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On the Stability of Products of Stochastic Matrices

by

Jac. M. Anthonisse & H.C. Tijms

ABSTRACT.

This paper considers a finite set of stochastic matrices of finite
order. Conditions will be given under which any product of matrices from
this set converges to a constant stochastic matrix. Also, it will be shown

that the convergence is exponentially fast.
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This paper is not for review; it is meant for publication elsewhere.



1. INTRODUCTION

This paper deals with a finite set P of N x N stochastic matrices,

i.e., for each P = (pij) e P, pij 2 0 and Zg =1 for all i,j = 1,...,N.

1P

J=1"13
Non-homogeneous Markov chains were studied amongst others in [3], [4] and
(7], see also [5] and [6].

Consider the following condition introduced in WOLFOWITZ [7].

Cl. For each integer k = 1 and any Pi € P(1<i<k) the stochastic matrix

Pk"'Pl is aperiodic and has a single ergodic class.

This conditon is equivalent to each of the following two conditions.

C2. There is an integer v = | such that for each k 2 v and any Pi e P(1<i<k)

..P. have a

the matrix P, ...P  is scrambling, i.e. any two rows of Pk' 1

k 1
positive entry in a same column (cf.[3]).
C3. There is an integer u 2 1 such that for each k = u and any Pi e P(1<i<k)

the matrix Pk...Pl has a column with only positive entries.

We remark that in C2(C3) it suffices to require the condition imposed
on the matrix products only for those of length v(u). The equivalencies
Cl & C2 @ C3 can be seen as follows. Using the fact that a stochastic matrix
Q such that Qn is scrambling for some n 2 1 is aperiodic and has a single
ergodic class, we have C3 = C2 = Cl. WOLFOWITZ [7] proved that Cl = C2,
However, an examination of the proof of Lemma 3 in [7] shows that this lemma

remains true when we replace its conclusion that P, is scrambling by the

] 1
conclusion that P] has a column with only positive entries. Using this,
the proof of Lemma 4 in [7] next shows that Cl = C3.

The purpose of this paper is to show that under Cl for any sequence

{Pi, i 2 1} of matrices from P the matrix product P ...P| converges to a

1
constant stochastic matrix as n -+ «, Also, it will be shown that the con-
vergence is exponentially fast. Further, we shall give conditions imposed
on the individual matrices from P such that Cl holds. This paper may have

applications amongst others in Markov decision theory (cf. BROWN [1]).

2. CONVERGENCE OF THE MATRIX PRODUCTS

The following theorem zeneralizes the Theorem in WOLFOWITZ [7] and is
related to Theorem 2 in PAZ & REICHAW [4]. Theorem 1 below shows not only



that under Cl for any sequence {Pi} of matrices from P the product matrix
Pn...Pl converges to a constant stochastic matrix as n»w but its proof
which was sueeested bv the one eiven on po. 173-174 in DOOB 27 shows
also that the convergence is exponentially fast where the convergence

rate is uniformly bounded in all sequences {Pi}.

THEOREM 1. Suppose that Cl1 holds. Then there is an integer v 2 1, a number
o with 0 < o < 1 and for any sequence {Pi’ i 2 1} of matrices from P there
18 a probability distribution {wj, 1 £ j < N} such that, for all

1,7 = 1,...,N,

(1) TIPN DI A o[/V

i ; for all n 21,

where [x] is the largest integer less than or equal to X.

PROOF. We first introduce some notation. For any N x N stochastic matrix Q,

let
N

vy(Q) = min Z min(qi 2 9. L)
.. Wb 32,3
11,12 j=1 1 2

and, for j = 1,...,N, let

M. ( = max q.. and m. = min q..
: Q) 2 945 J(Q) : 9 5

Observe that y(Q) > 0 if and only if Q is scrambling. By Lemma 4 in

WOLFOWITZ [7], we can choose an integer v = 1 such that the matrix P ...P,

is scrambling for any Pi € P(1<igv). Then, by the finiteness of P,
y = min{Y(Pv"'Pl)IPi e P(1gisv)} > 0.

Now choose any sequence {Pi, i > 1} of matrices from P. For any n 2 m 2 1,

put for abbreviation Pn,m = Pn...Pm. From (Pn+1,l)ij = z.k(PnH)ik (Pn,l)kj
it follows that for all j = 1,...,N,

< T >
(2) Mj(Pn+1,1) < Mj(Pn,l) and mj(Pn+1,1) > mj(Pn,l) for all n = 1.

Now, fix i,h and n > v. For any number a, let a = max(a,0) and

- . + - + - .
a = -min(a,0), so, a=a -a and a , a 2 0. Using the fact that



+ N N
aj = Z] aj when Zlaj = 0, we get for any

(a—-b)+ = a - min(a,b) and that Z?

= 1,...,N,

N
- (B, Py = L L

® 10145 L nnv+ik T Poonve O ned Pooy, kg T
N +
B kgl{c%,n—v+1)ik - (Pn,n—v+l)hk} (Pn-v,l)kj *
N —
- kzl {(Pn,n—v+l)ik - (Pn,n—v+l)hk} (Pn-v,l)kj =
N +
= kzl {(Pn,n—v+1)ik - (Pn,n—v+])hk} {Mj(Pn—v,l) - mj(Pn—v,l)} B
N
= — 1 - <
{1 kzl mln[(Pn’n_v+1)ik, (Pn,n—v+l)hk]} {Mj(Pn_v’l) . mj(Pn_v,l)} <
< (1- M. (P - .
(1-v) { J( n—v,l) mj(Pn—\),])}
Since i and h were arbitrarily chosen, it follows that for all j = 1,...,N
Mj(Pn,l) - mj(Pn,l) < (1-y) {Mj(Pn-v,l) - mj(Pn-v,l)} for all n > v

A repeated application of this inequality and the fact that Mj(Q) - mj(Q) <1
for any stochastic matrix Q show that, for all j =1,...,N,

[n/v]

(3) Mj(Pn,l) - mj(Pn ]) < (1-y) for all n = 1.

Together (2) and (3) prove that for any j = l,...,N there is a finite number
e

is monotone increasing to nj as n - «, Next this result, inequality (3) and

m., 2 0 such that M. (P ) is monotone decreasing to m. as n - « and m. (P
] jom,l ] j n

the definitions of Mj and mj imply (1) with o = 1 - y. Clearly, an =1

since Pn"'P] is a stochastic matrix for all n. g

By Theorem 4.7 on p. 90 in PAZ [5] the integer v in condition C2 can

always be taken less than or equal to v o= (1/2) (BN-2N+1+1). Hence, by
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Cl & C2, it is decidable whether Cl holds by checking all matrix products

of at most length v¥. This may be practically impossible when N is large.

We shall now discuss conditions imposed on the individual matrices from P
such that Cl holds. Before doing this, we first remark that it was pointed
out on p. 235 in HAJNAL [3] that Cl does not generally hold when each P ¢ P
is aperiodic and has a single ergodic class. Clearly, Cl holds when each

P € P is scrambling since in that case any product of P's is scrambling.

The next theorem gives sufficient condition for a strong version of C3 under

the assumption that the set P has the following "closedness" property.

c. If PI’P € P then, for any 1 < i < N, the matrix obtained from P1 by

2

replacing the ith row of P, by the ith row of P, belongs to P.

1 2

THEOREM 2. Suppose that the set P has property C. Further, assume that each
P € P has a single ergodic class and that there is an integer s with

1 < s < N such that, for each P € P, P >0 and s 18 an ergodic state of
P. Then there is an integer uw with 1 <y < N - 1 such that for all k 2 u

and any P, € P(1<i<k) the sth column of the matrix P, ...P. has only positive

k’ 1
entries.

PROOF. Let S(0) = {s}. Define the sets R(k-1) and S(k) for k > 1 by

R(k-1) = kﬁé S(j) and S(k) = {ili ¢ R(k-1), p.. >0 for all P e P}.

= jeR(k-1) I

From this definition it follows that there is a first integer u with

1 <y <N-1 such that R(u) = {1,...,N} when we can prove that S(k) # ¢
when R(k-1) # {1,...,N}. To do this , assume to the contrary that there is
an integer k = 1 such that S(k) = ¢ and R(k-1) # {1,...,N}. Then, for each
i ¢ R(k-1), we can find a matrix P(i) € P such that pi%) = 0 for all

j € R(k-1). Now, by property C, there is a matrix P* eJP whose ith row is
equal to the ith row of P(i) for all. i ¢ R(k-1). Then, p:. = 0 for all

i ¢ R(k-1) and j € R(k-1). However, this is a contradictign since s € R(k-1)
and it is assumed that P* has a single ergodic class and that s is ergodic

* . . .
under P . This proves the existence of the above integer u. Now, choose

k =2y, Pi e P(1<i<k) and j # s. By the construction of the sets S(h), we



have (Pk"'Pk—m+l)js > 0 for some m with 1 < m < p. Now since Pos ” 0 for

all P, we get (Pk"'Pl)is > 0 for all i which proves the desired result.
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