,A 1) and G2 = (N2 .A2), where N1 n N2 = 0, are transitive

series parallel, then

is also transitive series parallel. G is said to be the series com

position of G1 and c2.

(2.3) If G1 = (N 1,A 1) and G2 = (N2,A2), where N1 n N2 = 0, are transitive

series parallel, then

is also transitive series parallel. G 1.s said to be the pa:r>aUel

composition of G1 and G2 •

(2.4) Only those digraphs which can be formed by a finite number of appli

cations of rules (2.1) - (2.3) are transitive series parallel.

A digraph G is said to be series parallel if and only if its transi

tive closure is transitive series parallel. Some examples of series paral

lel digraphs are shown in Figure 1. Note that every series parallel di

graph is acyclic. The simplest acyclic digraph which is not series paral

lel is shown in Figure 2.

Given a series parallel digraph G, it is possible to repeatedly de

compose G into series and parallel components, so as to show how G can be

obtained by application of rules (2.1) - (2.3). The result is a rooted

binary tree we call a decorrrposition tree. Each leaf of the decomposition

tree is identified with a node of G. Each internal node marked "S" indi

cates the series composition of the subgraphs identified with its sons,

with the convention that the left son precedes the right son. Each inter-

3

4

nal node marked "P" indicates the parallel composition of the subgraphs

identified with its sons. (Here the left-right ordering of sons is unimpor

tant.) Decomposition trees T1,T 2,T3 for the digraphs G1,G 2,G3 shown in

Figure 1 are given in Figure 3. The "S's" and "P's" in the internal nodes

of T3 are given subscripts to facilitate reference in the next section.

In [8] it is shown how to test a given digraph to determine if it is

series parallel and, if it is, to obtain a decomposition tree. This task

can be accomplished on O(n2) running time. In the sequel, we shall assume

that a decomposition tree is already known for any given precedence con

straints. Hence, when the claim of O(n log n) running time is made for the

algorithm presented in this paper, this claim must be qualified to apply

to a problem for which a decomposition tree is given.

3. A RECURSIVE PROCEDURE

Suppose we are able to construct optimal sequences for the series and

paral:el compositions of subsets of jobs N1,N2, given optimal sequences for

N1 and N2 • Then we have all that is necessary for a recursive procedure for

sol.ving sequencing problems with series parallel precedence constraints.

Rules for these constructions are as follows.

Sc1,-r s Composition

Let o 1 ,cr 2 be optimal sequences for N1,N2 • Then an optimal sequence for

the series composition of N1 and N2 is simply o = o 1o 2 , the concatenation

of o 1 and o2 .

The proof of this assertion is trivial and is omitted.

5

Parallel Composition

Let o1,o2 be optimal sequences for N1,N2, where

o. = (o.(1),o.(2), •.. ,o.(n.)), i i i i i
i = 1,2,

and job oi(k) has weight wik and processing time pik" An optimal sequence

for the parallel composition of N1 and N2 is obtained by repeatedly finding

"maximum-ratio prefixes" of o1 ,o2 and placing there in successive positions

of the solution sequence o. This technique is implemented by the following

algorithm.

Step 0. Leto= A, the empty sequence. Set m. = I, i = 1,2.
i

Step I. If m. = n. + I, for i = I, 2, stop; o is an optimal sequence for the
i i

Step 2.

parallel composition of N1,N2 • Otherwise, continue to Step 2.

Compute

p.
ir

Find

* p. =
i

=

r
I w ..

j=m. iJ
i

r
I p ..

j=m. iJ
i

max
m.:Sr:Sn.

i i

{p. } ,
ir

and values k,m such that

Let

i = 1,2; r = m.,m.+l, ••• ,n .• i i i

i = I , 2,

6

* * Seto= ook, the concatenation of o and ok, and set~= m + I.

Return to Step I •

This algorithm is essentially the same as Sidney's "parallel chain"

algorithm, with some changes in notation. The validity of the algorithm in

this context follows i11llllediately from Sidney's theorem 21. We refer the

reader to his paper [IO] for a proof.

An Example

With the above rules for series and parallel composition it is clearly

possible to carry out a recursive computation, starting at the bottom of

the decomposition tree and working upwards until an optimal sequence is

found for the complete set of jobs. As an example, consider the problem

with precedence constraints given by digraph G3 in Figure I and with weights

and processing times as follows:

j 2

4

3

3

4

2

5

7

2

6

2

8

7 8

10 3

5

9 IO II 12 13

3

IO 7

4

8

9

2 6

Optimal solutions for the various subproblems, defined by the decompo

sition tree T3 in Figure 3, are as follows:

pl 01 = (7 ,8)

s2 02 = (7,8,10)

s3 03 = (4,7,8,10)

P4 04 = (3, 2)

Sc: 05 = (5,9)
:)

7

p6 06 = (5,6,9)

s7 07 = (5,6,9,11)

s8 08 = (3,2,5,6,9,11)

Pg 09 = (4,7,3,2,5,8,10,6,9,11)

PIO: 010 = (12,13)

SIi: o 1 1 = (4,7,3,2,5,8,10,6,9,11,l2,13)

s12= 012 = (I,4,7,3,2,5,8,I0,6,9,11,12,13)

As an example of parallel composition, consider in detail the formation

of the sequence o9 from the sequences o3 and 08 . At successive executions of

Step 2 of the algorithm for parallel computation, data are as follows:

* * * * 03 P3 08 p8 09

(4, 7) 12/4 (3) 3/1 A

(8) 3/5 (3) 3/1 (4, 7)

(8) 3/5 (2,5) 8/6 (4,7,3)

(8) 3/5 (6,9,11) 6/26 (4,7,3,2,5)

(10) 3/7 (6,9,11) 6/26 (4,7,3,2,5)

>,_ -oo (6,9,11) 6/26 (4,7,3,2,5,10)

(4,7,3,2,5,10,6,9,11)

4. MODIFICATION OF RECURSIVE PROCEDURE

We now present a number of refinements and modifications of the basic

recursive procedure described in the previous section. The principal objec

tive of these modifications is to enable us to represent the solutions to

subproblems in the recursion by sets rather than sequences. It is believed

8

that the validity of assertions we make in this section is intuitively ob

vious, and that proofs can safely be left to the reader.

Composite Jobs

Suppose that the parallel composition of sequences a 1, a2 is carried

out as part of the recursive computation, and that a~ is a maximum-ratio
i

sequence found in Step 2 of the subalgorithm for parallel composition. We

assert that there exists an optimal sequence for the complete set of jobs

in which the jobs in a~ are consecutive. Accordingly, it is possible to
i

* treat the subsequence a. as a single corrrposite job, with processing time
i

and weight set equal to the sums of the processing times and weights of the

jobs contained within it.

Moreover, we assert that there is no change in the ultimate outcome

of the computation if maximum-ratio subsequences are found, and composite

jobs formed, at the time of series, rather than parallel, composition. As

a consequence of this modification, the solution to each subproblem can be

represented by a set of jobs, some or all of which are composite. An optimal

sequence for a subproblem can be constructed by simply placing these jobs

in monotonically nonincreasing order of w,/p. ratios.
J J

The rules for series and for parallel composition can now be restated

as follows.

,','<.n•-icc Composition

Suppose that solutions to two subproblems are given by sets N1 and N2

of elementary and composite jobs. The series composition of N1 and N2 can

result in the formation of at most one new composite job. Moreover, this

composite job must contain a minimum ratio job from N1 and a maximum

ratio

tion.

Step 0.

Step I.

Step 2.

9

job from N2. The following algorithm is now used for series composi-

Find

and

* min pl =
jEN!

].

* p2 = max
jENz

j(1),j(2)

wj(i) =

pj (i)

{:~}
J

{:~} '
J

such that

i = 1 , 2.

* * If pl ~p 2, then stop; the solution to the series composition of

* * N1,N2 is given by Nj u Ni (no composite job is formed). If pl < p2 ,

then form a composite job k = (j(1),j(2)), with wk= wj(I) + wj(2)'

Pk= Pj(J) + Pj(2)' set Ni= Ni - {j(i)}, i = 1,2, and proceed to

Step I.

Find * * j (1)' j(2), as in Step O. * ~wk/pk~ * p 1 , p2' If Pl p 2' then

stop; the solution to the series composition of N1,N2 is given by

N'
I

u N' u
2

{k}. Otherwise proceed to Step 2.

If * < wk/pk, pl then replace k by j (I), k (the concatenation of j(I)

and k), set wk= wk+ wj(I)' pk= pk+ pj(I)' and N1 = N1 - {j(I)}.

* * If Pl ~ wk/pk and wk/pk< p2, then replace k by k,j(2), set

wk= wk+ wj(Z)' pk= pk+ pj(2)' and Ni= N2 - {j(2)}. Return to

Step 1.

Pa:r>aZZeZ Composition

Suppose that solutions to two subproblems are given by sets N1,N2 of

elementary and composite jobs, A solution for parallel composition of N1

and N2 is given simply by N1 u N2 .

An Example

We now rework the example of the previous section with these new pro

cedures. We denote composite jobs by sequences, e.g. N8 contains the ele

mentary job 3 and composite jobs (2,5) and (6,9,11). The reader should

trace through the subalgorithm for series composition to verify the forma

tion of composite jobs.

pl NI = {7' 8}

s2 N2 = {7,8,10}

s3 N3 = {(4,7),8,10}

p4 N4 = {3,2}

ss NS = { 5, 9}

p6 N6 = {5,6,9}

s7 N7 = {5,(6,9,11)}

ss NS = {3,(2,5),(6,9,11)}

pg N9 {(4,7),3,(2,5),8,10,(6,9,11)}

PIO: NIO = {12,13}

S 1 1 : N 11 = {(4,7),3,(2,5),(8,I0,6,9,ll,12),13}

SI 2: Nl2 = {(l,4,7,3),(2,5),(8,I0,6,9,ll,I2),I3}

5. IMPLEMENTATION IN O(n log n) TIME

We have observed that optimal solutions to subproblems in the recur

sive computation can be represented as sets. In order to solve subproblems

1 1

with sets as inputs and outputs, we need to be able to perform the follow

ing operations efficiently: (i) identify a maximal or minimal element of a

set, (ii) delete (a maximal or minimal) element from a set, (iii) form the

union of two sets. Each of these operations is performed as many as O(n)

times. It follows that if we are to attain our goal of O(n log n) running

time overall, we must be able to perform each of these operations 1.n

0 (log n) steps.

There are data structures which facilitate these set operations known

as "mergeable heaps". A complete exposition of these data structures can

be found 1.n the book of AHO, HOPCROFT and ULLMAN [2, p.152], with a demon

stration that the desired running times can be attained.

6. RELATIONSHIP TO OPTIMAL LINEAR ORDERING

A problem related to sequencing 1.s that of "optimal linear ordering",

studied by ADOLPHSON and HU [I]. Let G = (N,A) be an acyclic digraph and

let p! be a positive weight associated with node i and q .. a positive
1. 1.J

weight associated with arc(i,j).

The number p! can be thought of as the "width" of node 1.. The number 1.

q .. can be thought of as the "number of wires" from 1. to J ' where each wire
lJ

leaves the "right" side of 1. and enters the "left" side of J . The object

11f the problem is to arrange the nodes adjacently in a one-dimensional array,

1n such a way that all wires are directed from left to right, and the sum

of the wire lengths 1.s minimized.

The sequencing problem and the optimal linear ordering problems are

equivalent, under the relations

12

p. p!
l l

w. = I q .. - I q ..•
l . J l . lJ

J J

Thus, the algorithm presented in this paper can also be employed to solve

the optimal linear ordering problem with series parallel precedence con-

straints.

REFERENCES

[I] ADOLPHSON, D. & T.C. HU, "Optimal Linear Ordering", SIAM J. Appl. Math.,

25 (1973), p. 403-423.

f2] AHO, A.V., J.E. HOPCROFT & J.D. ULLMAN, The Design of Computer

Algorithms_, Addison Wesley, Reading, Mass., 1974.

[3] BAKER, K.R., "Single Machine Sequencing with Weighting Factors and

Precedence Constraints", unpublished paper, 1971.

[4] CONWAY, R.W., W.L. MAXWELL & L.W. MILLER, Theory of Scheduling_,

Addison-Wesley, Reading, Mass., 1967.

[5] HORN, W.A., "Single Machine Job Sequencing with Treelike Precedence

Ordering and Linear Delay Penalties", SIAM J. Appl. Math, 23

(1972), p. 189-202.

I 61 KARP, R.H., "On the Computational 1~omplexity of Combinatorz'.al Problems'\

Networks 5 (1975), p. 45-68.

[7] LAWLER, E.L., "Optimal Sequencing of a Single Machine Subject to

Precedence Constraints", Management Science 19 (1973), p. 544-546.

[8] LAWLER, E.L. & R.E. TARJAN, •~nalysis and Isomorphism of Series

Parallel Digraphs", to appear.

[9] LENSTRA, J.K., A.H.G. RINNOOY KAN & P. BRUCKER, "Complexity of

Machine Scheduling Problems", to appear in Annals of Discrete

Math., North Holland, 1975.

13

[10] SIDNEY, J.B., "Decomposition Algorithms for Single-Machine Sequencing

with Precedence Relations and Deferral Costs", Operations

Research 22 (1975) p.283-298.

[JI] SMITH, W.E., "Various Optimizers for Single-Stage Production", Naval

Res. Log. Quart. 3 (1956) p.59-66.

14

GI ~ ~ ©-+- 0

Figure I Series Parallel Digraphs.

0-
~o

Figure 2 A Nonseries Parallel Digraph.

15

Figure 3 Decomposition Trees.

