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Sensitive time and discount optimality in Markov renewal decision problems 

with instantaneous actions. 

by 

P.J. Weeda 

ABSTRACT 

Finite state Markov renewal decision problems are considered in which 

some of the feasible actions ar~ instantaneous. Because these actions take 

a zero time they are not distinctive with respect to sensitive discount 

criteria. On the other hand the fact that they take a zero time is usually 

a simplification of reality because in practice actions take some time in 

most cases. Here a method is developed to obtain policies which are optimal 

with respect to sensitive discount criteria as well as optimal for suffi­

ciently small non-negative action times. To this end instantaneous actions 

are replaced by actions taking time E ~ 0 and specifying a direct income 

which is a function of E, analytic at E = O. A partial Laurent expansion in 

two variables s(discount rate) and Eis derived for a fixed policy. Based 

on this expansion it is shown that policies which are optimal with respect 

to the above criteria can be computed by solving a sequence of Markov re­

newal decision problems with policy iteration or linear progrannning. 

KEY WORDS & PHRASES: Markov renewai deaision probZems, instantaneous aations, 

sensitive time and disaount optimaZity, Laurent 
expansion. 





1. INTRODUCTION 

Sensitive discount criteria were introduced originally by VEINOTT and 

MILLER [15] and VEINOTT [14] in discrete and continuous time Markov deci­

sion problems. Extensions of these results are given by SLADKY [13] to the 

set of history remembering policies, by ROTHBLUM [12] to non-negative ma­

trices with spectral radius not exceeding one and by HORDYK and SLADKY [7] 

to a countable state space. The extensions of [14] and [15] to the finite 

Markov renewal case have been given by DENARDO [4] who also observed that 

an n-discount optimal policy can be computed (under certain conditions 

about the existence of the moments) by solving each of a sequence of n + 2 

Markov renewal decision problems by means of policy iteration. 

This report devotes a special attention to finite state Markov renewal 

decision problems in which some of the feasible actions in certain states 

are instantaneous. Because these actions take a zero time they are not dis­

tinctive if sensitive discount criteria are used. On the other hand the 

fact that they take a zero time is usually a simplification of reality be­

cause in practice actions always take some time. It is therefore of inter­

est to find a policy in these problems which not only satisfies sensitive 

discount optimal criteria but is at the same time optimal for sufficiently 

small non-negative action times in those states in which instantaneous 

actions are applied by this policy. Actually the model treated here assumes 

moreover that each action with a small action time e specifies a direct in­

come or cost which is a function of e, analytic at the origin e = 0. Rough­

ly speaking one seeks then an optimal policy which allows "hesitation". 

For illustration we present a two-state numerical example with two 

policies. Let P denote the matrix of transition probabilities, h the vector 

of direct income (in this example not a function of e) and t the vector of 

intertransition times. The numerical data are 

policy p = h = 
t = tl 
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policy 2 P = h = t = 

For policy I a simple calculation yields 

p* [2/3 I /3] p*h [2/3J p* t [I /3] = = = 
2/3 1/3 2/3 1/3 

and the average income vector y 1 equals y 1 = [~]-
For policy 2 we have 

* 

[: :] p*h [!] p* t UJ p = = = 

and y2 = [~]. Thus both policies are gain-optimal. If we replace the t­

vectors by[~], £ non-negative and real, then 

= l/
2
e+I Y1 (£) 

2e+I 

--1£+2\ I and y2(e) 

e+I 

[22] and obviously y1(e) < y2(e) < for£> 0. 

Hence policy 2 has to be preferred if the instantaneous actions take a small 

positive time. Policy iteration starting with policy I however terminates 

with policy I. This report derives a general computational procedure which 

converges in the numerical example to policy 2, irrespective of the initial 

policy. 

2. MODEL FORMULATION AND PRELIMINARIES 

In a Markov renewal decision problem a system is observed at stochas­

tic epochs given by the sequence {t , n = 0,1,2, ••• } of non-negative random 
-n 
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variables satisfying O = !Q ~ !i ~ !_2 .••• At each epoch the system is in 

one of a finite set of states J. Let N be the number of states. In each 

state i E J there is a finite set K(i) of feasible actions available to the 

decision maker. Let {i, n = 0,1,2, ••• } be the sequence of states and let 
--n 

{k n = 0,1,2, ••• } be the sequence of actions chosen at the epochs 
-n' 
t, n = 0,1,2, •••• 
-n 

2.1. ASSUMPTION. The joint probability 

depends only on i, k, j and t. Moreover we assume that this probability 
-n -n 

is independent of n and define 

k def fort E [0, 00 ) and Q .. (t) = 0 fort< 0. 
l.J 

Let F d~fx. J K(i). Fis the set of functions f having J as domain 
l.E 

and assuming a value f(i) E K(i) for each i E J, Such a function will be 

called a policy. The following definitions are relevant for each policy 

f E F. 

2.2. DEFINITION. An N x N matrix Q is called a semi-Markov matrix if each 

entry Q .. (t), i, j E J, is a non-decreasing, right continuous, Borel mea-
1.J 

surable, real-valued function oft satisfying Q .. (t) = 0 fort< 0 and 
l.J 

Q .. (t) ~ I fort~ 0 such that 
l.J 

Q •• (t) 
l.J 

for t E JR 

satisfies S.(O) = 0 and S.( 00 ) = I. 
We assume t~at the probabi~ities Q:~i)(t) constitute a semi-Markov matrix 

l.J 
for all f E F. In the sequel we drop the dependence on fin the notation as 

long as we consider a fixed f E F. 

2.3. DEFINITION. The sequence of matrices Qn(t), n = 0,1,2, ••• is for 

t E [0, 00 ) defined by the recurrence relations 
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Q(O)(t) d~f I 

Q(n)(t) d~f f Q(dy)Q(n-l)(t-y) 
yE[O, t) 

2.4. DEFINITION. For each t E [O,co) the matrix R(t) is defined by 

if the series in the right hand member converges. The matrix R(t) is called 

the Markov-renewal matrix corresponding to Q(t). 

2.5. DEFINITION. An action k 
k . {Q. • (co) k l.J 

Q •. (t) = 
l.J 

0 

E K(i) is called instantaneous if 

for t ;;:: 0 

fort< 0 

Note that for each instantaneous action k E K(i): S~(t) = 1 fort E [0,co). 
l. 

In the Markov renewal decision model considered here we allow that for 

any policy in a subset of states instantaneous actions can be taken provided 

that one statement of the following theorem is valid. 

2.6. THEOREM. (c.f. CINLAR [2], p.132) The following statements are equiva­

lent 

(i) R(O) < co 

(ii) R(t) < co for each t E [O,co) 

(iii) Each simple ergodic set (=irreducible closed set of persistent 

states) E c J contains at least one state i EE for which S.(O) < 1. 
l. 

Under the conditions of definition 2.2 and one of the statements of 

theorem 2.6 the Laplace transforms of Q(t) and R(t) exist and are defined 

by 

I e-stQ(dt) for s ;;:: O 

tE[0, 00 ) 



and 

def 
r(s) I 

td0, 00 ) 

e - stR(dt) for s > 0 

By taking the Laplace transform of definiton 2.4 we have by theorem 2.6 

co 

(2. I) r(s) = I [q(s)Jn = [I - q(s)]-l. 
n=O 

By the elementary renewal theorem (c.f. Ross [9], p.95) we have 

(2.2) R(t) = O(t) as t -+ 00 

and using a standard Tanberian theorem (c.f. FELLER [6], p.421) gives 

(2.3) r(s) = 0(1/s). ass+ 0 

5 

The following theorem suDm1arizes a useful result concerning the series 

expansion of q(s) (c.f. FELLER [6] for the case of a distribution function). 

th def m 
2.7. THEOREM .. If Q has a finite m moment~ = /[O,oo)x Q(dx) then the 

following series expansion is valid in a neighborhood of s = 0 

m 
q(s) = I 

i=O 

(-1)1. I. 
Q. • I S 

I. I. • 

m + o(s) 

def Let P = Q(00). Note that P = Q0 in theorem 2.7.P is called the ma-

trix of transition probabilities of the embedded Markov chain of the Mar­

kov renewal process. Let p* be the (C, 1) limit of P. p* satisfies 

* * * * * * PP= PP =PP = P and P 1 = 1 (c.f. DOOB [5], p.175). P can have sev-

eral simple ergodic sets E, m = l, .•. ,n, say and a possibly empty set of 
m 

transient states T. The states of a simple ergodic set have identical row 
. * . * vectors in the matrix P . The elements of these row vectors satisfy P .. > 0 

l.J 
if i and j are in the same simple ergodic set and P~. = 0 otherwise. If 

* th1 J 
n(m) denotes the connnon row vector of P of them ergodic set E then a 

m 
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row of p* corresponding to a transient state i satisfies P~ = 
l. 

where t. is the probabiltiy of absorption in the set E. 

n 
I t. 1r(m) 
m= I 1.m 

~ * m 
The matrix [I - P + P] is invertible (c.f. KEMENY and SNELL [10]) and 

its inverse is: usually called the fundamental matrix and is denoted by Z. 
. def * In the sequel we will use the matrix H = Z - P rather than Z itself. 

2.8. LEMMA. (c.f.·DENARDO [4], p.482). Let vector a E lRn satisfy P*a = 0 

and let vector b E lR n be arbitrary then 
(i) A vector x E lR n satisfies [ I - P]x = a if and only if x = Ha + y for 

a vector y E lRn satisfying y = * p y. 
* * then x =Ha+ y with i (ii) If [I - P]x = a and P Q1x =Pb y. for E E m' l. 

m = 1, ••• ,n, being the quotient of scalar products 

<TT(m), [c - Q1Ha]> 

<TT(m), Q11> 

and, denoting the common value of the yi' 1. 

n 

I 
m=I 

(iii) r(s)a = o(l/s) 

t. y(m) im for i E T 

EE by y(m), 
m 

2.9. DEFINITION. Let L be a normed N-dimensional vector space with norm 

llull = max. 3u., u E L. Let M be the collection of all functions U: (- 00 , 00 ) ➔L 
J E J 

with the following properties 

(I) U(t) = 0 fort E (-00 ,0) 

(2) U. is Borell measurable for j E J 
J 

(3) IIU(t)II is bounded on finite intervals 

2.10. THEOREM. (~INLAR [2] p.137). The integral equation 

V(t) = G(t) + I Q(dy)V(t - y) 

yclO,t) 
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has a unique solution V(t) EM for any veator G(t) EM given by 

V(t) = I R(dy)G(t - y) 

yE[O,t) 

If we define the Laplace transforms of V(t) and G(t) by v(s) and g(s) 

and transform the integral equation of theorem 2.10 then we obtain using 

(2.1) 

(2.4) v(s) = r(s)g(s) = [I - q(s)J- 1g(s). 

2.11. DEFINITION. An action k E K(i), i E J is called an £-time action if 

for£~ 0 

.{Q~ • (oo) 
k l.J 

Q •• ( t) = 
l.J 

0 

k 
= P •• 

l.J 
fort~£ 

fort<£ 

and a function£ ➔ G~(£) is specified, representing the direct income 
l. 

earned at time£ and being analytic at the origin£= O. 

As a consequence of this definition G~(E) can be expanded into a Tay-1. 
lor series in a neighborhood of£= O, given by 

(2.5) I :~ G~(O) (j) 
j=O J. i 

where G~(O)(j) denotes the j th derivative of G~(E) at€= O. 
l. l. 

For a usual action the expected income earned in a time period of 

length min (t 1 - t ,t - t) is denoted by G~(t). It is assumed that 
k -n+ -n -n 1. k 

G.(t) £ M with N = 1 fort E [0, 00) (see definition 2.9) and that G.(t) is a 
l. l. 

directly Riemann integrable function oft (c.f. FELLER [6] p.348 for the 

concept of direct Riemann integrability). Let g~(s) denote the Laplace 
k k ( . ) th 1. k k 

transform of G.(t) and let G. J be the j moment of G.(t). If G.(t) has 
l. l. l. l. 

f . . th h h f 11 . . . f k( ) . 1·d 1.n1.te m moment tent e o owing series expansion o g. s 1.s va 1. 
l. 

(2.6) k g. (s) = 
l. 

m 

I 
j=O 

(-s)J Gk. (j) m . , + o(s ) 
J • l. 
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3. A PARTIAL LAURENT EXPANSION FOR v(s,E) 

In a Markov renewal decision problem, withs being the interest rate, 

v(s) represents also the expected discounted income vector for a fixed pol­

icy. If there are E-time actions involved we consider E as a second variable 

in v(s), q(s) and g(s) thus rewriting (2.4) as 

( 3. I) [I - q(s,E)] v(s,E) = g(s,E) 

In this section we derive a partial Laurent expansion of v(s,E) in the 

variables sand E for a fixed policy f E F. Let A be the subset of states 

in which E-time actions are applied by a fixed policy f. Again we drop the 

dependence of :E in the notation throughout this section. The !Al-dimension­

al subvector g(s,E)A depends only on s. If G~l) exists for all i EA then 

m 

I 
l=O 

where c£l) is the IA I-vector with elements ell). Let cfl)- d~f (-I)1c£1) /l! 

then g(s,E) becomes 

(3. I) 
m 

I 
l=O 

l rt)- m s G~ + o(s) 
A 

For g(s,E)A we have by definition 2.11 and in virtue of (2.6) 

g(s, E) A 

-SE 
= e 

where cij) abbreviates G(O)ij). Let cij)+ d~f cij) /j! and substituting the 

Taylor expansion of e-sE yields 



(3.2) 
00 .l 00 

\ (-se:) \ e:jG(j)+ 
g(s,e:)A = l .l' l 

.l=O • j=O A 

oo (-s).l oo jG(j-.l)+ 
= l .l! l e: A 

.l=O j=.l 

For the submatrix q(s,e:)AJ we have 

-se: Substituting the Taylor expansion of e yields 

00 .l 
\ (-se:) 

q(s,e:)AJ = l .l! 
l=O 

(3.3) 

9 

If the mth moment (0 ) .. exists for i EA, j E Janda fixed policy f E F, 
1Il J.J l 

then we have by theorem 2.7 defining (Q.l)~ d~f (-1) (Q.l)AJ/l! for 

l=o,1,2, ... 

(3.4) 

3. I. 

with 

have 

(3.5) 

m 
\ l - m q(s,e:)- = l s (Q 0 )7J + o(s) 

AJ l=O ,t.. a 

THEOREM. Consider a fixed poZiay f E F. Let A be the set of states 

e:-tune actions. Suppose that (Q0 +2)AJ and Gfn+l) are finite. Then we 

the foZZowing partial Laurent expansion for v(s,e:) 

v(s,e:) = 
n 

I 
00 

i I 
i=-1 j=O 

where V(i,j) is an N-veator for eaah fixed i E {-1,0,l, ••. ,n} and 

j E {0,1,2, .•• } whiah is the unique solution of the equations 
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N 
with a(i,j) e: :m. given for i ~ 0 and j ~ 0 by 

a(i,j) = 

and a(i,j) 

by 

for j = O 

for j :f: O 

N 
= 0 otherwise and with b(i,j) e: :m. given for i ~ -1 and j ~ 0 

b(i,j) = 

i+2 k f (-1/+1 
G_ii+l) for j = 0 

+ (i+l)! A 

I (-k? {Qk)AJV(i+ 1-k,j) 
k=2 0 for j :f: 0 

and b(i,j) = 0 otherwise. 

PROOF. Primarily we prove v(s,£? to be of the form 

n . . 
(3. 7) v(s,£) = }: s 1 }: £J V(i,j) + f (s,£) 

• 1 • 0 n 1.=- J= 

with the V(i,j) being the unique solution of (3.6) c.f. lennna 2.8(ii) and 

sub-sequently prove that f (s,£) = o(sn). If we substitute (3.1) ••• (3.4) 
n 

and (3.7) in (3.1) we obtain 

(3.8) a - q(s,£)]f (s,£) + 
n 

n 

I 
i=-1 

(X) 

i I 
j=O 



Noting that 

and 

n+2 l -I (se:) (Ql)AJ 
l=O n 00 

e:j n+l I i I V ( i , j ) + o( s ) s 

= 

n 

I 

n+2 i=-1 j=O 
l -I s ( Q,e_) AJ 

l=O 

n+l (-I)! k ~ lG(l-k)+ 
\"' Is le:A 
l k. o=k k=O .(,.. 

n+l k G(k)-
l s A 

k=O 

( n+l) + 0 S 

00 

Si l e:j V(i,j) = 
j=O 

i=-1 

n+l 
+ s 

00 n+2 
\"' e:j \"' (Q ): V(n+l-k,j) 
l l k AJ 

( n+l) + 0 S 

j=O k=l 

n+2 n 
k - \"' si r e:j V(i,j) = 

j=O 
l (e:s) (Qk) AJ l 

k=O i=-1 

n 00 

e:j I i I s 
i=-1 j=O 

00 

n+l I £J + s 
j=O 

i+l 
I (Qk)~J V(i-k,j-k) + 

k=O 

n+2 n+l 
I (Q )- V(n+l-k,j-k) + o(s ) • 

k AJ 
k=l 

BlBllOTHEEK MATHEMATISCI-/ CENTRUM 
--AMSTERDAM-

11 

= 



12 

(3.8) is equivalent to 

n i 
00 

(3.9) [I- q(s,E)] f (s,E) + I s I EJ V(i,j) + 
n i=-1 j=O 

n 00 

Ej 
i+I 

I i I I (Qk)~ V(i-k,j-k) s 
i=-:-1 j=O k=O 

+ 

n i 
00 i+l 

I s I EJ I (Q ): V(i-k,j) 
i=-1 j=O k=O k AJ 

00 n+2 
I EJ I (Qk)~J V(n+l-k,j-k) 

j=O k=I 
n+I ( n+ I) - s + 0 S = 

00 n+2 
I EJ I (Qk)XJ V(n+l-k,j) 

j=O k=I 

n (-1/ 00 

,tG(t-k)+ (-l)n+ I I l (l-n-1 )+ I k I k! s E A (n+I)! EGA 
k=O l=k l=n+I 

+ s n+I 

n k (k)- (n+ I)-I s G- ~ 
k=O A 

This equation holds for sufficiently smalls and E if and only if for 

i = -1,0,I, ••• ,n, j = 0,1, ••• 

i+I (-1)1. G(j-i)+ I (Qk)~ V(i-k,j-k) 
k=O i ! A 

(3.10) V(i,j) - = 
i+ I {t)- J = 0 

I 
(Qk)XJ V(i-k,j) k=O t: 0 J 



and 

(3. 11) [ I - q (s , e) J f ( s , E ) = o ( s n+ 1 ) + 
n 

<XI 
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<XI n+2 (-l)n+l l (l-n-1) Ej 
(n+ 1) ! I E GA + I I (Q~)AJV(n+l-k,j-k) 

l=n+l j=O k=l 

+ s n+l 

G~n+l)-+ 
<XI 

Ej 
n+2 

I I (Qk)XJ V(n+l-k,j) 
A j=O k=l 

both are satisfied. It is easily verified that (3.10) is equivalent to 

[I - P]V(i,j) = a(i,j). 

Premultiplying [I - P]V(i+l,j) = a(i+l,j) by p* yields P*a(i+l,j) = O. Fur­

ther by the definitions of a(i,j) and b(i,j) 

b(i,j) = a(i+l,j) + Q~V(i,j) 

which, premultiplied by p*, yields the second equation of (3.6). That (3.6) 

has a unique solution in V(i,j) follows from lennna 2.8(ii). 

Solving for f (s,E) in (~.11) yields 
n 

-I 
f ( s, E ) = [ I - q ( s~ E)] 

n 

<XI 

I 
j=O 

J• · n+l 
E a(n+ 1 ,j) s 

-1 n+l + rr - q(s,e:)] o(s ) 

-I * Because [I - q(s,e:)J = 0(1/s) for E :2:: 0 (c.f. (2.3)) and P a(n+l,j) = 0 

permits us to apply lemma 2.8(iii) we obtain 

f (s,e:) = o(l/s)sn+I + 0(1/s)o(sn+I) 
n 

n 
= o(s) [J 
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4. THE COMPUTATION OF n-DISCOUNT, m-TIME OPTIMAL POLICIES. 

We review first the case that€= 0 which is covered by DENARDO [4]. 

Using the terminology of BLACKWELL [I] a policy f* E Fis s-optimal if 

Vf*(s,O) ~ vf(s,O) for all f E F. A policy f* E Fis optimal if it is s-op­

timal for sufficiently small positives. It is shown in [4] that an optimal 

policy exists if for each f E F vf(s,O) either has an isolated singularity 

or is analytic at the origins= O. We define the following sequence of 

sets recursively 

( 4. I) 
jF(-2,0) d~f F 

lF(n,O) d~f {f* E F(n-1,0): Vf*(n,O) ~ Vf(n,O) for f e F(n-1,0)} 

'd d h h . ' d (Q ) and Gin+I), exist for all provi e tat t e require moments, n+Z AJ A 
f E F(n,O). We define the set F( 00 ,0) by 

(4.2) ) def [F(n,O) if F(n,O) contains one policy 
F(oo,O = 

lim F(n,O) otherwise n-+<x> 

It is shown in [4] that F(00 ,0) is exactly the set of policies optimal in 

the Blackwell sense if it either contains a single policy or several poli­

cies each of which has a Laurent expansion about the origin. Hence F(00 ,0) 

is non-empty and each f E F(00 ,0) is optimal. A direct consequence of defi­

nition (4.1) is that 

(4.3) F(n,O) .=. F(n-1,0) for n = -1,0,1, •••. 

Because F(oo,O) I 0 also F(n,O) ~ 0 for all n. 

A policy f E F(-1,0) is the familiar gain-optimal policy. We reserve 

the name Markov renewal program here for a Markov renewal decision problem 

in which only a gain-optimal policy is required. Such a policy can be com­

puted by means of policy iteration or linear progrannning (c.f. DENARDO [3]) 

and requires only the matrices P and Q~ and the vector b(-1,0) = G(O) for 

each policy. The Markov renewal program computing a policy f E F(-1,0) can 
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be summarized by the 5-tuple 

(4.4) 

In the sequel a vector u E 1RN will be called a gain veator if and only if 

it satisfies P*u = u and a value veator if and only if it is a solution of 

[I - P]u = a with a 1 O. 

4.1. LEMMA. For eaah f E F and m = 0,1, ••• the veator Vf(-1,m) is a gain 

veator 

PROOF. By theorem 3.1 Vf(-1,m) satisfies 

By lemma 2.8(i) with a= 0 we have Vf(-1,m) = p*(f) Vf(-1,m) implying the 

assertion. 

We define now the following sequence of sets recursively by 

(4.5) 

for f E F(-1,m-l)} 

4.2. THEOREM. A poliay f E F(-1,m) aan be aomputed form= 0,1,2, ••• by ap­

plying poliay iteration to the Markov renewal program 

(4.6) 

PROOF. By lennna 4.1 Vf(-1,m) is a gain-vector for each f E F(-1,m-1). Hence 

a policy f E F(-1,m) is a gain optimal with respect to (4.6). 

4.3. COROLLARY. A poliay f E F(-1,m) exists for each m E lN. 

PROOF. The set F(-1,0) is non empty under the conditions stated at the be­

ginning of this section. Because a gain-optimal policy in a Markov renewal 
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program (4.6) attains the N maxima simultaneously and bf(-1,m) exists for 

all f E F and m E lN we have the assertion. 

To complete the definition of F(n,m) we define for n = 0,1, ••• and 

m=0,1,2, ••• 

(4.6) lF(n,-1) d~f F(n-1,m) 

def * F(n,m) {f E F(n,m-1): Vf*(n,m);::: V/n,m) for f E F(n,m-1)} 

provided that the moments (Qn+2)AJ and <4n+l) are finite for f E F. Note 

that (4.6) redefines F(n,O). A policy f E F(n,m) is called an n-discoUYLt, 

m-time optimal policy. 

4.4. LEMMA. If (Qn+2)AJ and <4n+l)are finite for f E F and u is a value 

vector satisfying [I - P]u = a(n,m) then V(n,m) - u is a gain vector for 

n = -1,0,1, ••• , m = 0,1, •.• 

PROOF. By theorem 3.1 V(n,m) satisfies [I - P]V(n,m) = a(n,m). Subtracting 

the equation satisfied by u yields 

[I -P][V(n,m) - u] = 0 

which implies that V(n,m) - u is a gain vector by lennna 2.8(i). 

4.5. THEOREM. If (Qn+Z)AJ and <4n+l)are finite for each f E F(n,-1) then an 

n-discoUYLt, m-time optimal policy can be computed by applying policy itera­

tion to the Markov renewal program 

(4. 7) 

where xis a value vector satisfying [I - P(f)]x = af(n,m) for all 

f r F(n-1,m). 
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PROOF. Note first that because of the definitions (4.1), (4.5) and (4.6) we 

have 

F(n-1,m) .=. F(n-1, 00 ) d~f F(n,-1) .=. F(n,m-1) 

Hence the vector xis defined for and shared by all f E F(n,m-1). Let 

* V (n,m) = Vf(n,m) for f E F(n,m), n = -1,0,I, ••• and m = 0,1, ••• 

(V*(-1,m),x) is a solution, unique in v*(-1,m), of the system of equations 

for f E F(-1,m) 

{
[I 

[I 

We note that the same vector x satisfies the second equation for all 

f E F(-1,m) as a consequence of the termination conditions of policy iter­

ation applied to (4.6). For each f E F(-1,m) (Vf(O,m) - x, u) is a solution, 

unique in Vf(O,m) - x, of the system of equations 

fr 
l[I 

- P(f)][Vf(O,m) - x] = 0 

- P(f)]u = af(l,m) = * bf(O,m) - Q1(f)Vf(O,m) 

* - Q1(f)x - Q1 (f)[Vf(O,m) - x] 

Because the vector xis shared by each f E F(O,m-1) and Vf(O,m) - xis a 

gain vector, maximizing the gain vector in the Markov renewal program (4.7) 

yields a policy f E F(O,m). Because the argument repeats for n > 0 we have 

the assertion. 

From theorem 4.4 and 4.7 we conclude that an n-discount, m-time opti­

mal policy can be computed by applying policy iteration or linear programm­

ing to a sequence of (n+2)(m+I) Markov renewal programs. If m < 00 we may 

better define F(i,-1) d~f F(i-1,m) i = 0,1,2, ••• instead of using defini­

tion (4.6). If (i,j) represents the Markov renewal program applied to com­

pute a policy in F(i,j) and the computational order is denoted by an arrow, 

then the sch~me is as follows 
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(-1,0) ➔ (-1,1) ➔ ••• ➔ (-1,m) ➔ 

➔ (0,0) + (0,1) + ••• ➔ (O,m) ➔ 

➔ (n,O) ➔ (n,1) ➔ ••• ➔ (n,m) 

To illustrate the method developed in this section we apply it to the 

numerical example presented in section I. Suppose we start the iteration 

with policy I, computing a (-1)-di,scount, 0-time optimal policy. 

Policy evaluation (policy I) 

Solve: 

[I - P]V(-1,0) = a(-1,0) = 0 

* [I - P]x = a(O,O) = b(-1,0) - Q1V(-1,0) 

Here we have b(-1,0) =[~]and Q~ = [~ ~]. 
Hence 

To obtain a solution put x2 = 0 yielding x 1 = 2 and V(-1,0) 1 = V(-1,0) 2 = 2. 

Policy improvement 

* max {bf(-1,0) - Q1(f)V(-l,O) + P(f) x} = 
f E F 

=max{[~], [~] - [~ ~][~] + [~ ~][~]} 

= max {[ ~ l · m -m + [ ~ t = m 
* -- [22·] Hence F(-1,0) = {policy I, policy 2} and V (-1,0) 

Next we compute a policy f E F(-1,1). 



Policy evaluation (policy I) 

Solve: 

[I - P] V(-1,1) = a(-1,1) = 0 

* [I - P]x = a(O,I) = b(-1,1) - Q1 V(-1,1) 

We have b(-1,1) = r-~J and thus 

= 0 - V(-1,1) 1 

Putting x2 = 0 yields x1 = -4 and V(-1,1) 1 = V(-1,1) 2 = -4 

Policy improvement 

max {bf(-1,1) - Q;(f) V(-1,1) + P(f)x} = 

f e: F(-1,0) 

= max 

f € 

[~ g)[=!] + [~ ~][-~} 

{-~J.· [-~Jl = [-~J 
f e: F(-1,0) r = max 

Hence F(-1,1) = {policy 2} and also F(m,m) . * = {policy 2}. 
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