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The Functional Equations of Undiscounted Markov Renewal Programming

by

P.J. Schweitzer & A. Federgruen

ABSTRACT

This paper investigates the solutions to the functional equations that
arise a.o. in the Undiscounted Markov Renewal Programming. We show that the
solution set is a connected, though non-convex set whose members are unique
up to n* constants, characterize n* and show that these n* degrees of free-
dom are locally rather than globally independent.

Our results generalize those obtained in ROMANOVSKY [15] where another
approach is followed for a special class of discrete time Markov Decision
Processes.

Basically our methods involve the set of randomized policies. We first
study the sets of pure and randomized maximal-gain policies, as well as the

set of states that are recurrent under some maximal-gain policy.

KEY WORDS & PHRASES: Markov Renmewal Programs, average return optimality,

functional equations, fixed points

This paper is not for review; it is meant for publication elsewhere.






I. INTRODUCTION

This paper investigates the solutions (g,v) to the 2N functional equa-

tions:
N k
(1.1) g. = max 2 Pi.g., v=1,...,N
b kek(i) j=1 I
N N
(1.2) v, = max [q? - 2 H?.g. + z P?.V.], v=1,...,N,
keL(i) - j=1 3 5= B3
where
N k
L(i) = {k e K(i) | g; = .E Pijgj}'
j=1
. . . . k k _k . .
The K(i) are given finite sets and the qi’Pij’Hij are given arrays with
k .k L. N k _ k _ .k .
Pij,Hij > 0 for all i,j,k; zj=l Pij = | and 2j=1 Hyy = T; > 0, for all i,k.
Also we assume property P to be stated below.
For the special cases HF. = PF..TF. with T%. 2 0 and H%. = §,,, the
1] 1] 1] 1] 1] 1]

functional equations arise in Markov Decision Theory with @ = {1,...,N} as
state space, q? as the one-step expected reward, P?j the transition prob-
ability to state j and T? the expected holding time, when alternative k
is chosen in state i (cf. BELLMAN [1,2], BLACKWELL [3], HOWARD [9,101],
DE CANI [5], JEWELL [11], DENARDO & FOX [7], DENARDO [6], DERMAN [8],
SCHWEITZER [16,17,18]).

The solution to (1.1) and (1.2) is not unique, although g is uniquely

determined. The purpose of this paper is to characterize
N . o
V= {veE l v satisfies (1.2)}.

We show that V is a connected, though non-convex set whose members are
unique up to n" constants, characterize n*, and show that these n” degrees
of freedom are locally rather than globally independent.

Our results generalize those obtained in ROMANOVSKY [15] where another
approach is followed for a special class of discrete time Markov Decision
Processes (MDP's).

Basically our methods involve the set of randomized policies. We first
study the sets SPM and SRMG of pure and randomized maximal-gain policies,

G
and characterize the set R* of states that are recurrent under some maximal



gain policy. In section 2 we give the notations and some preliminaries. In
section 3 we characterize the sets SRMG and R™. The preperties of V are
studied in section 4, while in section 5 the n* degrees of freedom are
characterized. Finally, in section 6 some remarks are made with respect

to a triangular decomposition of the set V.

II. NOTATIONS AND PRELIMINARIES

A (stationary) randomized policy f is a tableau [fik] satisfying

> 0 and Zk Ry £ <
f1 denotes the probab111ty that the k alternative is chosen when en-

= 1 for all i € Q. In the Markov decision model

tering state i.

We let SR denote the set of all randomized policies and SP the subset

of all pure (non-randomized) policies, i.e. for f € SP each fik =0or 1.

For f ¢ SP’ we use the notation f = (Bl""’BN) where Bi € K(i) denotes
the single alternative used in state 1i.
Associated with each f € S are N-component 'reward" vector q(f) and

R
"holding time" vector T(f), and two matrices P(f) and H(f):

k k
q(f), = ¥ £..4q:; T(f), = ) £, T.
L pek(i) k72 1 keR(i) k1T
k k
P(f)..= ) f.P..; H(f),. = ) f£. .H...
1] keK (i) ik 1] ij keK(i) ik 1]

Note that P(f) is a stochastic matrix. For any f € S , define the stochas-
tic matrix I(f) as the Cesaro limit of the sequence {P (f)} and define

the fundamental matrix Z(f) as [I - P(f) + H(f)] . These matrlces always

exist and have the following properties (cf. [31,[12]):

(2.1) N(E) = P(E)N(E) = M(EYP(E) = M(E)% = M(E)Z(E) = Z(E)N(E)
(2.2) [I - P(£)IJZ(£f) = Z(£)[1I = P(£f)] = I - T(£)
(2.3) Z(£) = I + lim ) a"[P(E)" - N(f) 7.

atl n=0

Denote by n(f) the number of subchains (closed, irreducible sets of states)



for P(f). Then:

n(f)
(2.4) n(f)ij = )
e

P (EIT(E), 1 <ij <N
=1 1 J

where nm(f) is the unique equilibrium distribution of P(f) on the mth sub-

chain Cm(f), and ¢?(f) is the probability of absorbtion in Cm(f), starting

from state 1 (cf. [6] and [18]). Observe zi ﬂ?(f) = 1 and nm(f)P(f) = wm(f).
Let R(f) = {j | II(f)jj > 0}, i.e. R(f) is the set of recurrent states

for P(f). Note that ¢m(f) = P(f)¢m(f) for all m and that the vecotrs ¢m(f)

are linearly independent. Since any solution to P(f)x = x satisfies

N(f)x = x and the rank of [I -~ N(f)] is N = n(f), it easily follows that

the solution set of P(f)x = x is given by:

n(f) o
(2.5) x= ] ag¢ (f)
m=1
with al""’an(f) arbitrary scalars.

LEMMA 2.1. Fix f € Sgo and let the vector b satisfy N(£)b = 0. Then
[I -P(f)Ix = b, Zmplies x 2 Z(£)b + N(f)x, where in both inequalities the
equality sign holds for each component i e R(f).

PROOF. Multiplying [I -P(f)lx 2b by I(f) 2 0, yields 0 = I(£)[TI - P(f)Ix =
> NI(f)b = 0, implying that the former inequality is a strict equality for
components i € R(f). Using this and the fact that as a result of (2.3), for
j ¢ R(D), Z(f)ij > 0 for all i, with Z(f)ij = 0 when i ¢ R(f), we get the
desired result by multiplying [I - P(f)]x 2 b by Z(f) and invoking (2.2). [

LEMMA 2.2. Let f ¢ Sp> and let CT(£) be any subchain of P(f). Take any

ie C™£) and any k € K(i) with £ > 0. Then there exists a pure policy h
such that (a) b, =1 (b) for every (j,r) hjr = 1 only if fjr > 0,

(¢) 1 belongs tc a subchain C of P(h) which is contained within c™(£) and
(d) R(h) € R(f).

PROOF. Since CT(f) is closed for P(f), it is closed for any h meeting (b).

Now, let hik = 1. 1f C"(f) = {i}, condition (c) is satisfied. Otherwise,



let A initially be equal to {i}. Define A = C™(£)\A. Next the following
step is performed:

Choose a state j € A and an alternative r such that fjr > 0 and PEt >0
for some t € A, transfer j from A to A, and define h. = 1. Clearly, such a
j and r can be found, since all states in Cm(f) commi;icate under P(f). Re-
peat this step for the new A and A, until A is empty. This construction
shows that under policy h, state i can be reached from any state in
cP(E)\{i}. Together this and the fact that c™(f) is closed under P(h), im-
ply condition (c). Condition (d) trivially holds if Q = R(f). Otherwise,
let T initially be equal to R(f) and define T = @ - I'. Choose a state
ty € T and a path {tO’tl’

..,n — 1 and tn € T'. Such a path clearly exists, since t0 is transient

under P(f) and T 2 R(f). Transfer {tO""’tn-l} from T to I and define for

...,tn} such that P(f)t2t2+1 >0 for 2 =0,...

= . r
2 =0,...,0 = 1 htzr = 1 for some r with ftzr >0 andetztl_'_l > 0. Repeat
this step until T is empty. Finally, for j € R(f) - C (f), define hjr = 1]
for some r, with fjr > 0 and observe that condition (b) holds for all

j € Q. This completes the proof. [J

In the remainder of the paper, we assume that property P holds.

P: If f is any pure policy and c®(£f) is any subchain of P(f), then
i e C™(f) implies H(E);, = 0 for j ¢ c™(£).

This property is satisfied for both the Markov Renewal Programs (MRP's)

with HF. = PF. F. and the discrete time model with Hg. = §... Using the
ij ij ij ij ij

previous lemma, one easily verifies that if property P holds for all pure

policies, it holds for all randomized policies.

LEMMA 2.3. (Gain and Relative Value Vectons).

Fixz f € S The general solution to the equations
(2.6) (a) g=P(f)g, (b) v =q(f) - H(f)g + P(f)v

is given by
n(f) m m
(2.7 g; = 8(f); = | 9¢.(D)g (),
m=|



with

gh(£) = <n(£),q(f)>/<n(£),T(£)>
and
n(f) o
(2.8) v; = Z(D)la(f) - H(f)gl, + mzl a ¢, (£),

with a],...,an(f) arbitrary scalars.

PROOF. Note that multiplication of (2.6)(b) by N(f) leads to :

(2.9) m(£)Lq(f) - H(f)g] = O.

Using property P, it follows from the proof of lemma 1 of [6] that g(f) is
the unique solution to (2.6)(a) and (2.9). Hence, any solution (g,v) to
(2.6) has g = g(f). Using (2.2) one next verifies by mere insertion that
(g=g(£),v=2(£)[q(£)-H(£f)g(£)]) satisfy (2.6). Finally (2.8) follows from
(2.5), since (2.6)(b) is a linear system of equations with

Z(£)[q(f) - H(f)g(f)] as a particular solution. [J

The unique solution g(f) to (2.6) will be called the gain rate vector,
and gm(f) the gain rate of the subchain c®(£f). A solution v to (2.6) will
be called a relative-value vector and denoted by v(f).

In the remainder, we will refer to the following example:

EXAMPLE 1. N = 4, K(1) = K(2) = {1}; K(3) = {1,2}; ng = 5, for all i,j,k.

: . k k k k k
Pi1 | Pi2 | Pi3 | Pis | 94
1 1 0 1 0 0 0
2 1 1 0 0 0 0
3 1 I 0 0 0 q;so
3 2 0 0 1 0 0
4 1 4 A 2 0 0
4 2 8 ) 0 0 0




Using (3.1) and theorem 3.1. part (c) one verifies that

4

* * 1 %* *

* * * * *
V=1{v €E | v, = Vo3 Vg > a3 * V3V, = max[.8v] + .2v3, VIJ}

1

Observe that V is non-convex. Note furthermore, that for f « SRMG’ if £
makes unwise decisions in states in @ - R(f), then there do not necessarily
exist additive constants such that v(f) € V (cf. theorem 3 of [17] and our
theorem 4.1 part (b)). Take the above example with pure policy f# = (1,1,1,1)
with P(f) unichained, and v(f) = (0 O q; .Zq;) +a(l 1 11) ¢V for any
choice of the additive contant a.

In addition, we observe that the Policy Interation Algorithm (PIA)
(cf. [5], [7]1, [11]) is not guaranteed to converge, if unwise choices for
the additive constants in (2.8) are made. Consider the above example with
q; <o, £ = (1,1,2,1) and £2¥ = (1,1,2,2). Then v(£!) = Al1 1 0 .87 +
+ u[0 01 .2] and v(fz) =v[l1 10 1]+ p[0 01 0], for arbitrary A,u,v,p.
Choosing q; + A <u<Xtxand p > v, fl and f2 follow each other in the PIA.
Fortunately, PIA cycling can be prevented by preserving the old additive

constant in a subchain, whenever the subchain is preserved (see also [20]).

III. PROPERTIES OF MAXIMAL GAIN POLICIES

We first introduce some notations. Define the maximal gain rate

(3.1) gz = sup g(f)., i=1,...,N.
i
feSR

For any v € V, define

k _ k _ k =*
b(v)i = q Z Hijgj +

: g Pk.v. - vi,

1] ]
and

k
b(v,£), = )  b(v), = [q(f) - H(f)g + P(f)v - v],
i . i i
keK (1)
Since g(f) can be interpreted as the average reward of £ for a MRP with
transition probabilities P?j, one-step expected rewards qg, and holding

times TE, we know from DERMAN [8] that there exists a pure policy that

attains the N suprema in (3.2) simultaneously. Hence g; = max g(f)i.
feS
P



Accordingly define:

Spmg = 1 € Sp | g(£) =g}
and
S =1{fes, | g(f) =g
RMG 't € °p | BE) =8 ).
Finally, let:
wi = max Z(£f)[q(f) - H(f)g"1,.
L fes .
PMG

THEOREM 3.1. (Properties of Maximal-Gain Policies).
(a) £ € Sp of and only if g = P(E)g" and T(E)[q(£) - H(D)™] =
(b) The functional equations (1.1) and (1.2) always have the solution
g=g,v= w'. Hemce V is non—-empty. Also, there exists a policy
f € Sy, such that w = 2(£)[q(f) - H(f)g"].
(c) In any solution (g,v) of the functional equations (1.1) and (1.2)
g = g*, hence g and each L(i) i8 unique.
(d) If £ is any policy, and if C is any subchain of P(f) then g; = constant,
i e C.
(e) If v € V, then max, L(1)b(v)k = 0, for every i. Let f ¢ Sp-
(1) Suppose that k € L(1) for each (i,k) with f > 0 and that for
some v ¢ V, b(v) = 0 for each (i,k) with i € R(f) and fik > 0.
Then £ ¢ 8§

RMG*
(2) Comversely, if f € SRMG’ then for each i = 1,...,N fik > 0 Zmplies
k € L), and for i ¢ R(E), £, > O implies b(v)} = 0 for all

velV,

PROOF .

(a) From the proof of lemma 2.3 we know that g(f) is the unique solution to
the equations g = P(f)g and (2.9).

(b) Invoking the above mentioned interpretation of g*, we know from theorem
1 in DENARDO & FOX [7] that g; = max, zj pgjg;. Consider the discrete
time decision model with R(i) = L(i) = {k | g¥ = ). Pg.gf}, ?g. = ¥,

K _ S R 5 A A & I &
and @ - z
1J J

Note that 1n this model, each policy has g(f) < 0. Moreover, it



follows from part (a) that g(f) = 0 if and only if £ € S

RMG Hence the

discrete time model has §* = 0 and, with SPMG =
= {f € X§=l R(1) | g(f) = g* = 0}, we have:

max Z(£)[q(f) - H(f)g*Ji = max Zz(£){g(f) - g*}i.

feSPMG feSPMG

for 1 =1,...,N.

Use theorem 4 of [3] in order to prove the existence of a policy

f e SPMG for which w = Z(£)[q(f) - H(f)g*] as well as the fact that

w' satisfies (1.2).

(c) Fix a solution (g,v) to (1.1) and (1.2). Using property P, a minor
modification of the proof of lemma 4 of [7], shows that g > g(f) for
all £ € SP with equality for any fo, such that fzk = 1 for some k
maximizing (1.1) and (1.2). Hence g = g*,

(d) Since g* satisfies (1.1), we have P(f)g* < g* for all f ¢ SR' The as-
sertion then follows from lemma 2-a in [7].

(e) The first result follows from the very definition of b(v)

(1) From the def1n1t10n of b(v) i ve have e Z (f)lJvJ =
q(f) - 2 H(f) g for i € R(f) Multlplylng this equatlon with
H(f) i and summlng over i, we obtain N(£f)[q(f) - H(f)g ] = 0. Use
this, and g = P(f)g in order to apply part (d).

(2) If £ € S P(f)g* follows from part (d). Hence fik > 0 im-
plies k € L(i) and b(v) < 0. So b(v,f) < 0, for any v € V. Since
we know from part (d) that n(£)b(v,£) = 0 for f € SRMG’ 1t follows
that for j € R(f), b(v,f)j 0, i.e. fik > 0 implies b(v) 0

Define next

* . . o
(3.2) R" = {i | i ¢ R(f) for some policy f ¢ SRMG}'

The following theorem gives a characterization of this set, which

plays a basic part in the remainder of this paper.

THEOREM 3.2. (Characterization of R”).
(@) R" = {i | i e R(f) for some f ¢ Sonc) *
(b) The set {f e Sy | R(E) = R'} is not empty.



(c) Define n* = min{n(f) | £ e Sy with R(£) = R'} and Sy, =

RMG G
* * . * * .
= {f € Spe | R(£) =R and n(f) =n' }. Fiz £ « Sgmg+ Ay subchain
of any £ e Sy is contained within a subchain of P(£f).

(d) All £ ¢ S;MG have the same collection of subchains {R*“, a = 1,...,n*}.
(e) For any 1 < o < 1", gz = g*%(say) for all i e R*®.

(f) Let R(l),...,R(m) be disjoint sets of states such that

(1) 2f C Zs a subchain of some f ¢ SpMe? then C ¢ R(k) for some k,
1 £k £ my

(2) there exists a £ ¢ SpMe

Then m = n" and after renumbering R

(k) ]_m
*0 k=1" *
R fora=1,...,n .

with m subchains {R
(o) _

PROOF.

(a) Fix a state i, and a £ ¢ S such that i € R(f). Consider a policy h

RMG
satisfying the conditions (a), (b), (c) and (d) of lemma 2.2. Using
PMG® and i € R(h). Thus

the right-hand side of (a) is included in R* and the reversed inclusion

theorem 3.1. part (e), one verifies that h ¢ S

is immediate.

(b) Fix an enumeration fl,...,FM of S For any i ¢ R*, let

A, = {r]|ie R(£7)}. Consider tthgollowing equivalence relation on
C={c"¢") | 1 <r<M;1<ms< n(f)}:
Let C ~ C', if there exists {C(l)=C,C(2),...,C(n)=C‘} with
C(i) e C and C(i) n C(i+]) #Pfori=1,...,n - 1.
Let £ satisfy: (1) {k | f;k > 0} = UrEAi{k | £7, > 0} for i e R";
(2) {k I f;k >0} =L(1) for i e Q - R*. Using theorem 3.1 part (e)
one verifies that £ SRMG' .
Clearly, the equivalence classes are the subchains of P(f ) since
they are closed under P(£") and since the states belonging to a same
equivalence class communicate with each other. Hence, R* = R(£7).
(c) Assume P(f) has a subchain Cm(f) that intersects say R*l and R*z. Then
a policy £* with {k l f;; > 0} = {k | f;k > 0} and {k | f;; > 0} =
{k | £ 2
R, and its number of subchains is at most n - 1, since the states

of R*]

> 0} u {k | f;k > 0} otherwise, is maximal gain, has R(E™™) =

and R*2 communicate with each other under P(f**). This contra-

. . . . *
dicts the minimality of n .
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(@) For all £, ¢ s%,., part (c) implies each c®(£%) € some c(£™),
and each cB(£**) € co(£%).
(e) Combine part (d) with part (c) of theorem 3.1.

(f) Apply property (1) to conclude R < R(k(“))
(k(a)) < R*™.

. Apply part (c) and pro-
perty (2) to conclude R

REMARK 1. Note that as a result of part (f) of the above theorem, the poli-
cy £* that was constructed in the proof of part (b), belongs to S;MG' Veri-
fy that the definition of £* implies any subchain of a maximal gain policy

to be contained in a subchain of P(f*).

*

A finite procedure for calculating R*, n*, the R*® and a £* ¢ SRMG is

therefore as follows: use the PIA to find g and a v € V. Compute S (v) =

{k e L(i) | b(v) 0} = {f € Sp | £ achieves the 2N maxima in (1.1)
and (1.2)} Somc* . rt
theorem 3.1 establish R™ = {i | ie R(E), f ¢ SP(V)}. Determine R = as the

Part (a) of theorem 3.2 in combination with part (a) of

equivalence classes of the set of subchains of policies belonging to SP(v)
(cf. proof of theorem 3.1 part (b) and remark l) Finally, define £* by
{k | f > 0} = L(1) for i € @ - R", and {k | £}, > 0} =

ik
= {k € L(1) | b(v) = 0, z CR*C Pk =1} for i € R (a=1,...,n*).

ij

VI. PROPERTIES OF V

Some basic properties of V are given by:

THEOREM 4.1. (Basic Properties of V).

(a) V Zs closed an unbounded, as v € V implies v + a 1 + azg* € V, for any

1

scalars a ,a, (where 1 is the N-vector with all coordinates unitary).

1° 72
(b) (Maximality of relative values.) For any v eVand f ¢ SpMG? it is

posstble to choose the n(f) additive constants in v(f) such that
v’ > v(f) with equality for components in R(f).

(c) (Cf. [21,0161.) v e V, i2f and only if

(4.1) v. = max {Z(f)[q(f) - H(f)g 1. + N(f)v.} i=1,...,N.
1 i 1
feSPMG
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In addition, if v € V, then a poliecy £ € Somec achiepes all N maxima in

(4.1) Zf and only if it achieves the 2N maxima in (1.1) and (1.2).

PROOF .

(a) Immediate to verify.

(b) Choose in (2.8) a = <ﬂm(f),v*>. From part (e) of theorem 3.1, it fol-
lows that {k | £, > 0} € L(i) for each i, hence v’z q(f) - H(f)g" +
+ P(f)v", which implies, using (2.9), lemma 2.1, (2.4) and (2.8):

v¥ 2 2(£)[q(f) - H(E)g ] + N(E)v" =
~* n(f) o
= Z2(B)a(f) - B(E)g" 1+ ] a ¢ (F) = v(f)
m=1

with equality for components in R(f). _
(c) First assume v € V. In part (b) we proved that for any f ¢ SPMG’
v > Z(£)[q(f) - H(f)g" 1 + N(f)v, with strict equality for f e S ().
Hence, v € V implies (4.1) and any policy achieving the 2N maxima in
(1.1) and (1.2) acheives all N maxima in (4.1).

Conversely, if v satisfies (4.1), we define:

(4.2) ;i =  max [q? - H?.gf + ) P?.v.],
keL(i) j 33y 1
and show both v > v and v < v, hence v=velV.
MG’ fik = 1 implies k € L(i) by theorem 3.1 part (e);
hence, using (4.1), (2.2) and (2.9):

For any f ¢ S

a(f) - H(E)g* + P(£)v 2 [T + P(£)Z(£)I[q(f) - H(£)g* T+ N(f)v =

v

v

Z(£)[q(F) - H(f)g"] + N(f)v, £ e Spyer

This implies v = v. Let h denote a pure policy in X§=1L(i), achieving

all maxima in (4.2). Then:
(4.3) v, < Gi = [q(h) - H(h)g" + P(h)v];.

Multiply (4.3) with II(h) > 0 in order to get 0 < NM(h)[q(h) - H(h)g*] <0,
the latter inequality following from (2.9) and g(h) < g*. Hence (4.3) is

an equality for i € R(h), and so h € S by part (e) of theorem 3.1.

PMG’

RIBLIOTHETK MATHEMATISCH CENTRUM
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Using lemma 2.1, (4.3) implies v < Z(h)[q(h) - H(h)g*] + II(h)v. Insert
on the right-hand side of (4.2) and use N(h)[q(h) - H(h)g*] = 0, to

obtain:

[I + P(h)Z(h)Ilq(h) - H(h)g*] + I(h)v =

IA

v

Z(h)[q(h) - H(h)g"] + N(h)v <

max {Z(£)[q(f) - H(£)g" ] + N(£f)v} = v.
feSPMG
Finally, if h € SPMG achieves the N maxima in (4.1), multiply the equal-
ity portion of this inequality with Z(h)—] to show that it achieves the

IA

N maxima in (1.2), as well as the N maxima in (1.1), since hik =1 im-

plies k € L(i). This completes the proof. [

Since for f ¢ S H(f)ij =01if j ¢ R*, we have by part (c) of theo-

RMG?
rem 4.1 that v ¢ V if and only if

(4.4) v. = max {Z(f)[q(f) - H(E)g 1. + [ 1(£)..v.}, ieR”
1 fes 1 jer* 3]
PMG
(4.5) v. = max {Z(f)[q(f) - H(f)g"1, + ¥ 1(f)..v.}. i e 2\R".
£eSpua T 5eR* ij’]

Observe that (4.4) involves only (vilieR*) and can be studied in isolation.

The (vilieQ\R*) are uniquely determined via (4.5), for any (vi|ieR*). De-

fine now

(4.6) W - {(v,|ieR™); v, satisfy (4.4) for all i ¢ R'},

THEOREM 4.2.

(a)

(4.7) VW = (v, |ieR™); v. 2 Z(E)[q(f) - H(E)g*1, + J 1N(f)..v., for
: i e d g 4 * ij'j°

jeR

all i € R*, fesS }.
PMG

Hence, W is a closed, convex polyhedral set.

(b) V Zs connected.
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PROOF .

(a) Clearly, VR is contained within the polyhedron, that is defined in the

PMG with i eR(h).
Then, by multiplying the inequalities in (4.7) with II(h) 20, we obtain
v, = Z(h)[q(h) - H(h)g" 1, + 2 g* M(R);.v.; hence (4.4) holds.

(b) The assertion follows by show1ng that for any v, v e V, the curve

right side of (4.7). Conversely fix i ¢R* and hes

{v(}) | A € [0,1]} with parameter representatlon' v(k) = Avi + (l—A)Gi,
i e R" and v(A); = max;_ o {Z(f)[q(f) - H(f)g" ), + 2 g* (D) w00 )
connects v w1th vV, lies w1th1n V¥ as a consequence of (4 5) and part
(a), and 1is continuous, since all its components are continuous func-

tions of A. 0O

We already saw that V may not be convex. The following theorem gives

a necessary and sufficient condition for the convexity of V.

THEOREM 4.3. V is comvex if and only if for each i ¢ Q - R* there exists an
alternative k(i) e L(1i), such that for all v € V:

(4.8) v, =

i i

& ) Hli‘ng)g* + ] Pl.(gl)vJ

]
Moreover, V is comwex if and only if it is a polyhedron.

PROOF. We first observe that for any i ¢ R*, there is a h € SPMG’ with

i € R(h), hence by part (e) of theorem 3.1 there exists an altermative
k(i) e L(i) with b(v)k(l)

ie R, Suppose it holds for i € Q - R” as well. Then the functional equa-
k(i)

0, for any v € V. Thus (4.8) always holds for
tions are equ1valent to the linear (in)equalities b(v) =Q0Qfori=1,...

,N and b(v) <0 for k e L(i)\{k(1)} and i = l,...,N. Hence V is a con-
vex polyhedron.

Conversely, suppose V is convex. Assume to the contrary that there

(m),
(m)

. . * . .
exists a state i € @ — R and a finite set of v s in V, such that no

k € L(i) achieves the maximum in (1.2) for all v' ‘. However, since V is

convex, it is immediate to verify that a k ¢ L(i) achieving the maximum

(m),

in (1.2) for a positive convex combination v of the v s, achieves the

(m). 0

maximum in (1.2) for each v
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REMARK 2. (4.8), hence convexity of V is trivially met if either

(1 RY = 2, (2) L(i) is a singleton for each i ¢ Q - R*, or

(3) there is only one maximal gain policy.

In addition n” = 1 is sufficient for the convexity of V as well. This fol-
By theorem 4.2 part (b), we obtain that for
V(f*)i,

ieR”. P(f*) being unichained, it follows that v(f*) is unique up to a mul-

. . * B
lows by comnsidering a f ¢ SRMG'

. o *
each v € V, there exists a relative value vector v(f ) such that v,

tiple-of 1, hence (vilieR*) is unique up to an additive constant. Using (4.5),

we conclude that v € V is unique up to a multiple of 1.

For discrete time Markovian decision processes, where ng = Gij’ the

value-iteration equations take the form:

(4.9) v(nrl), = max {q} + ] ngv(n)j},
keK(1i) j
with v(0) a given vector.
It is well known that {v(n) - ng*}:=1 may fail to converge. In a
forthcoming paper [19] it will be shown that there exists an integer J
such that

ugr) = lim {v(nJ+r) - (nJ+r)gI}

n>«

§r+J) = ugr) (previous proofs in [4] and [13] are

exists for all i, with u; i

" both incorrect).

Accordingly, define v as the Cesaro-limit of the sequence {v(n) - ng*}:=l.
Example 1 with q; =0 and v(0) = [1 01 .6] shows that in general v ¢ V
(v(2n)l=1; v(2n+l)]=0; v(2n)2=0; v(2n+1)2=1; v(n)3=l; v(2n)4=.8;
v=[.5 .51 .7] ¢ V).

The relation between v and V is as follows:

THEOREM 4.4,

@ 7, | ier"} eV,

(b) There exists a vector v € V, such that v < v with equality for components
. *
wm R .

u§r+l) g.u(r)},

- k _ *
= max peiy 195 7By * Ly Py
since for all n sufficiently large the maximizing alternatives in (4.9) be-

PROOF. Note that for all i € Q :
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long to L(i) as observed in [4] and [13],

Since v = %- g;é u(r)’ we obtain by averaging over r = 0,...,J -1
v, 2 qk = 8f + 2 p?.@ i=1,...,N and k € K(i).
i i i & Fij3° ’

J
Take any £ €SPMG to obtain: v = q(f) —g*-+P(f)§, and hence, using lemma 2.1:
Z(£)[q(f) - g"1 + N(£)V, with equality for i e R(f). This implies:
{Z(£)[q(£) - g”] + N(£)Vv} with equality for components in R,

v

v

v max

v

feSpMe _
Using (4,4) and (4,5) we obtain that the vector v defined by (1) v, =V,

. * _ - *
i e R and (2) v, = mafoSPMG {Z(£)[q(f) - g ]i + zjeR* H(f)ijvj} for

ieQ -R", belongs to V with v < ¥V and equality for components in R*. O

V. THE n* DEGREES OF FREEDOM IN V

In this section we show that the convex polyhedral set VR has dimen-
sion n* and that its elements, and hence V, are fully determined by n"
parameters (y],...,yn*).

ROMANOVSKY [15] obtained the same result for the functional equations
that arise in discrete time Markov models with‘g* = <g*>13 In addition, as
our methods involve the chain structure, a fuller characterization of the
parameter space is possible. ’

The key observation is that any two vectors v,; € V have the property:
;i -V, = constant = Y for i € R*a, o = 1,...,n*.

By fixing v° € V and picking these n" constants, one thus determines
(;ilieR*) and hence v by (4.5) in terms of v°. Hence, by fixing vo, and
sweeping out all permitted values of y, we sweep out all vectors v in V. In
particular (5.1) below shows that v is a convex piecewise linear function

in v.

THEOREM 5.1. Let v € V. The following are equivalent:
(a) v +xeV

_ k k .
(b) x; = maxkeL(i) [b(v)i + Zj Pijij, i=1,...,N

(c) X, = maxf€SPMG [Z(£)b(v,£) + H(f)x]i, i=1,...,N
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(d) there are n* constants y = (yl,...,yn*) satisfying

*0,
R, a=1,...o10n

y ie
(5.1) x, = @ o
max [Z(f)b(v £); + Z ( lJ)yB] iecq \R"
£eSpue B=1 \jeR B
*
1 (1, e,

(5.2) y 2 Z(£f)b(v,f). + ( n(e )y .

(o) 1 B=] jeR*B B

@=1,..0,n 3 1ieR®, fe Somc*

PROOF .

(a) <= (b): b is the requirement that v + x ¢ V.

(a) & (c): Cf. (4.1) and the definition of b(v,f).

(a) = (d): Take £* ¢ S;MG As v,v + x € V, we have from part (e) of theo-
rem 3.1: v, [q(f ) - H(f )g + P(£* )v] and
(v+x) [q(f ) - H(f )g + P(f )(v+x)1 for all i € R R(f*).
Subtractlon yields: X, = [P(f )x]i [H(f )x]i = <7 (f ), x>
for i € R*a, which proves the first part of (5.1). Moreover,
this implies the remainder of (d), using (4.4) and (4.5) and
the definition of b(v,f).

(d) = (a): Use (4.4), (4.5) and the definition of b(v,f). [

Fix v € V. Define the set of allowed constants

*
Y(v) = {y € D l y satisfies (5.2)}.

The following theorem is obvious from the definition of Y(v), theorem 4.1
part (a) and the fact that:

(5.3) Z(f)b(v,f) < 0 for all f e SPMG'

(5.3) follows from lemma 2.1, with x = 0, using b(v,f) < 0 and NI(£f)b(v,f) =
= 0 (cf. theorem 3.1 part (d) and (e)).

THEOREM 5.2, For any v € V, Y(v) 78 a closed, comvex polyhedral set con-
taining y = 0, (Z.e. Ay € V, for A € [0,1] Z2f y ¢ Y(v)).
Furthermore, Y(v) 18 unbounded as [ya] e Y(v), implies

*Q
[ya tepteyg ] € Y(v), for any scalars CysCoe
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Clearly, by (5.3), (5.2) is automatically satisfied for (a,i,f) with
XjeR*a H(f)ij = 1. We accordingly define:

*

K(a) = {(i,f) | i e R*™, £ e s M), < 13, a=1,...,0),

)
PMG® jeR*a

and make the partition {1,2,...,n*} = E u F, where
E={a]| K(a) =0}, F=1{a]| Ka) # 9.
For £ = (i,f) € i(a), define

E SE

4, = [2(DHb(v,D)],, and Pog = jeg*ﬁ H(f)ij.
~ * o~ ~ ~

Note that §° < 0, B- 20, [0 B5 =1, B® <1 forallac ¥, and £ ¢ R(o)

Then Y(v) consists of all y ¢ gn* satisfying

*
n
(5.4) Yy 2 qi + BZI PleYp? aeF, £eK(a).
The following theorem expresses that (yalaeE) are fully independent

degrees of freedom:

THEOREM 5.3.

(a) Let (ya!aeE) be arbitrary. Then (yalaeF) ean be found such that y e Y(v).

(b) If vy € Y(v), then after arbitrary decreases in any of the Vo2 @ € E, v
18 still in Y(v).

PROOF .,
(a) Take Y, =

maxBEE yB, oeF,
(b) The inequalities (5.4) are either unaffected or strengthened by de-

creasing (yalaeE). 0

A ray for the solution set to a set of linear inequalities is a solu-
tion to the corresponding homogeneous set of inequalities (cf. [22]). The
rays to Y(v) are therefore the solutions (yl,...,yn*) to:

*

n
Y, > BZI PaByB’ aeF, £ € K(a).
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Define U as the set of rays to Y(v) and remark that U is independent

of v, since F, E(a), §€ are. Since U is the set of rays to Y(v), it has

aB
the following important and easily verified properties:

(a) if u,q € U, then cu + czﬁ €U for all ¢;sC, 20

(b) if veV, ye Y(v) and u € U, then y + cu ¢ Y(v) for all c 20
REMARK 3. Theorem 5.3 applies to U as well as to Y(v).
Note from theorem 5.2 and theorem 5.3 that the vectors u with ﬁa = cg*a

and u, with ﬁa =c¢c, o € F and Ga < c, a € E are members of U, for any sca-

lar c. Additional properties of U are discussed in theorem 5.4 and section 6.

In order to show that Y(v) is an n*-dimensional polyhedral set, we need

the following discrete time Markovian model with state space {1,... ,n*}'

For o ¢ F, let K(a) be the set of feasible decision. For & ¢ K(a), let qg

5€

aB g
d th B

ready note at 20, XB B -

and P denote the associated reward and transition probabilities (we al-

For o ¢ E, add a dec1s1on E to the empty K(a) with q oB ag

Let ¢ denote the set of pure policies.

For ¢ ¢ ¢, the quantities a(¢), §(¢), N(¢) and §(¢) are defined analogously
to q(f), P(F), N(f) and Z(f) for f ¢ SP‘

Also let {EZ} be the maximal gain vector for the new process. Note that
q(¢) < 0 for any ¢ ¢ ¢. The following theorem characterizes the subchains
of §(¢) on F:

THEOREM 5.4. (Properties of subchains of P(¢) on F).

Fix v e V. Suppose for some policy ¢ € ¢, P(¢) has a subchain C S F. Then
(a) C has at least two members.

(b) E(¢)a 18 strictly negative for at least one a ¢ C.

(c) There exists a bound M = M(v) such that

M for any y € Y(v).

IA

max |y =-vy,l
a,BeC @ 8

(d) If y 28 a ray to Y(v) then §a = §B, for all a,B € C.
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PROOF.

(a) Part (a) follows from fga <1 for any a ¢ F, and & ¢ K(a).

(b) Let policy ¢ use action (i(a),f(a)) € K(a) for each a € C. For a € C,
define S(a) = {j | P(f(a)?(a)j > 0, for some n = 0,1,2,...}. Note that
i(a) € S(a) and that:

(5.6) @ € C, i € S(a) imply P(f(a))ij > 0 only if j € S(a).

Now, assume to the contrary that for each a ¢ C, 0 = E(q))Ol =

= Z(f(a))b(v,f(a))i(a). Since f(a) € SPMG’ b(v,£(a)) < 0 with equallty
for components in R(f(a)). Hence, using (2.3), O q(¢)

= EjéR(f((!)) b(v,f(a))j = zjéR(f((l)) En=0 [P(f(a))]i(a)j -b(V,f(d))j.

Hence:

(5.7) b(v,f(a))j =0 for j € S(a), a € C,

We now exhibit a policy £ € SRMG with the contradictory properties

that R® = v [R™® u S(a)] is closed under P(fo) while every state

aeC °
in R® is transient for P(f").
* *
Take £ € SRMG'* s .
Initially, for i € R set {k | £ > 0} = {k | I 0}. Then for
ie S(a) add {k | £(a); > 0} to {k | £2. > 0}. Finally, for i € @ \ R®,
set {k | fik > 0} = {k e L(i) I b(v)

From (5.7) the definition of £* in combination with theorem 3.1

Define fO as follows:

k

part (e), and the definition of £° on @ \ R® it follows that fzk >0

implies b(v)k = 0, for all i, hence £ ¢ SRMG

For i ¢ R° , (5.6) and the fact that f* ¢ SRMG

P(£° ) > 0 only for j € R°® ; hence, R® is closed under P(fo).

imply that

As Z j¢R*O N(E(a)). i(a)j > 0, there exist a j ¢ R*a, and an integer
n=x=1, w1th P(f(a)) ( )i > 0 and so P(f ) i(0) > 0, Hence i(o) € R is
transient under P(f ), since the subchains of a maximal gain policy are
all contained within a single R *8 (cf. theorem 3.2 part (c)).

Now, observe that for each a ¢ C, all states in R*a comnunicate
with i(a) € R*® for P(fo), since they communicate with i(a) for P(f*).
However, this implies that each state in u R is transient, since a

aeC
transient state cannot be reached from a recurrent state.
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It remains to prove that each j € S(a), (aeC);istransientforP(fOL
Fix j € S(a), a € C, Since f(a) is maximal gain, there is a state r eR*%
for some B, such that P(f(a))?r > 0, for some m > 1. Hence P(fo)?r > 0.

Let n be such that P(f(a))?(a)j > 0, Finally B ¢ C, follows from

[P(£(a))™MM(£(a))]. >

P(4) 5 2 M(ECa))., . i(a)r

i(a)r

\2

n
P(f(a))i(a)j H(f(a))jr >0

and the fact that C is a subchain of P(¢). This implies that r is tran-
sient for P(f°) and so is j, since a transient state cannot be reached
from a recurrent state.

(c) Introduce a slack vector t = 0 and rewrite (5.4) as:
(5.8) y = q(¢) + t + P(¢)y.

Let {?C(¢)a l a € C} denote the unique equilibrium distribution of §(¢)
on C., Multiply (5.8) with Z(¢). Then, since E(¢)BY =0 for Be C, Yy £ C
(cf. (2.3)): ‘

vg= L 2@ G #t)+ [ 1)y,  allgec

veC yeC vy

Part (c) follows with the choice M==2nmxsec{2aec|Z(¢)Bal[|q(¢)a]-+ta]}
provided one shows that [ta | a € C] are bounded uniformly in y., How-
ever, by multiplying (5.7) with WC(¢) one obtains:

-7 7% G, = T ) ,t,.
BeC B7 778 pec BB

The boundedness of [tB | B e C] follows since "TT'C(¢)B >0 for B € C.

(d) Use part (c) and (5.5). O

Together part (b) of theorem 5.4 and the choice ﬁzo = -], for a € E

imply:

COROLLARY 5.1. §* < 0 for o = 1,...,0".

¢
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THEOREM 5.5. (Cf. theorem 3 of [15].) Fix v € V. Given any {ya | o € E}
a € F} such that

there exist {ya

*
n ~
(5.9) Yo > ﬁg + le PEByB’ for all a € F, £ € K(a)

holds with strict inequality.

PROOF. It suffices to show that there exists a solution y0 to (5.9) for some

{yz | o € E} since a solution for any {ya | @ € E} is then obtained by add-

ing a ray u with u =y, YZ’ for a € E (cf, remark 3),.

o
Since Hao = -1 and ﬁag =1, for o € E, the solution set to (5.9) is

not altered by adding the inequalities > g + zn* Fgo o € E, Now
assume to the contrary, that the solution set of (5.9) is empty. Then for

the LP-problem:

min Z subject to
n
~ ~e * ~
Yo * Z 2 qg + BZI PiByB, a=1,...,n ; & € K(a),

we have min Z > 0, which according to theorem 2 of [14], implies

~%

max * 8y 2 0. This contradicts corollary 5.1. [

0=1,...,0

Since the solutionset to (5.9) is open, for any y satisfying (5.9), there
exists a § > 0, so that |y - y'| < 6§ implies y' ¢ Y(v). Hence the n” para-
meters (y],...,yn*) may be chosen independently over some (finite) region.
V and VX have exactly n* = 1E u FI degrees of freedom, of which IEl are

globally independent and IFl are only locally independent.

VI. TRIANGULAR DECOMPOSITION OF Y(v)

Define the following partition of F:

F2 = {a e¢F | for every ¢ € &, a reaches E with certainty under §(¢)}
b ={aeF | o is transient under any P(¢), ¢ € ¢, but o ¢ !
F' = {0 ¢ F | a is recurrent for some P(¢), ¢ ¢ ¢}.
Note that ZB FLUE B =1 for a e Fl, E e K(a).
eF™u oB
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The set of inequalities (5.2) then decouples into 3 parts:

(6.1) y, 2 |8+ ) ng]+ ] By, aeF, £ e
@ L7 gepyr\rt) BBl gcpt oB7B

(6.2) Yy 2 -ai + ) iaByB] + z FiByB’ a € Fl, g € E(a)

- BeE BeFY
(6.3) Y, 2 Eg + Z ?isys] + z ﬁisys, a € Fr, £ e K(a).

- BeEu (F\FT) BeFT
The above decomposition implies that the following vectors belong to U:

2 t .

u, T s @€ E; U, = Cy O € F~; u, = Cg5 O € F-u Fr; for all C1sCysCq with
c, < c, < cg. For ¢ € ¢, let W(¢) = [P(¢)aB]a,BeF2UFt'

Then W(¢) is a substochastic transient matrix, with limn_mo W(q))n =0

and [I - W(¢)]_l = Z;=0 W(¢)n exists and is non-negative. Then, taking to-

gether (6.1) and (6.2) and using the proof of lemma 1 of [7], we obtain:

-1 _~ ~
(6.4) y 2 max (I -Ww()] B [q(¢), + Y P(),. v 1,
¢ peo BeruFt aB B emuFr By™y

2
o € Ft u F .

Insert (6.4) into (6.3) in order to obtain:
(6.5) y = §§’¢ + ) A all a e F', £ ¢ K(a), ¢ € o,

where

-1 ~
(1 - W(¢)]BY Q(¢)Y

3850 _ 3¢ & -1 3
P>?Y = P’ + P [T - W) ¢ P($)pe
o8 of Y€F§UFt oY GnguFt ¥9 58
. &5 S AN : 5859 _
Notice that q;" < 0, and PaB > 0 with zBeEuFr PaB =1

Observe that (6.5) relates {ya | o € FT} to {y, | @ € E}, and remark
that (6.5) always has a solution {ya | @ € F'} no matter how {ya | o ¢ E}

are specified (take y, = max for all a ¢ FY).

BeE YB?

THEOREM 6.1, Fix v € V.
(a) If y € Y(v), Z.e. if y satisfies (6.1), (6.2), (6.3) it satisfies (6.5)

as well.
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(b) Comversely, if one picks {ya | o ¢ E} arbitrarily, next picks
{ya | o € F'} to satisfy (6.5), next defines {ya | o € Fy F*} as the
right-hand side of (6.4), then the resulting vector {y | o ¢ E u F}
satisfies (6.1), (6.2), (6.3), hence belongs to Y(v).

PROOF .

Part (a) follows from the above remarks,

(b) Observe that the right-hand side of (6.4) may be interpreted as the
maximal total expected return of a terminating discrete-time Markovian

model, with F' oy Fg as state space. Because of the choice:

(6.6) y =max ) [I- W(¢)] s [2(9) T P,y
@ $ed BeFLuFt 8" y€EUFT By’
2

for o ¢ Ft u F,
it hence follows from corollary 2 of [21] that Y, E(¢)a +
zBeEUFr P(¢)aByB zBeFtUFQ W(4) wp¥p? ¢ € F . Hence, the vector y
satisfies (6.1) and (6.2)

In addition, using corollary 1 of [21], it follows that there
exists a ¢* € ¢ that maximizes the right-hand side of (6.6) simulta-
neously for all a € F oy Fg, given any {ya | o e Eu F'}. Consider the
inequalities (6.5) for ¢ = ¢*, and use (6.6) in order to show that the

vector y satisfies (6.3) as well. [J

REMARK 4. This provides a triangular decomposition in that one first deter-
mines {ya | @ € E}, next {ya | o € F'} and finally {ya | o e F oy F'}. The
last part can actually be decomposed further, by first determining

| o e Fl} and then determining {ya | o« F'} via

7, =max 1 1- W' E@) v 1 o)y o e F
ded ReFL v YeE
yo=mex [ II-W@ I @@, + [ B4yl eert

bed BeFt yeEuFAyFT

where the transient matrices W(cb)2 and W(¢)t are defined by:

ORENIONR N LOMERCONSRE
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Example 2 below has N = 7, g; =0, L(1) = K(i) for all i

R* = uz=1 R*! with R*! = {1}, i.e. n =7
E ={a=1}; F ={a=4}; F'={a=7}; F" ={a=2,3,5,6).
V is the solution set to the following decomposed set of inequalities:
a = 1: v, arbitrary
a = 4: v, 2 q% + v,
o= 7: v% > qag + .5(V1+v2)
a = (5,6): Vg 2 qg + Ves A5 * qg t .5(v1+v§), qs ; qg + -5q; + .r(v]+v3)
3
Ve > qg *+ Vg a2 + .5(vl+v2), qg * .5q2 + .5(v]+v2).
Example 2
i Xk k k k k k k k k
a3 Pi Pis  Pij3  Pjy Pis Pije Piz
1 1 0 1
2 1 0 1 0
2 0 0 1
3 1 0 0 1
2 0 1 0
_—__.——_—1———_—__.—____————_—_—_
4 1 0 1
2 0 1
5 1 0 1 0
2 0 0 1
6 1 0 0 1
2 0 1 0
3 0 .5 5
7 1 0 1
2 0 .5 .5

Absent p?j are zero.
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