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On the existence of discounted and average return equilibrium policies in 

N-person stochastic games. *) 

by 

A. Federgruen, in cooperation with 

O.J. Vrieze & G.L. Wanrooy 

ABSTRACT AND SUMMARY 

This paper considers noncooperative stochastic games with N players. 

For the case where the state space is arbitrary and the action space compact, 

and under some continuity assumptions with respect to the innnediate return 

and the transition probability function, the existence of a stationary equi

librium policy under the criterion of the total discounted return, is proven. 

Next, :for the case where the state space is denumerable, we give a num

ber of recurrency conditions with respect to the transition probability ma

trices asso,ciated with the stationary policies that guarantee the existence 

of an equilibrium policy under the criterion of the average return per unit 

time. 

Finally, in Section 4, we review and extend the results that are known 

for the case where both the state space and the action space are finite. 

KEY WORDS & PHRASES: Stochastic games, non-cooperative games, discounted 

return model, average return model, equilibrium points, 

optimal stationary policies. 

This paper is not for review; it is meant for publication elsewhere. 





I • INTRODUCTION 

This paper treats an N-person noncooperative stochastic game, specified 

by a five-tuple (~,S,A,q,r). 

~ = {I, ••. ,N} is a finite set of players, Sis a locally compact Borel 

subset of some complete, separable metric space, and A is a compact metric 

space, where the set S denotes the state space of some system, and A denotes 

the set of possible actions. With C defined as 

( I. I) 
N 

C = X. I A, 1.= 

q associates with each pair (s,~) ES x Ca probability distribution q(~ Is;~) 
i on the class B of Borel subsets of S, and r is a bounded real-valued and 

s 
Borel-measurable function on S x C, for all i E ~-

Behaviorally, a stochastic game is a sequence y 1,y 2 , ..• of noncoopera

tive nonzero sum games played by the members of~. wheres ES indexes the 

set {rs I s ES} from which yt (t=l,2, •.• ) is drawn. 

Without loss of generality, we assume that the set of actions A avail

able to player i in the states is identical for alls ES and i E ~ such 
I N 

that all the players' actions in yt (t=l,2, .•. ) are a vector a= [a , ... ,a J 

EC. 

When yt = s, i.e. when the system is in states and the vector a EC 

denotes all the players' actions in y , then the one-step expected reward 
. t 
l. , 

to player i is given by r (s;~), and the state next visited (i.e. the game 

next drawn) 1.s distributed according to q(.ls;~). 

Let F(A) denote the set of all finite measures on BA, the Borel subsets 

of A, endow◄:!d with the weak topology (cf. [13], p.40). Observe, using Th. 

5.9 of PARTHASARATHY [13] that F(A) is a linear Hausdorff topological space, 

and let M(A) be the subspace of all probability measures on BA' with the in

duced topology. 

It then follows from the fact that A is a compact metric space, using 

Th. 6.4 of [13], that M(A) can be metrized as a compact metric subspace of 

F(A). 

Next we define F(C) = X. ,,, F(A) as the set of all finite product mea-1.E 'I' 
sures on Be:• the product a-field in C, endowed with the product topology. 
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Let M(C) = X. ,, M(A) be the subspace of all product probability measures on 
l.E~~ 

Observe that F(C) is again a linear Hausdorff topological space and 

that, as a result of Tychonoff's Theorem, M(C) can be metrized as a compact 

metric subspacE~ of F(C) as well. 

We use the (abbreviated) notation rµ-i,v] for the N-person randomized 
. I i-I i+I N - 1 i N 

act1.on [µ , .•. ,µ ,v,µ , ••. ,µ] that results from.!:.= 1µ , ... ,µ , ••• ,µ ], 
i 

when the i-th player changes fromµ to v, the other players continuing to 

use their respective actions in.!:.· 

Defining ri(s;µ) = E ri(s;a) 
I N - .H. -

and q(.js;µ) = E q(.js;a) for all 
- µ -

[µ , .•• ,µ J E M(C), s ES and i E $, we obtain: 

( I. 2) 

( I. 3) 

r 1 (s ;.!:!._) = f 
C 

= 'f ... I i I NI I NN r (s;a , •.. ,a )dµ (a ) ... dµ (a), 

= f q(.js;~)d.!:_(~) 

C 

A A 

= f ... f 
A A 

I N I I N N 
q(.ls;a ••• a )dµ (a ) •.. dµ (a), 

where the second equality in (1.2) and (1.3) results from Fubini's Theorem. 

Observe that r 1 (s;.!:!._) and q(.js;.!:_) are both multilinear inµ: 

( I • 4) 
i I j j N i I j N r (s;µ , •.. ,Aµ +(1-A)v , •.• ,µ)=Ar (s;µ , ..• ,µ , ••. ,µ ) + 

i I j N (I-A)r (s;µ , ••. ,v , ••• ,µ ), 

( 1.5) 

i A policy n for player i is a rule that prescribes to player i, for 

each timet, which randomized actionµ E M(A) to choose at time t, as a Borel 

measurable function of the state st and the history 

of the system up tot. 
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Let TI denote the class of all one-player policies, and denote by 6 the 

set of all Borel measurable mappings o: S + M(A). For any o E 6, let o(oo) 

indicate the stationary (one-player) policy that prescribes the randomized 

action o(s) E M(A) whenever the system is in states. 

·Asa consequence we let 6 represent the class of all stationary one

player policies as well. 

A stationary policy o(oo) is said to be pure if in each state of the 

system it prescribes a specific action in A with probability one. 

Finally, let TI= X. ,,, TI denote the class of all N players' policies, 
- iE'f' 

and let 6 = X. ,,, 6 denote the subset of the stationa.ry N players' policies. 
- iE'f' 1 N • • 

For any policy TT= [TT , ..• ,TT] E TI, we define Vi(TT,s) and gi(TT,s) as the 
~ - a- -

total expected a-discounted return, and the long-run expected average return 

per unit time to player i, when the initial state is s: 

( 1. 6) 

( l. 7) 

i 
V (TT;s) 

Ct -
s 0 = s}, 1. E ljJ, s ES, 0::; a< I, 

SQ= s}, i E ljJ, SES, 

where E indicates the expectation given the players' common policy TT E TI TT 
is used-:- and where {sk; k = 0,1,2, ..• } and {ak; k = 0,1, ••• } denote the sto-

chastic processes of the states and actions that result from policy TT. 

f . . * [ * l *NJ . . d. An N-tup le o policies ~ = TT , .•. , TT E TI is said to be an a- 1,,s-

counted equilibrium point of policies (a-DEP) if 

( 1.8) i * i -i * v· (TT ;s) 2'. V (TT;s) for all i E ljJ, s ES, and TT E TI (_TT), 
o: - a -

where 

( 1. 9) -i * I N TI (TT)= {TT= [TT , ..• ,TT] E TI j *j TT = TT , j 1 i}. 

* Similarly, we define '1T as an average return equilibrium point of 

policies (AEP), if 

( I. 10) i * i -i * g (~ ;s) 2'. g (~;s) for all i E ljJ, s ES and '1T E TI (~ ). 
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Hence, whenever the players choose an a-DEP (AEP) none of them, 

whatever the initial state of the system, can increase his own total ex

pected a-discounted return (expected average return per unit time) by chang-
. . i j *i 1ng to some other policy n r n € IT, the other players continuing to use 

their respective policies inn*. 

In the following sections conditions will be given under which the 

existence of stationary a-DEP and AEPs will be proved. 

We conclude this section by observing that if A is a subset of some 

linear metric space itself, s~~h that for all i € $, ri(s;_!) is linear, or 

even concave in the i-th component of,!_, and q(.ls;a) is multilinear in.!. 

(cf. (1.4) and (1.5)), then the.existence of a pure, instead of a randomized, 

stationary a-DEP and AEP is guaranteed, under the same conditions, as follows 

from an examination of the analysis below. 

2. EXISTENCE OF STATIONARY a-DEPs 

Hereafter we assume: 

Al. i r ( s; ,!_) is continuous on S x C, for all i € $. 

A2. q(.js ;a) converges weakly to q(.ls;a) as s -+ s, and a -+ a, whereas 
n -n n -n -

q(.js;a) converges setwise to q(.js;a) as a -+ ,!, for alls€ s. 
-n -n 

LEMMA 2.1. Suppose Al,A2 hotd. Then 

(a) ri(s;E_) is aontinuous on S,x M(C) foP aii i € $; 

(b) q(. j s ;µ ) aonvePges weakty to q(. Is;µ) as s -+ s, and µ -+ JJ, whePeas 
n-n n -n -

q(.ls;µ) aonvePges setwise to q(.ls;JJ) asµ-+µ, fop aU s € S. 
-n -n -

PROOF. This proof proceeds along similar lines to the one in MAITRA & 

PARTHASARATHY ([12], Lemma 2.1). 

(a) Let sn-+ s0 , and~-+¾' fix i €$,and pick£> 0. We have (cf. (1.2)): 



( 2. I) i i Ir (s ;µ )-r (s0 ,µ)I 
n -n -

i I N 11 NN 
r (s ;a , ••. ,a )dµ (a ) .•• dµ (a)+ 

n n n 

I ... I 
A 

I· · · I 
A A 

Since Sis locally compact, there is an open set O containing s, such that 
i its closure O is compact. As Ox C is a compact metric space, r (s;~) is 

uniformly continuous on Ox C and hence there exists an integer N1 such 
i i 

that for all n ~ N1, Ir (sn;~)-r (s0 ;~)1 < E/2 for all a EC. This implies 

5 

that the first term on the right-hand side of (3. l) is at most E/2, for all 

n ~ NI. 

Next, observe that since for all j E iji, µ!(.) converges to µ6(.) in the 

weak topology, we have, as a consequence of Fubini's theorem, for every N

tuple (f 1 , ... ,fN) of real-valued continuous functions on A: 

(2.2) I· · · I I I 2 2 NN I I NN f (a )f (a ) •.. f (a )dµ (a ) •.. dµ (a) ➔ 
n n 

A A 

I· · · I 
A A 

Since, due to the Stone-Weierstrass Theorem (cf. ROYDEN [16], p.174), 
i( I N) . f · · d · r s 0 ;a , .... ,a , as a continuous unction on C, can be approximate uni-

• 'i:'k l 1 N N 
formly by a sequence of functions.of the form lt=I fi(a ) .•. ft(a ), where 

for each i E iji, and£= 1,2, ... , f~(.) is continuous on A, we obtain, using 

(2.2) that there exists an integer N2, such that the second term on the 

right-hand side of (2.1) is at most E/2, for all n ~ N2, as well. Hence, 
i l. 

r (sn;¼) converges tor (s0;~) assn ➔ s0 , ¼ ➔ ~•which proves part (a). 

(b) Show that A2 implies that 
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I u(s')q(ds'ls ;µ) ➔ I u(s')q(ds'!s0 ;Ho), as s ➔ so, µ + µ 
n -n n -n ~ 

s s 

and that 

q(Blso;~) + q(Blso;Ho) as ~ + l1..o, 

for every real valued, continuous and bounded function u on S, and for every 

Borel set B € B8 , by repeating the proof of part (a) with ri(,;.) replaced by 

J8 u(s')q(ds'I .;.) and q(Bi .;.) respectively. D 

Observe that X S F(C), the space of all mappings f: S + F(C) endowed 
SE 

with the product topology, is a linear Hausdorff topological space. 

Likewise, XscS H(C), the space of all mappings f: S + M(C) (with the 

induced topology), is a compact subspace, as a consequence of Tychonoff's 

Theorem. 

Let {f }00 

1 be a sequence in X S M(C). Then, since convergence of 
n n= SE 

f + f, in the product topology, implies f (s) ➔ f(s), for alls ES, it 
n· n 

follows from KURATOWSKI ([10], part I, p.386) that~ is a closed, and hence 

compact subspace of X S M(C) c X S F(C), We thus obtain: 
SE - SE 

(2.3) ~ is a compact convex subspace of the linear Hausdorff topological 

space X S F(C). 
SE 

. 1· _..(oo) h For any stationary po icy u E !:._, t e 

to player i, v!(i(oo);s) is-given by: 

total expected a-discounted return 

(2.4) 
00 

I 
n=O 

n f i n I a . r (y;i(y))q 0 (dy s) 

s 

where q~(Bjs), withs ES and BE B8 denotes then-step transition probabil

ity function of the Markov Chain {st} associated with the stationary policy 
( 00) 

0 . 

The following lemma proves that Vi(o(00 )·s) is a continuous function on 
a- ' 

~ for all i E ~. s Es, a E ro,I). 
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LEMMA 2.~. Assume AI-A2 hold. Fix s0 ES, i E ~, and a E [0,1). Then 

lim V1 (o(oo);so) = vi(o(oo) ,so) whenever {_on} 00n--1 ➔ _o, with o Et,. 
n➔oo a -n a - -n 

PROOF. We first observe that o Et, (cf. (2.3)) and that Vi(n(00);s) is uni-
- a-

formly bounded in .!l EA• For, let M be such that lr(s;a)I ~ M for alls ES, 
i -

and~ EC. Then, it follows from (1.2) that Ir (s;~_)I ~ M for alls ES, and 

µ E M(C), and next, using (2.4), that 

(2.5) 1v!c!}_<00\s)I ~ l~a,for all_!l(oo) EA, ands Es. 

Let M(S) denote the class of all bounded measurable and real-valued func

tions on S, and define for each n Et, the operator H: M(S) ➔ M(S) as fol-
. - - n 

lows: Hn(u)(.) = r 1 (.;_!l(.)) + a JS u(s')q(ds' I, ;_!l(,)) for all u E M(S). We 

next show that 

(2.6) limo = §_* =0- lim H~ (u) 
-n u 

n➔oo n➔oo -n 
0,1, ... and u E M(S), 

k 00 k where the convergence of {H0 (u)} _1 is pointwise, and where H (u) is recur-
...:.n n- n 

sively defined by: 

(2. 7) Hk+l (u)(.) 
n 

HO(u) = u. 
n 

i 
= r (. ;.!}_ (.)) 

Proceeding by complete induction, we first observe that (2.6) trivially 

holds fork= 0. Suppose now it holds fork= k0. Then, as a consequence of 

it follows from o (s) ➔ o(s), assumptions AI-A2, the boundedness of 
-n -

and Proposition 18 on p.232 in ROYDEN [16] that (2.6) holds for 

+ I as well. 

We next observe from (2.4) that 

k 
+ a 

s and n Et.. 
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Finally, 00 * let {o} _1 +.£_,where o 
~ n- k E:(1-a) -n 

Choose k such that a ~ 4M and, 
k k E:/2, such that !Hin (O)(sO)-H0*(O)(sO)1 < 

we obtain, using (2.5), That: 

< E:/ 2 + dt-a) 
4M 

which proves the lemma. D 

2M 
(1-a) 

E ~, and pick E: > o. 
in view of (2.6), an 

for all n ~ NO• Then 

We now turn to the existence of an a-DEP. 

integer NJ 
for all n ~ NO 

For a compact state space, and under the assumptions Al and the first 

part of A2, the existence of an a-DEP was first proved in SOBEL [22], where, 

however, the considered class of policies had to be restricted to X S M(C), 
SE 

the stationary, though not necessarily measurable ones. In addition, it ap-

pears that the proof of the Theorem in [22] is either incorrect or incom

plete (cf. VRIEZE [25]). 

Theorem 1 below proves the existence of an a-DEP, under the assumptions 

Al and A2, within IT, the class of all measurable stationary and nonstationary 

policies, using an extension of the Kakutani fixed-point theorem by GLICKS

BERG [8]. 

Moreover, we need the following lemma, the proof of which is given in 

the appendix. 

LEMMA 2.3. Fix O ~a< I. A stationary policy o(oo) = [oJ(oo) , ••• ,oN(oo)J is 

an a-DEF, iff v!<i(oo);s) satisfies the optimality equation: 

(2.8) 

for alls e: S, i e: ~-

+ a J v!<i(oo);s')q(ds' ls;[o-i(s),µJ)} 

s 



THEOREM 1. Assume Al-A2 to hold, and let O <a< 1. Then there exists a 

stationary a-DEF. 

fl fl 
PROOF. We construct a mapping 9: ~ + 2-, where 2- denotes the class of all 

closed subsets of fl. We first show that for each o E fl and i E $, there 

exists an n E fl such that 

(2.9) ri(s;[o-i(s),n(s)J) + a J v!(i(oo);y)q(dyls;[o-i(s),n(s)J) = 

s 
= maxµEM(A){ri(s;[o-i(s),µJ) + a I v!(i(oo);y)q(dyls;[o-i(s),µJ)}, 

s 
Vs ES. 
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Observe, as 

Vi(o(00\s 1 ) (cf. 
a-

a consequence of the assumptions Al-A2, the boundedness of 

(2.5)), and Proposition 18 on p.232 of ROYDEN [16], that 

the expression within { } in (2.9) is a Borel-measurable function on 

S x M(A) that is continuous inµ. The existence of an n E fl satisfying (2.9) 

then follows from Th. 1 2. 1 in SCHAL [ 1 71. 
]. 

For any i E $, and i E ~, let~ (i) denote the set of all n E fl that 

satisfy (2.9), and define the point-to-convex-set mapping 

i 
= X. ,I, 9 ( o) • 

l.E'I' -

We next show the upper semi-continuity (in the sense of Kuratowski) of this 

point-to-set mapping: 

(2.10) 

00 (X) 

Fix {~}n=I' {_:l0 }n=I s~tisfying the conditions in (2.10) and fix s ES. Sub-

stitute o for o and n1 for n in (2.9) and let n tend to infinity. It then -n .- n 
follows that n1 satisfies (2.9) for i, and this for all i E $ands ES, as 

a consequence of the assumptions Al-A2, Lemma 2.2, the boundedness of 

Vi(o(00);s) (cf. (2.5)), and Proposition 18 on p.232 in ROYDEN [16]. 
a -n 

As a consequence of (2.10) and the fact that 9 is a point-to-convex-set 

mapping of a convex compact subset fl of the linear Hausdorff topological 



space X S F(C) into itself (cf. (2.3)), it follows from GLICKSBERG's [8] 
SE 

extension of the Kakutani fixed-point theorem that there exists a i* E ~ 

such that o* E ~<i*), which implies (2.8) and hence proves the theorem (cf. 

Lemma 2. 3). D 

REMARK. We sideways observe that the argument in the proof of Lemma 2.3 can 

be used in order to derive e.g. Theorem 3.1 in MAITRA & PARTHASARATHY [12] 

in a straightforward manner from the analogous result in Markov Decision 

Theory. 

3. THE EXISTENCE OF AN AEP IN STOCHASTIC GAMES WITH A DENUMERABLE STATE SPACE 

In the remainder of this paper we will restrict ourselves to stochastic 

games with a denumerable state space S. 

As a consequence, we henceforth need the following notations: Let 

q (a) denote the transition probability to state t, when the N players' ac
st -

tions ins are given by~ EC. 

We associate with each o E ~, the transition probability matrix (tpm) 
P(i), where P(i)st = qst(i(s)), for all s,t ES. 

For any i E ~, we define the matrix p*(i) as the Cesaro limit of the 
n 00 I * . sequence {P (i)}n=t• Let R(i) = {t P (~)tt > O}, 1.e. R(i) is the set of 

positive recurrent states. If P(_~) has exactly one positive recurrent class 

of states, then there exists a (unique) stationary probability distribution 

* TI(i)(.), such that n(i)t = P (i)st' for alls ES. 

We henceforth assume the assumptions Al, A2 to hold, and introduce a 

number of conditions, each of which will be shown to guarantee the existence 

of an AEP: 

A3.l. There is an integer v ~ I, and a number p > 0 such that for each pair 

of states (s 1,s2) and for each o E ~= 
00 

l min{Pv(i)s t'Pv(~_)s t} ~ p. 
t=I I 2 

(3. I) 

A3.2. For each policy i(00
) E ~ there exists a state s 0 , such that the mean 

first passage time m0 (s,s0), i.e. the expected number of transitions 



I I 

needed to get from states to state s~
00

under policy i(00
) e: ! is finite 

and uniformly bounded in s E S, and i( ) e: !• 
A3.3. There exists a number R such that for every player i e: ~, and for any 

(3. 2) 

b . · f · i· · {~I i-1 i+I N} com 1nat1on o stationary po 1c1es v , ••• ,o ,o , ••• ,o of the 

other players, there is a policy oi e: 6 for player i for which the 

mean first passage time m0 (s,t) from any states, to any state t under 

policy o = [o 1 ••• oN] is bounded by R; i.e. for each 
I - i-1 i+I N j 

{o , ••• ,o ,o , ••• ,o} with o e: 6 for all j f i, there exists a 
i o e: 6, such that 

The assumption A3.I is an adaptation of a condition introduced in TIJMS 

[24] as an extension of the Doeblin condition (cf. e.g. DOOB [6], p.197) to 

a collection of Markov Chains. We note that A3.J with v = I, is equivalent 

to the condition that there is a number p > O, such that for each four ele

ments (s 1,s2 ,~1,~2) with s 1 # s 2 and ~ 1,~2 e: C: 

00 

(3.3) 

For, fix s 1,s2 e: Sand 1:1,1:2 e: M(C), and observe that as a consequence of 

(3.3): 

00 

(3.4) p $ E [ I min{qs t(!!_l),qs t<!!.2)}] 
.!:1 •.!:2 t=I I 2 

00 00 

= I E min{qs t(!!_l),qs t~2)} s I min{qs t(.1:1),qs t(J:2)}, 
t=I .!: I '.!:2 I 2 t=I I 2 

where the interchange of expectation and swmnation is justified by the 

nonnegativity of min{q (a 1),q t(a2)}, and where the inequality part fol-
s1t - s2 -

lows from Jensen's inequality and the concaveness of min(.,.) on R2. Note 

finally that (3.4) coincides with the special case of (3.1) where v = I. In 

Markov Chain terminology, the condition (3.3) is known as the assumption that 

for each stationary and pure policy l(oo), the associated tpm P(~_) is scram

bling (cf. [I]) and has an ergodic coefficient of at least p. 
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n oo 
The following lennna shows that under A3.1 the sequence {P (i)}n=l con-

verges exponentially fast to a constant stochastic matrix for any i E ~. 

where in addition the convergence rate is uniformly bounded in cS E /J.. The 

proof proceeds along the same lines as the proof of Theorem 1 in ANTHONISSE 

& TIJMS [1] (cf. also pp.173-174 in DOOB [6]). For the sake of completeness, 

we include the proof in the appendix. 

LEMMA 3. 1 • Under A3. 1, we have for any cS E ~, and s, t E S: 

(3.5) for aZZ n ~ 1, 

where [x] is the largest integer less than or equal to x. 

A3.2 and A3.3 are innnediate adaptations of assumptions introduced in 

ROSS [15] and HORDIJK [9] (Th. 12.8) respectively. 

For each a (OSa<I), we choose a specific a-DEP cS E /J.. Next, we fix 
-0. 

* any states , and define: 

(3.8) vi(s) a . for alls ES, and i E w. 

Following the proofs of Lemma I in TIJMS [24J *), in ROSS [15], and Th. 

12.8 in HORDIJK [9], we obtain the following lemma: 

LEMMA 3.2. Under any one of the conditions A3, the family of functions 

{vi(.), Os a< I} is unifoY'171ly bounded. □ 
a 

We now prove the existence of an AEP, making use of a technique intro

duced by TAYLOR [23], and a.o. used in ROSS [15]: 

THEOREM 2. Suppose that AI-A3 hold. Then there exists a stationary AEP 

cS(oo) E ~, and f'or each i Ewa constant gi and a bounded function vi(.), 

such that 

(3. 9) 
1 i i -i 

g + v (s) = maxµEM(A){r (s;[i (s),µ]) + 

00 

+ I 
t=l 

-i i 
q ([cS (s),µJ)v (t)}, st - 'vs ES, 



where oi(s) attains the ma.ximum in the right-hand side of (3.9) for all 

s E S. Moreover., /(i(oo) ;s) = /, for aU s E S, i E 1/J. 

PROOF. We first observe using (2.5) that I (l-a)Vi(o( 00
) ·s*) I :::; M, for all a -o. • 

a E [0,1) and i E 1/J. This, together with Lenrrna 3.1 and the fact that any 

sequence of points in the compact metric space M(C) has a cluster point 

imply, using the diagonalization procedure, the existence of N constants 
i . i ( ) 1. J: ( oo) d { }oo g , N bounded functions v . , a po icy ~ E !:._, an a sequence ak k= 1 , 

withak E [O, 1) and li~-+oo ak = 1, such that: 

(a) lim. o = o; 
1<-+oo -o.k -i ( oo) * i 

(b) li~-+oo (!-ak)Vak(~k ;s) = g i E 1/J; 
(c) lim. vi (s) = vi(s), for alls ES. 

K-+<x> ak i * 
Now, fix i E 1/J, ands= s 0 ES, and subtract Vak(s) from both sides 

of (2.8) with a= ak, ands= s 0 , in order to obtain (cf. (3.8)): 

(3.10) 

13 

i where oa,k(s 0 ) attains the maximum in the right-hand side of (3.10). Letting 

k tend to infinity in (3.10) we obtain (3.9), with oi(s0) attaining the max

imum in the right-hand side of (3.9), as a consequence of (a), (b), (c), the 

assumptions Al-A2, and Proposition 18 on p.232 in ROYDEN [16]. 

Next, it follows from the proof of Theorem 6.17 in ROSS [15] that policy 
(oo) i (oo) i 

o is an A~P and that g (i ;s) = g for alls ES and i E 1/J. 0 

The proof of Theorem 2 also shows the following corollary: 

COROLLARY 3.3. If the assumptions Al-A3 are satisfied., then each Zimit policy 

obtained from a sequence of a-DEPs with discount factor tending to one., is 

an AEP. □ 

We conclude this section by considering the two person - zero sum case, 
I 2 

where N = 2 and r (s,~) = -r (s,~) for alls ES, and a EA. 

Unlike the general N-person stochastic game, we have in this case that 

the total expected a-discounted return (the expected average return per unit 
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time to player 1) is identical for any a-DEP (AEP), whatever the initial 

state of the system. 
1 Henceforth, dropping the superindices 1 and 2, let r(s;~) = r (s;~) and 

let g (s) denote the average gain (to player I) associated with an AEP, 
eq 

when the initial state of the system is s. 

For any bounded function w: S ➔ JR we define K (s;[µ,v]) = r(s;[µ,v]) + 
w 

+ 200 

1 q ([µ,v])w(t), for alls ES, µ,v E M(A), and the dummy gamer (w) t= st s 
as the one-step game, with M(A) as the action space for both players and 

with K (s;[µ,v]) as pay-off function. It then easily follows from (3.9), 
w 

using standard arguments, that the functional equation: 

(3. 11) s € s 

has a bounded solution <v*(.),g*> (val r (v) is the value of the gamer (v)). 
s s 

The following proposition shows that the correspondence between the 

solutions to the functional equation (3.11) and the AEPs is similar to the 

one in Markov Decision Theory: 

PROPOSITION 3.4. 

(a) 

(b) 

Under any of the asswrrptions A3, the functional equation (3.11) has a 

bounded solution <v(.),g>.Moreover, every solution <v*(.),g> to (3.11) 

has g = g = g (s), for alls ES, and any policy o = (o 1 ,o 2) such 
eq 2 eq -

that [o 1(s),o (s)J is an equilibrium pair of actions with respect to 

the dummy games r (v*), is an AEP. 
s 

Assume A3.I or A3.2 to hold, and let <v(.),g > be a particular solu
eq 

tion to (3.11). Then the set of all solution pairs Vis given by: 

V = { <v ( . ) +c, g > I c E lR} • 
eq 

PROOF. 

(a) The existence of a bounded solution <v(.),g> to (3.9) was shown above. 
* I 2 Next, fix a solution <v (.),g> and let i = (o ,o) be such that 

[o 1(s),o2(s)] is an equilibrium pair of actions with respect to the dummy 

* games r (v ). It then, once again, follows from the proof of Th. 6.17 in 
s ( ) ( ) 

ROSS [15] that o ·00 is an AEP, with g(i 00 ;s) = g = geq· 

(b) We first observe that under A3.I and A3.2, for every policy i E ~. the 

associated tpm P(o) has a single (positive) recurrent class of states. More-
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over, for any pair of policies!,.!!. EA we have R(!) n R(.!J.) ~ 0, since other

wise it would be possible to construct a policy s with two (positive) re

current classes (let e.g. s(s) = o(s) for s ER(!), and s(s) = n(s) other

wise). 

We now show that V ~ {<v(.)+c,geq> I c E JR}, the other inclusion being 

trivial. 

such 

dummy 

that 

Let <w(.),g > be a second solution pair 
eq 

that !(s),.!J.(S) are equilibrium pairs of 

games r (v) and r (w) resp., for alls 
s s 

to (3.11), and fix!,.!!. EA 

actions with respect to the 

ES. We then obtain from (3.11) 

v(s) + g 
I 2 I 2 

~ r(s;[o (s),n (s)J) + [P(o ,n )v] , 
s 

and 

w(s) + g 

Subtracting the second inequality from the first one, and iterating the re

sulting inequality k times, we get: 

(3. I 2) v(s) - w(s) 
k 1 2 

~ [P (o ,n )(v-w)] , 
s 

s ES and k = 1,2, .•• , 

and by taking the Cesaro limit ask+ 00 on both sides of the inequality 

(3.12), 

(3.13) SES. 

Similarly, we obtain 

(3.14) SES. 

We finally prove c 1 = c2 = c, which by the combination of (3.13) and 

(3.14) implies V ~ {<v(.)+c,geq> I c E JR}, and hence part (b) of the prop

osition. 
] 2 

Multiplying both sides of each inequality in (3.13) by n(o ,n) , sum
s 

ming overs ES, we find v(s) - w(s) = c 1 for alls E R(o 1 ,n2). Similarly, 
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2 I we obtain v(s) - w(s) = c2 for alls E R(o ,n ), which implies c 1 = c2 = c, 
I 2 2 I 

as a consequence of R(o ,n) n R(o ,n) I 0. 0 

REMARK. Although any policy i is an AEP if for alls ES [o 1(s),o 2(s)J is 

an equilibrium pair of actions with respect to the dummy gamer (v), 
s 

<v(.),g > being a solution pair to (3.11), we know from Markov Decision 
eq 

Theory that this condition is at all events not necessary when for some of 

the policiesi, P(i) has more than one subchain (cf. SCHWEITZER & FEDERGRUEN 

[19], p.6d, Th. 3.l(e) and Th. 4.l(b)). 

As a consequence, we observe that the conditions mentioned in Th. 4 

of SOBEL [21] need not be necessary for an AEP. 

4. STOCHASTIC GAMES WITH A FINITE STATE AND ACTION SPACE 

In this section, we finally consider the N-person stochastic games with 

finite state and action space, as studied in ROGERS [14] and SOBEL [21]. 

We first need the following supplementary notations: 
i 

Let A= {I, ... ,K} and let ask' for any policy i E ~. denote the probability 

with which the kth alternative (l~k~K) is chosen by player i when entering 

states ES. 

For any policy i E ~' we define the fundamental matrix Z(i) = [I-P(i)+ 

p*(i)J-l and for each i E ~ the bias-vector wi(i) by (cf. BLACKWELL [3]): 

i \ i i (oo) 
w (o) = l Z(o) [r (t;o(t))-g (o ;t)J. - s t - st - -

Observe that for each i E ~' gi(i(oo);s) = 

1 E ~' s ES, and that: (cf. [31) 

( 4. I) 
gi(.Q_(oo);s) 1 i 

= =--='-----'--....,;_ + w (o) + o (a;6) , for all 1 E ~. s ES, 
I-a - s - s 

where loi(a;o) I decreases monotonically to zero as at J. 
-s 

Denote by n(i) the number of subchains (closed, irreducible sets of 
rn 

states) for P(i) and let C Ci) indicate the rnth subchain (l~m~n(i)). Finally, 

let~ ~~denote the finite set of pure and stationary policies and define -p 
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(cf. SCHWEITZER & FEDERGRUEN [19]): 

(4. 2) R* = {s I s E R{o) for some policy o E 6 }, 
- - -p 

the set of states that are recurrent under some pure policy. 

Although the existence of an a-DEP is always guaranteed, it is known 

from a well-known counterexample by GILLETTE [7] that even in the two per

son - zero sum case an AEP does not need to exist when for some of the poli

cies i(oo) E ~' P(i) is multichained (i.e. n(i)~2). This seeming contrast with 

the·Markov Decision Processes (MDPs) with finite state and action space is 

explained by the fact that in stochastic games, as distinct from the former, 

an essential use is made of the set of all randomized actions, whereas in 

addition the above result perfectly corresponds with what is known to be 

the case in MDPs with a finite state space, but arbitrary compact action 

space (cf. BATHER [2]). Under the assumption that for each i(oo) E ~p' P(i) is 

unichained, the existence of an AEP was first proved in ROGERS [14] and 

SOBEL [211. Moreover, in SOBEL [21], as a still stronger property, the 

existence of a (g,w)- or bias-equilibrium policy i* E 6 was treated, which 

we believe should be defined as an AEP i*, for which: 

(4.3) 

where 

(the Definition 3 in [21] does not extend the (g,w)-optimality notion in 

Markov Decision Theory; moreover, with the definition in [21], a (g,w)-opti

mal policy does not even need to exist in the case N = I, i.e. in the case 

of an MDP). 

In SOBEL [21], the question of the existence of a (g,w)-equilibrium 

policy was treated using the Brouwer fixed-point theorem with respect to 

the point-to-point mapping~=~+~. with for all i E ~. s ES and k EA: 

i 
where <Psk(i) = 
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( 1) 
l. 

ask = 

(2) bi. = sk 

(3) 
= {o, if 

max{O,Lt 
i l. - w (o) - z (o) , otherwise, 
-s -s 

where zi(_~) 

Unfortunately, the mapping~ may be discontinuous in!, s1.nce the 

¢1 k(o) can be discontinuous in those o that satisfy, for all i e ~. s e S 
s -

the functional equation: 

(4.4) 
l. (oo) 

g (_§_ ; s) = 

or the functional equation (4.5) 

(4.5) 
l. i (oo) 

w (o) + g (_§_ ;s) = 
- s 

but for which, 1.n any sphere in~ containing_§_, policies.!:!. can be found that 

do not satisfy (4.4) (or (4.5) respectively). (As an example consider the 

MDP with S = {1,2,3}, A= {!,2,3}, q 11 (.) = q22 (.) = !; q 31 (1) = q31 (2) = 1; 

q32 (3) = I; r(I,.) = l; r(2,.) = O; r(3,I) = -M; r(3,2) = r(3,3) = O; where 

M >> 0. Leto denote the policy that chooses action l in state l and 2 with 
X 

probability onEi, and in state 3 with probability x, whereas in state 3 ac-
1 tion 3 is chosen with probability I - x. Observe that ¢32 (0) is discontinuous 

in o I . ) 
Although Utnder the assumption that for every policy _§_ e ~p' P(f) is um,

chained the proof in SOBEL [21 J can be rectified in order to show the exis

tence of an AEP (merely by redefining ¢!k(o) = b!k' since in this case only 

criterion (2) is needed), we give a different proof, which shows the exis-
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tence of an AEP within a wider class of stochastic games, including certain 

cases with rrruZtiahained policies. 

In addition, our approach has the advantage of showing that AEPs can 

be obtained as limit policies from a sequence of ~-DEPs with discount factor 

tending to one (cf. Corollary 3.3). 

Observe that in both the counterexamples (to the existence of an AEP) 

by BATHER [2], example 2.3 and GILLETTE [7], the matrix p*(i) is discontinu

ous in OE /:J.. 

In fact, Theorem 3 below shows that the existence of an AEP is guaran

teed, as soon as p*(i) is continuous in i E ~, and that this property is 

met under condition B.l below, which is an assumption upon the chain struc

ture of the policies belonging to~. 
-p 

Let i 1, ••• ,it be an enumeration of~' and consider the following equiv-

alence relation on (cf. SCHWEITZER & FEDERGRUEN [19], proof of Th. 3.2): 

:S r :S L; :S m :S 
r n<.2_ )}. 

Let 
and c(i) 

c Q:! C' if there exists {C(l) = C, c< 2) , ••. ,c<n) = C'} with C(i) EC, 
(i+I) 

n C # 0, for i = l, ... ,n-1. 
(I) (n*) Let C , ••• ,C be the corresponding equivalence classes on C, and 

let R*(I) , ••• ,R*n* be the corresponding partition of R* (cf. (4.2)): 

The following lemma shows that under assumption B.I, all policies in~ 

have the same number of subchains, i.e. n(A) is constant on~= 

*(t) 
B.1. Every (pure) policy i E ~ has exactly one subchain within each R , 

--p 
* t = 1, ••• ,n • 

LEMMA 4.1. If B.I holds, then aZZ the policies in~ have the same number of 

subahains. 

PROOF. Fix o0 E ~- We prove that P(oO) has exactly one subchain within each 

R*(t) (t=J,~ •. ,~*) by showing subs:quently: 
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(I) R(oO) ~ R*; (2) any subchain of P(oO) is contained within one of the 

sets R-;O,\ (3) in every one of the set~ R*U) there is exactly one subchain 
0 

of P(i ) . 

(I) and (2) follow immediately from parts (a) and (c) of Th. 3.2 in [19], 

so that (3) remains to be shown. 

Fix 9., (I:St:Sn*) and assume first that R(iO) n R*(£) = Ql. It then follows 

from Lemma 2.2 in [19] that there exists a pure policy n E ~ , with R(n) ~ 
- -p -

R(io), such that R(..:J..) n R*(£) = Ql, contradicting B.J. Finally, observe that 

for any pair o1,o 2 E ~p• the subchains of ii and i 2 that are contained 

within R*(9.,) must intersect, since it would otherwise be possible to con

struct a i 3 E ~p with two subchains within R*(9.,), contradicting B.l, and 

verify that this property implies that P(i) cannot have two or more sub-
. . • *(9.,) chains within R . 

REMARK. Assume that every policy in~ is unichained (cf. SOBEL [21], ROGERS 
-p 

[ 14]) and observe that this assumption implies for any pair Ci1 ,i2) E ~p 

that their subchains must intersect, so that all the subchains in C belong 

to the same equivalence class, i.e. n* = !. 

It hence follows that the assumption in SOBEL [21] and ROGERS [14] is 

* identical with the special case of B.l where n = I. 

We next introduce assumption B.2: 

B.2. For every i E l/J for every pair of states s,t E s, and for every combin-

ation { oJ E ~ I j f- i} of the other players, there is . 01 a policy E ~ 

for player i and an integer 9., 
9., 

such that P(i)st > O, 

which is the relaxation of assumption A3,3 to the finite space model, and 

which can be seen as an extension of the communicatingness-property (cf. 

BATHER[2], HORDIJK [9]). Alternatively, one might say that B.2 expresses 

that for every i E l/J, and whatever stationary policy the other players 

choose, each state is accessible from every other state for player i. Final

ly, Theorem 3 proves, under B.I as well as under B.2, the existence of an 

AEP. 

THEOREM 3. There exists a stationary AEP., if either Bl or B2 holds. 
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PROOF. Assume first thatB.lholds. Fix i E ijl, s ES. It follows fromLennna 

4.1 that n(i) is constant on A, and hence from Th. 5 in SCHWEITZER [18] that 

p*(i) is continuous in o E 6, which in its turn invokes, by their very def-
-i (oo) i 

inition, the continuity of g (o ;s) and w (o) in o E 6. 
- -s 

We first fix an a-DEP o E 6, for each a E [0,1). 
--a. -

Inserting (4.1) into both sides of (1.8) and multiplying both sides of 

the resulting inequality by (I-a) we obtain for all .!J. E 6 

(4.6) 

i -i (00 ) i -i i -i 
~ g ([oN ,nJ ;s) + (1-a)w ([o ,nJ) + (1-a)o (a;[o ,nJ) . 

"" a s a s 

It next follows from the fact that A is a compact metric space that 
00 

one can find a policy i*(oo) EA, and a sequence {ak}k=l' with ak E [ 0, I) 

and li~+oo ak = I ' such that li~ o = o*. We further show: 
+co --a.k -

(4. 7) 
1 

lim (1-ak)o (ak;o ) 
k+ao --a.ks 

i -i 
= O = lim (1-ak)o (ak;[o ,nJ) . 

k+oo ak s 

Merely proving the first equality in (4.7) (the proof of the second 

one being analogous), we observe that for each a E [0,1), o1 (a,o)s is con

tinuous in i EA, as a result of Lemma (2.2), relation (4.1) and the contin

uity of gi(o(oo);s) and wi(o) in o E 6. 
·- - s 

(4.7) then follows from the fact that for any .!J. EA, !(I-a)oi(a;n) I 
s 

decreases monotonically to zero, as a ➔ I, using e.g. Dini's Theorem (cf. 

ROYDEN [16], p.162). 

Finally, let k tend to infinity in both sides of (4.6) with a= ak, 

and use (4.7) as well as the continuity of gi(i(oo);s) and w1 (o) in o EA, 
- s 

in order to obtain: 

(4.8) gi(_~*(oo),•s) >_ i([ *-i J(oo) ) u g o ,n ;s , for all i E ijl, s ES and n E 6. 

Consider next the "decision problem" that arises when all players but 

player i tie themselves down to their respective policies in i*, and ob

serve from (4.8) that in this decision problem, o*i is a maximal gain 
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policy to player i within!::.. It then follows from the proof of Theorem 2 

in DERMAN [5] that o*i is also optimal within IT (cf. appendix), and hence 

using the argument(s) in the proof of Lemma 2.3, even within IT. This proves 

the theorem under B.I, whereas the existence of an AEP under B.2 follows 

innnediately from Theorem 2, B.2 being the relaxation of A3.3 to the finite 

space model. D 

We finally turn to the question under which condition(s) a pure instead 

of a randomized AEP exists, for every choice of the one-step expected rewards 

rl. ( s; ~) . 

So far the only stochastic games known to have this property are the 

so-called two person-zero sum games with perfect information, in which in 

each state of the system, one of the two players has not more than one al

ternative. 

The existence of a pure AEP for this class of stochastic games was 

first treated by GILLETTE [7]. Unfortunately an incorrect extension of 

the Hardy-Littlewood Theorem was used, as has been pointed out by LIGGETT 

& LIPPMAN [11]. 

The existence of a pure AEP, and, as an even stronger result, the 

existence of a pure bias-equilibrium policy, may, however, be derived from 

the fact that a pure stationary a-DEP exists for each a E [0,1), where the 

latter has already been proved by SHAPLEY [20]. 
. * *I *2 Since !::. is a finite set, we can therefore find a policy _o = ( o , o ) E -p 

!::. and a sequence {a }00
_ 1, with a t l, such that o* is an a -DEP for 

-p n n- I n 2 - nl 2 
n = 1,2, .... Let r(s;a) = r (s;a) = -r (s;a) and V (n;s) = V (n;s) = -V (n·s) 

- - - a - a a-' ' 
and observe that V (n;s) = I [I-aP(n)J- 1r(t;n(t)) is a rational function in a 

a - t - st -
for all n E !::. ands ES . 

• - ----p I *2 * 
Since V ([n ,o J;s) - V (o ;s) and 

a a - I 2 
*I 2 * V ([o ,n J;s) - V (o ;s) are also 

a a -
rational functions in a, for all n ,n E ~ands ES, and hence are either 

~ l 2 identically zero or have a finite number of zeros, there exists an a(n ,n ,s) 
~ I 2 such that, for all a> a(n ,n ,s): 

(4.9) I *2 
V ([n ,o J;s) :,; 

a 
* V (o ;s) 

a 
* 1 2 :,; v ([o ,n J;s). 

a 

Since Sand!::. are finite, we thus obtain an a* such that o* is an a-DEP 
-p 
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for all a> a*. It then follows by comparing (4.1) for o* and [n 1 ,o*2J, as 
* [ *] 2] * • . . . . - . 1 well as i and o ,n , that i 1s a b1as-equ1l1br1um policy as we 1. 

REMARK. The proof in LIGGETT & LIPPMAN [II] for the existence of a pure AEP 

is more complicated than the one above; moreover, it requires an additional 

argument. More specifically, instead of Th. 5 in BLACKWELL [3] we need the 

stronger result that in each Markov Decision Model there exists a discount 

factor a* such that any policy that is a-optimal for some a> a* is a-opti-

* mal for all a> a , which is innnediate from the proof of Th. 5. Relation (5) 

in [11] should be adapted in this sense. 

One might wonder whether the existence of a pure AEP is also guaranteed 

in the case of two-person, nonzePo-sum, or even more generally in the case 

of N-person games with perfect information. The following two-person game 

is, however, a counterexample: 

Let S = {1,2} and assume player 2 has one alternative in state I and player 

I has one alternative in state 2. Let 

2 I 
r (1;(1,1)) = r (2;(1,1)) = 

and 

2 r (1;(2,1)) 

the other rewards being zero, and let 

and 

We finally observe that the question of whether, and under which con

ditions, a (g,w)-equilibrium pair of policies exists still remains to be 

solved. 
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APPENDIX 

PROOF OF LEMMA 2.3. Fix i E ~, and consider the Markov Decision Problem (MDP) 

with the ith player as decision-maker that results from our stochastic game, 

when each of the other players tie themselves down to a specific policy 

TIJ E IT. Define IT as the class of all policies in this MDP, i.e. the class 

of all rules that prescribe for each time t which randomized actionµ E M(A) 

to choose as a Borel-measurable function of the state st and the history 

Ht= (s0 ,a0 , ..• ,st-l'at-l) of the system up tot. Observe that IT is a strict 

subset of IT, as a consequence of Ht, the history of the system in the sto

chastic game, embodying the realizations of the random variables (since 

randomized actions) {nJ(s) I j Ii, 0 $, < t} next to the actions 
T 

{a I O $ T < t} of the ith player. 
T 

Note that 

(a) P(stEBJst-I=s,at-I=a,Ht) = P(stEBlst-l=s,at-l=a) for all BE BS 

(b) P(stEB!st-l=s,at-l=a,Ht) = P(stEB!st-l=s,at-l=a) for all BE BS' 

where the tilde~ indicates the transition probability in the above-described 

MDP. 

Now, if i(oo) is an a-DEP, then oi(oo) is an optimal strategy in the 

above-mentioned MDP, within the class IT, and, a fortiori, within IT (cf. 

(1.9)). It then follows from Th. 6 part (f) of BLACKWELL [4] that Vi(o( 00);s) 
a-

satisfies (2.8) for all 1 E w, s ES. Conversely, since the transition prob-

ability distribution in the above-described MDP is independent of the "ex

tended" history Ht, just as it is independent of Ht (cf. (a) and (b)), 

it follows from a straightforward extension of the same theorem in [4] that 

oi(oo) is an optimal strategy in the MDP, not only within IT but also within 

the class IT. 
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(3.6) 
n+l n 

Mt :s; M t' for all n 
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Now, fix s,u and n > v. For any number 
+ 

a, 1 et a+ = max ( a , 0) , and a - = -min (a, 0) . 

Then using the facts that (a-b) = a -
+ -

min(a,b) and lk ak = Ik ~ when 

l 8Ic = O, wei get, for any t E S: 

00 

I 
k=l 

00 

00 

'\ v ) v() }] {Mnt-v-mnt-v} s:: (1-o. )(Mnt-v-mnt-\J). = [I - l min{P (i sk'p i uk 
k=l 

Since sand w were arbitrarily chosen, it now follows that for all t ES: 

Iterating this inequality and using the fact that M~ - m~ :c: 1 for all t ES 

and k = 1,2, .•. we obtain: 

(3. 7) 

Together, (3. 6) and (3. 7) prove that for any t E s there 1-S a finite number 

ut J °" r n, 00 

1T ::, 0 such that 4 " t' 
and tmt;n=l t 1T It then follows from 

t t n=l t 
mil :;; p ( 6) n < Mn that lim P(6)n exists and hence, 1T = lim P(6)n 

t - st t n-~o:; - st t n-+ro - st 
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* . h . h n pn ( ~ ) P (o) = n(o) • Finally, this equality, toget er wit mt~ TT , u - st - t t - st 
and (3.7) imply (3.5). 
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