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The Functiortal Equations of Undiscounted Markov Renewal Programming *) 

by 

P.J. Schweitzer & A. Federgruen 

ABSTRACT 

This paper investigates the solutions to the functional equations that 

arise a,o. in the Undiscounted Markov Renewal Programming. We show that the 

solution set: is a connected, though non-convex set whose members are unique 

* . * * up ton constants, characterize n and show that these n degrees of free-

dom are locally rather than globally independent. 

Our res:ults generalize those obtained in ROMANOVSKY [15] where another 

approach is followed for a special class of discrete time Markov Decision 

Processes. 

Basically our methods involve the set of randomized policies. We first 

study the seits of pure and randomized maximal-gain policies, as well as the 

set of stateis that are recurrent under some maximal-gain policy. 

KEY WORDS & PHRASES: Markov RenewaZ Programs, average return optimaZity, 

functionaZ equations, fixed points 

This paper is not for review; it is meant for publication elsewhere. 





I. INTRODUCTION 

This paper investigates the solutions (g,v) to the 2N functional equa­

tions: 

( 1. 1) 
N k g. = max I p .. g., 

i kEK(i) j=l iJ J 

( 1 • 2) [q~ -

N k N 
p~ .v. ], v. = max l. H .. g. + I i kEL(i) j=l iJ J j=l iJ J 

where 

= {k E 
N 

P~.g.}. L(i) K(i) I g. = I i j=l iJ J 

The K(i) are given finite sets and the q~,PtJ•,H~. are 
k k , . . N k i N iJ k 

P •• ,H .. 2: 0 for all i,J,k; l· 1 P .. = I and l· 1 H .. = 
iJ iJ J= iJ J= iJ 

Also we assume property P to be stated below. 

V = ], ••• ,N 

V = l, •.. ,N, 

given arrays with 
k T. > 0, for all i,k. 
i 

For the special cases H~. = P~ .. ,~. with,~. 
iJ iJ iJ iJ 

k 
2: 0 and H. . = o .. , the 

iJ iJ 
arise in Markov Decision Theory with Q = {l, .•. ,N} as 

k as the one-step expected reward, P .. the transition prob-
k iJ 

functional equations 
k state space, q. 
i 

ability to state j and T. the expected holding time, when alternative k 
i 

is chosen in state i (cf. BELLMAN [1,2], BLACKWELL [3], HOWARD [9,10], 

DE CANI [5], JEWELL [111, DENARDO & FOX [7], DENARDO [6], DERMAN [8], 

SCHWEITZER [16,17,18]). 

The solution to (I.I) and (1.2) is not unique, although g is uniquely 

determined. The purpose of this paper is to characterize 

V = {v E EN Iv satisfies (1.2)}. 

We show that Vis a connected, though non-convex set whose members are 
. * . * * unique up ton constants, characterize n, and show that these n degrees 

of freedom are locally rather than globally independent. 

Our results generalize those obtained in ROMANOVSKY [15] where another 

approach is :followed for a special class of discrete time Markov Decision 

Processes (MDP's). 

Basically our methods involve the set of randomized policies. We first 

study the sets SPMG and SRMG of pure and randomized maximal-gain policies, 

and characterize the set R* of states that are recurrent under some maximal 
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gain policy. In section 2 we give the notations and some preliminaries. In 

section 3 we characterize the sets SRMG and R*. The properties of V are 

studied in section 4, while in section 5 then* degrees of freedom are 

characterized. Finally, in section 6 some remarks are made with respect 

to a triangular decomposition of the set V. 

II. NOTATIONS AND PRELIMINARIES 

A (stationaPy) randomized poZiay f is a tableau [fik] satisfying 

fik ~ 0 and lkEK(i) fik = 1 for all i :hn. In the Markov decision model 

fik denotes the probability that the k alternative is chosen when en­

tering state i. 

We let SR denote the set of all randomized policies and Sp the subset 

of all pure (non-randomized) policies, i.e. for f E Sp each fik = 0 or I. 

For f E Sp, we use the notation £'1 = (8 1, ••• , SN) where Bi E K(i) denotes 

the single alternative used in state i. 

Associated with each f E SR are N-component "reward" vector q(f) and 

"holding time" vector T(f), and two matrices P(f) and H(f): 

q(f). = I f.kq~; 
1 kEK(i) 1 1 

P(f) .. = 
1J 

T(f). = I f.kT~ 
1 kEK(i) 1 1 

H(f) •. = 
1J 

I f.k.H~ .• 
kEK(i) 1 iJ 

Note that P(f) is a stochastic matrix. For any f E SR, define the stochas-
n 00 

tic matrix TI(f) as the Cesaro limit of the sequence {P (f)}n=I and define 

the fundamental matrix Z(f) as [I - P(f) + TI(f)J-I. These matrices always 

exist and have the following properties (cf. [3],[12]): 

( 2. I) 

(2.2) 

(2.3) 

TI(f) = P(f)TI(f) = TI(f)P(f) = TI(f) 2 = TI(f)Z(f) = Z(f)IT(f) 

[I - P(f)]Z(f) = Z(f)[I ~ P(f)] = I - IT(£) 

00 

Z(f) =I+ lim I an[P(f)n - IT(f)J. 
at I n=O 

Denote by n(f) the number of subchains (closed, irreducible sets of states) 



3 

for P(f). Then: 

(2.4) 
n-(f) , m m 

II(£) .. = l qi.{f)1r.{f), 
1J m=I 1 J 

:s: ij :s: N 

where 1rm{f) is the unique 

chain Cm(f), and qi~{f) is 
1 

equilibrium distribution of P(f) on the mth sub­

the probability of absorbtion in Cm(f), starting 

from state i (cf. [6] and [18]). Observe}:. 1r~{f) = I and 1rm(f)P(f) = 1rm(f). 
1 1 

Let R(f) = {j I II(f) .. > O}, i.e. R{f) is the set of recurrent states 
m JJ m 

for P(f). Note that qi (f) = P{f)qi {f) for all m and that the vecotrs qim{f) 

are linearly independent. Since any solution to P(f)x = x satisfies 

II{f)x = x and the rank of [I - II{f)] is N - n{f), it easily follows that 

the solution set of P{f)x =xis given by: 

(2.5) 

with a 1, ••• ,an(f) arbitrary scalars. 

LEMMA 2.1. Fix f E SR, and Zet the vector b satisfy II(f)b = 0. Then 

[I - P(f)]x ~ b, urrpZies x ~ Z(f)b + II(f)x, where in both inequaZities the 

equality sign hoZds for each component i E R(f). 

PROOF. Multiplying [I - P{f)]x ~ b by II(£) ~ O, yields O = II(f)[I - P(f)]x ~ 

~ II(f)b = O, implying that the former inequality is a strict equality for 

components i E R(f). Using this and the fact that as a result of (2.3), for 

j i R(f), Z(f) .. ~ 0 for all i, with Z(f) .. = O when i E R(f), we get the 
1J 1J 

desired result by multiplying [I - P(f)]x ~ b by Z(f) and invoking (2.2). D 

LEMMA 2.2. Let f E SR, and Zet Cm(f) be any subchain of P(f). Take any 

i E Cm(f) and any k E K(i) with fik > 0. Then there exists a pure poZicy h 

such that (a) h.k = I, (b) for every (j,r) h. = I onZy if f. > O, 
1 Jr Jr 

(c) i beZongs to a subchain C of P(h) which is contained within Cm(f) and 

(d) R(h) S R(f). 

PROOF. Since Cm(f) is closed for P{f), it is closed for any h meeting (b). 
m 

Now, let hik = I. If C (f) = {i}, condition (c) is satisfied. Otherwise, 
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let /J. initially be equal to { i}. _Define 6 

step is performed: 

m = C (f)\!J.. Next the following 

r 
Choose a state j EK and an alternative r such that fjr > 0 and Pjt > 0 

for some t E !J., transfer j from K to !J., and define h. = 1. Clearly, such a 
Jr 

j and r can be found, since all states in Cm(£) communicate under P(f). Re-

peat this step for the new /J. and K, until 6 is empty. This construction 

shows that under policy h, state i can be reached from any state in 

Cm(f)\{i}. Together this and the fact that Cm(£) is closed under P(h), im­

ply condition (c). Condition (d) trivially holds if n = R(f). Otherwise, 

let r initially be equal to R(f) and definer= n - r. Choose a state 

t 0 E f and a path {t0,t 1, ••• ,tn} such that P(f)tttt+l > 0 fort= 0, ••• 

••• ,n - 1 and tn Er. Such a path clearly exists, since t 0 is transient 

under P(f) and r 2 R(f). Transfer {t0 , ••• ,tn_1} from f tor and define for 

2 = O, ••• ,n - 1 ht2r = 1 for some r with £t2r > 0 and P~ttt+l > O. Repeat 

this step until r is empty. Finally, for j E R(f) - Cm(£), define h. = 1 
Jr 

for some r , wi. th f . 
Jr 

> 0 and observe that condition (b) holds for all 

j En. This completes the proof. D 

In the remainder of the paper, we assume that property P holds. 

P: If f is any pure policy and Cm(£) is any subchain of 

i E Cm(f) implies H(f) .. = 0 for J. t Cm(£). 1J , 

This property is satisfied for both the Markov Renewal 

with H~. = P~. ~. and the discrete time model with H~. 
1J 1J 1J 1J 

previous lemma, one easily verifies that if property P 

policies, it holds for all randomized policies. 

LEMMA 2 .3. (Gain and Rela:Uve Value Vectoll.6). 

Fix£ E SR. The general solution to the equations 

P(f), then 

Programs (MRP ' s) 

= o ••• Using the 
1J 

holds for all pure 

(2.6) (a) g= P(f)g, (b) v = q(f) - H(f)g + P(f)v 

is given by 

(2. 7) 
n(f) 

g. = g(f). = I ~~<£>gm<£>, 
1 1 m=l 1 



with 

and 

(2.8) 

m m <n (f),q(f)>/<n (f),T(f)> 

n(f) 
v. = Z(f)[q(f) - H(f)g]. + l a ~~(f), 

1. 1 m= l m 1. 

PROOF. Note that multiplication of (2.6)(b) by IT(f) leads to 

(2.9) IT(f)[q(f) - H(f)g] = 0. 

Using property P, it follows from the proof of lemma I of [6] that g(f) 1.s 

the unique solution to (2.6)(a) and (2.9). Hence, any solution (g,v) to 

(2.6) has g = g(f). Using (2.2) one next verifies by mere insertion that 

(g=g(f),v=Z(f)[q(f)-H(f)g(f)J) satisfy (2.6). Finally (2.8) follows from 

(2.5), since (2.6)(b) is a linear system of equations with 

Z(f)[q(f) - H(f)g(f)] as a particular solution. 0 

5 

The unique solution g(f) to (2.6) will be called the gain rate vector, 

and gm(f) the gain rate of the subchain Cm(f). A solution v to (2.6) will 

be called a :'t'elative-vaZue vector and denoted by v(f). 

In the remainder, we wili refer to the following example: 

EXAMPLE 1. N = 4, K(I) = K(2) = {l}; K(3) 

i 

2 

3 

3 

4 

4 

k 

2 

2 

0 

.4 

.8 

0 

0 

0 

.4 

.2 

0 

0 

.2 

0 

k = {1,2}; H .. = 
1.J 

k k 
pi4 q. 

1. 

0 0 

0 0 

0 q!$0 

0 0 

0 0 

0 0 

o .• for all i,j,k. 
1.J 
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Using (3.1) and theorem 3.1. part (c) one verifies that 

Observe that Vis non-convex. Note furthermore, that for f E SRMG' if f 

makes unwise decisions in states inn - R(f), then there do not necessarily 

exist additive constants such that v(f) EV (cf. theorem 3 of [17J and our 

theorem 4.1 part (b)). Take the above example with pure policy f# = (1,1,1,I) 
I I with P(f) unichained, and v(f) = (0 0 q3 .2q3 ) + a(I 1 l 1) i V for any 

choice of the additive contant a. 

In addition, we observe that the Policy Interation Algorithm (PIA) 

(cf. [SJ, [7J, [llJ) is not guaranteed to converge, if unwise choices for 

the additive constants in (2.8) 
I I# 2# 

q3 < 0, f = (I,I,2,1) and f 

are made. Consider the above example with 

= (1,I,2,2). Then v(f 1) = A[I IO .SJ+ 

+ µ[0 0 I .2J and v(f 2) = v[l 0 IJ + p[O O l OJ, for arbitrary A,µ,v,p. 
I Choosing q3 +A~µ< A and p l 2 

> v, f and f follow each other in the PIA. 

Fortunately, PIA cycling can be prevented by preserving the old additive 

constant in a subchain, whenever the subchain is preserved (see also [20J). 

III. PROPERTIES OF MAXIMAL GAIN POLICIES 

We first introduce some notations. Define the ma.ximal gain rate 

(3.1) * g. = sup g(f)., 
l. l. 

fESR 
i = 1, ••• ,N. 

For any v EV, define 

and 

k b(v). = 
l. 

q~ - L H~.g~ + L P~.v. 
J l.J J j l.J J 

- V., 
l. 

b(v,f). = 
l. I k b(v). = 

l. 
* [q(f) - H(f)g + P(f)v - vJ. 

l. kEK(i) 

Since g(f) can be interpreted as the average reward off for a MRP with 

transition probabilities P~., one-step expected rewards q~, and holding 
l.J l. 

times T~, we know from DERMAN [8] that there exists a pure policy that 
l. 

attains the N suprema in (3. 2) simultaneously. Hence g ~ = max g(f) .. 
l. l. 

fESP 



Accordingly define: 

and 

* = g }. 

Finally, let:: 

~, 
w .. = 

]. 
max 

fESPMG 
* Z(f)[q(f) - H(f)g ] •• 

l. 

THEOREM 3. I. (PltopeJtilu on Mruuma.l-Ga..i.n Po.U.c-lv.i). 

(a) f E SRMG if and only if g* = P(f)g* and Il(f)[q(f) - H(f)g*] = 0. 

(b) The funct;ional equations ( 1. 1) and ( 1. 2) alwys ha.ve the solution 

(c) 

* * . ., h . .,. g = g , v = w • Hence V i.s non-empty. A t.,SO., t ere exi.sts a po t.,,z,cy 

* * f E SPMG such tha.t w = Z(f)[q(f) - H(f)g ]. 

In any solution (g,v) of the functional equations (I.I) and (1.2) 

g = g*, hence g and each L(i) is unique. 

7 

* If f is any policy., and if C is any subcha.in of P(f) then g. = constant., 
l. 

(d) 

(e) 

i EC. 

If v EV, then ma~EL(i)b(v): = O, for every i. Let f E SR. 

(I) Suppose tha.t k E L(i) for each (i,k) urith fik > 0 and that for 

some v EV, b(v)~ = 0 for each (i,k) urith i E R(f) and f.k > 0. 
l. l. 

Then f 1:. SRMG" 

(2) Conve:'t'sely., if f E SRMG' then for each i = I, ... ,N fik > 0 implies 

k E L(i), and for i E R(f), fik > 0 implies b(v)t = 0 for all 

V E V. 

PROOF. 

(a) From the proof of lemma 2.3 we know that g(f) is the unique solution to 

the equations g = P(f)g and (2.9). 

(b) Invoking the above mentioned interpretation of g*, we know from theorem 

l in DENARDO & FOX [7] that g~ = max. l· p~.g*J .• Consider the discrete 
l. k J l.J 

. d . . d 1 . h -(.) (.) { I * \ k *} -k k time ec1.s1.on mo e wit Kl. = L 1. = k g. = l· P .. g. , P .. = P .. 
k k k * 1 J 1.J J 1.J 1.J 

and q. = q. - I- H .. g .. 
l. l. J l.J J 

Note that in this model, each policy has g(f) ~ 0. Moreover, it 
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follows from part (a) that g(f) = 0 if and only if f E SRMG• Hence the 

discrete time model has g* = 0 and, with SPMG = 

N I * = {f E Xi=l K(i) g(f) = g = O}, we have: 

* max Z(f)[q(f) - H{f)g ]. = 
1 

fESPMG 
Z{f){q(f) - g*} .• 

1 

for i = I , ••• , N. 

Use theorem 4 of [3] in order to prove the existence of a policy 

f E SPMG for which w* = Z(f)[q(f) - H(f)g*] as well as the fact that 

w* satisfies (1.2). 

(c) Fix a solution (g,v) to (I.I) and (1.2). Using property P, a minor 

modification of the proof of lemma 4 of [7], shows that g ~ g(f) for 

all f E Sp with equality for any f 0 , such that f~k = 1 for some k 

maximizing (1.1) and (1.2). Hence g = g*. 

(d) Since g* satisfies (1.1), we have P(f)g* s g* for all f E SR. The as­

sertion then follows from lemma 2-a in [7]. 

(e) The first result follows from the very definition of b(v)~ 
1 

(1) From the definition of b(v)~, we have v. - l· P(f) .. v. = 
* 1 1 J 1J J 

q(f). - l· H(f) .. g. for i E R(f). Multiplying this equation with 
1 J 1J J * 

TI(f)ki and swmning over i, we obtain TI{f)[q(f) - H(f)g J = O. Use 

this, and g* = P(f)g* in order to apply part (d). 

(2) If f E SRMG' g* = P(f)g* follows from part {d). Hence fik > 0 im­

plies k E L(i) and b(v)~ s O. So b(v,f) s O, for any v EV. Since 
1 

we know from part {d) that TI(f)b(v,f) = 0 for f E SRMG' it follows 

that for j E R{f), b(v,f). = O, i.e. f.k > 0 implies b(v)~ = 0. D 
J 1 J 

Define next 

(3. 2) R* = {i I i E R{f) for some policy f E SRMG}. 

The following theorem gives a characterization of this set, which 

plays a basic part in the remainder of this paper. 

THEOREM 3. 2. ( Chalr.ac;teJt,[za.tion on R *) • 

(a) R* = {i I i E R(f) for some£ E SPMG}. 

(b) The set {f E SRMG I R(f) = R*} is not empty. 
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(c) Define n'' = min{ n(f) I f E SRMG with R(f) = R *} and S~G = 

I * * . * * = {f E SRMG R(f) = R and n(f) = n }. F-i:r: f E SRMG" Any subchain 

of any f E SRMG is contained within a subcha.in of P(f*). 

(d) All£* E S~G have the same collection of subchains {R*0 , a= l, ••• ,n*}. 
( ) * * *a ( . *a e For any 11 :5 a :5 n , g. = g say) f01"' aU i E R • 

i 

(f) t (I) R(m) b d" . ' f h ha. Le R , ••• , e i.sJoi.nt sets o states sue t t 

(I) if C is a subcha.in of scme f E SRMG' then Cs R(k) for some k, 

I :5 k :5 m; 

(2) there exists a f* E SRMG with m subcha.ins {R (k) }~=I. 

h * nd . (a) *a * Ten m = n a after renumberi.ng R = R for a= l, •.• ,n. 

PROOF. 

(a) Fix a state i, and a f E SRMG such that i E R(f). Consider a policy h 

satisfying the conditions (a), (b), (c) and (d) of lemma 2. 2. Using 

theorem 3. I. part (e), one verifies that h E SPMG' and i E R(h). Thus 

the right-hand side of (a) is included in R* and the reversed inclusion 

is immediate. 

(b) Fix an enumeration f 1 , ••• ,~ of SPMG. For any i E R *, let 

A. = {r I i E R(fr)}. Consider the following equivalence relation on 
i 

C = {Cm(fr) I 1 :5 r :5 M; I :5 m :5 n(fr)}: 

Let C ~ C', if there exists {C(l)=c,c< 2>, •.. ,c<n)=C'} with 

c(i) EC and c(i) n c(i+l) I 0 for i = l, ... ,n - I. 

Let f* satisfy: (1) {k I f~ > 0} = u A {k I f~k > 0} for i ER* 
ik * rE i i 

(2) {k I f~k > O} = L(i) for i En - R • Using theorem 3.1 part (e) 

* one verifies that f E SRMG. 

Clearly, the equivalence classes are the subchains of P(f*) since 

they are closed under P(f*) and since the states belonging to a same 

equivalence class communicate with each other. Hence, R* = R(f*). 

(c) Assume P(f) has a subchain Cm(£) that intersects say R* 1 and R* 2. Then 

a policy£** with {k £~: > 0} = {k I f:k > O} and {k I £~: > 0} = 
{ I } { * } . . ' R(f**) = k fik > 0 u k f ik > 0 otherwise, is maximal gain, has = 

= R*, and its number of subchains is at most n* - 1, since the states 
*I d *2 . . ( **) . of R an R communicate w1 th each other under P f • This contra-

dicts the minimality of n*. 



(d) For all f*,f** E S~G' part (c) implies each Ca(f*) s some c 8(£**), 

and each c 8(£**) S ca(£*). 

(e) Combine part (d) with part (c) of theorem 3.1. 

(f) Apply property (1) to conclude R*a = R(k(a)). Apply part (c) and pro­

perty (2) to conclud~ R(k(a)) £ R*a. D 

REMARK 1. Note that as a result of part (f) of the above theorem, the poli­

cy f* that was constructed in the proof of part (b), belongs to S~G. Veri­

fy that the definition off* implies any subchain of a maximal gain policy 

to be contained in a subchain of P(f*). 

A finite procedure for calculating R*, n*, the R*a and a f* E S~G is 

therefore as follows: use the PIA to find g* and av EV. Compute Sp(v) = 

= X~=l{k E L(i) I b(v)t = O} = {f E Sp I f achieves the 2N maxima in (1.1) 

and (1.2)} ~ SPMG. Part (a) of theorem 3.2 in combination with part (a) of 

theorem 3.1 establish R* = {i I i E R(f), f E Sp(v)}. Determine R*a as the 

equivalence classes of the set of subchains of policies belonging to SP(v) 

(cf. proof of theorem 3.1 part (b) and remark 1). Finally, define f* by 

{k I f;k > O} = L(i) for i En - R*, and {k I f~k > O} = 
I k ~ k . *a * = {k E L(i) b(v). = O, l· R*a P .. = 1} for 1 ER (a=l, ••• ,n ). 

1 JE 1J 

VI. PROPERTIES OF V 

Some basic properties of V are given by: 

THEOREM 4. 1 • ( &t6..i.c PILopeJL:ti,u 0~ V) • 

(a) Vis ctosed an unbounded, as v EV impties v + a 1.!_ + a 2g* EV, for any 

scaZars a 1,a2 (where.!._ is the N-vector with att coordinates unitary). 

(b) (Ma.ximatity of retative vatues.) For any v* EV and f E SRMG' it is 

possibte to choose the n(f) additive constants in v(f) such that 

v* ~ v(f) with equaUty for components in R(f). 

(c) (Cf. [2],[16].J v E V, if and onty if 

(4.1) v. = 
1 

* {Z(f)[q(f) - H(f)g ]. + Il(f)v.} 
1 1 

i = 1, ••• ,N. 



1 I 

In addition, if v e: v, tb.en a rxi'l-tcy f e: s'.PMG achieves al,7,, N ma.:r:ima in 

( 4. I) if a:nd onZy if it achieves the 2N ma.:r:ima in ( 1 .1 ) and ( I • 2). 

PROOF. 

(a) Inmediate to verify. 

(b) Choose in (2.8) a = <~m(f),v*>. From part (e) of theorem 3.1, it fol­
m 

lows that {k I fik > 0} s L(i) for each i, hence v* ~ q(f) - H(f)g* + 

+ P(f)v*, which implies, using (2.9), lemma 2.1, (2.4) and (2.8): 

* * * v ~ Z(f)[q(f) - H(f)g] + Il(f)v = 

n(f) 
= Z(f)[q(f) - H{f)g*J + l a ~m(f) = v(f) 

m=l m 

with equality for components in R(f). 

(c) First assume v e: V. In part (b) we proved that for any f e: SPMG' 

v ~ Z(f)[q(f) - H(f)g*] + Il(f)v, with strict equality for f e: Sp(v). 

Hence, v e: V implies (4.1) and any policy achieving the 2N maxima in 

(I.I) and (1.2) acheives all N maxima in (4.1). 

Conversely, if v satisfies (4.1), we define: 

(4.2) v. = 
1 

k , k * , k max [q. - l H .. g. + L P .. v.], 
ke:L(i) 1 j 1J J j 1J J 

and show both;~ v and;~ v, hence;= v e: V. 

For any f e: SPMG' fik = 1 implies k e: L(i) by theorem 3.1 part (e); 

hence, using (4.1), (2.2) and (2.9): 

* * v ~ q(f) - H(f)g + P(f)v ~ [I + P(f)Z(f) ][q(f) - H(f)g ] + Il(f)v = 

* = Z(f)[q(F) - H(f)g] + Il(f)v, 

This implies;~ v. Leth denote a pure policy in X~= 1L(i), achieving 

all maxima in (4.2). Then: 

(4.3) ~ * v. s v. = [q(h) - H(h)g + P(h)v] .• 
1 1 1 

* Multiply (4.3) with Il(h) ~ 0 in order to get Os Il(h)[q(h) - H(h)g J s 0, 

the latter inequality following from (2.9) and g(h) s g*. Hence (4.3) is 

an equality for i e: R(h), and so he: SPMG' by part (e) of theorem 3.1. 

B!SUOTHE:::K M,i\THEMAilSCH CENTRUM 
--AMSTERDAM--
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Using lemma 2.1, (4.3) implies vs Z(h)[q(h) - H(h)g*] + IT(h)v. Insert 

* on the right-hand side of (4.2) and use IT(h)[q(h) - H(h)g J = O, to 

obtain: 

~ * v S [I+ P(h)Z(h)][q(h) - H(h)g j + IT(h)v = 

* = Z(h)[q(h) - H(h)g] + IT(h)v s 

* s max {Z(f)[q(f) - H(f)g J + IT(f)v} = v. 
fESPMG 

Finally, if h E SPMG achieves the N maxima in (4.1), multiply the equal­

ity portion of this inequality with Z(h)-l to show that it achieves the 

N maxima in (1.2), as well as the N maxima in (I.I), since hik = I im­

plies k E L(i). This completes the proof. 0 

Since for f E SRMG' IT(f)ij = 0 if j t R*, we have by part (c) of theo­

rem 4.1 that v EV if and only if 

(4.4) * I IT(f) .. v.}, * v. = max {Z(f)[q(f) - H(f)g ]. + i E R 
1 

fESPMG 
1 jER* 1J J 

(4.5) * I IT(f) .• v.}. i * v. = max {Z(f)[q(f) - H(f)g ]. + E S'2\R • 
1 

fESPMG 
1 jER* 1J J 

Observe that (4.4) involves only (v.liER*) and can be studied in isolation. 
, 1 

The (v. liES°2\R*) are uniquely determined via (4.5), for any (v.liER*). De-
1 1 

fine now 

(4.6) ~ = {(v.liER*); v. satisfy (4.4) for all i ER*}. 
1 1 

THEOREM 4.2. 

(a) 

(4. 7) VR = {(v.liER*); v. ~ Z(f)[q(f) - H(f)g*J. + l IT(f) .. v., for 
1 1 1 . R* 1J J 

aZZ i ER*, f ES }. 
PMG 

Hence, VR is a aZosed, aonvex poZyhedraZ set. 

(b) Vis aonneated. 

JE 
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PROOF. 

(a) Clearly,..,.. is contained within the polyhedron, that is defined in the 

right side of (4.7). Conversely fix i eR* and h E SPMG with i eR(h). 

Then, by multiplying the inequalities in (4.7) with II(h) 2::0, we obtain 

v. = Z(h)[q(h) - H(h)g*J. + l· R* II(h) •. v.; hence (4.4) holds. 
1. 1. J E l.J J ~ 

(b) The assertion follows by showing that for any v,v e V, the curve 

{v(A) I A e [0,1]} with parameter representation: v(A). =AV.+ (1-A)v., - ]. ]. ]. 

i e R* and v(A). = max£ S {Z(f)[q(f) - H{f)g*J. + l· R* II(£) .. v(A).} 
1. E PMG 1. J E 1.J J 

connects v with v, lies within V. as a consequence of (4.5) and part 

(a), and is continuous, since all its components are continuous func­

tions of A. 0 

We already saw that V may not be convex. The following theorem gives 

a necessary and sufficient condition for the convexity of V. 

THEOREM 4.3. Vis aonvex if and onZy if for each i en - R* there exists an 

aZternative k(i) e L(i), such tha.t for aZZ v e V: 

(4.8) = k(i) _ ~ Hk{i) * + 
Vi qi f ij gj 2 

J j 

k(i) 
P.. v .• 

1.J J 

Moreover, Vis convex if and onZy if it is a poZyhed:z>on. 

* PROOF. We first observe that for any i ER, there is ah E SPMG' with 

i E R(h), hence by part (e) of theorem 3.1 there exists an alternative 

k(i) e L(i) with b{v)~(i) = O, for any v e V. Thus (4.8) always holds for 
]. 

i ER*. Suppose it holds for i En - R* as well. Then the functional equa-

tions are equivalent to the linear (in)equalities b(v)~(i) = 0 for i = 1, ••• 
]. 

••• ,N and b(v)~ ~ 0 fork E L(i)\{k(i)} and i = 1, ••• ,N. Hence Vis a con-
1 

vex polyhedron. 

Conversely, suppose Vis convex. Assume to the contrary that there 

exists a state i en - R* and a finite set of v(m),s in V, such that no 

k e L(i) achieves the maximum in (1.2) for all v(m). However, since Vis 

convex, it is immediate to verify that a k e L(i) achieving the maximum 

in (1.2) for a positive convex combination v of the v(m),s, achieves the 

maximum in (1.2) for each v(m). O 
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REMARK 2. (4.8), hence convexity of Vis trivially met if either 

(I) R* = n, (2) L(i) is a singleton for each i En - R*, or 

(3) there is only one maximal gain policy. 

In addition n* = I is sufficient for the convexity of Vas well. This fol­

lows by considering a f* E S~c· By theorem 4.2 part (b), we obtain that for 

each v EV, there exists a relative value vector v(f*) such that v. = v(f*)., 
1 1 

i ER*. P(f*) being unichained, it follows that v(f*) is unique up to a mul-

ti-ple--of I, hence (v ~ I ie:R *> is unique up to an additive constant. Using ( 4. 5), 
1 

we conclude that v EV is unique up to a multiple of I. 

k For discrete time Markovian decision processes, where H .. = o •• , the 
1J 1J 

value-iteration equations take the form: 

(4.9) v(n+I). = max {q~ + l P~.v(n)j}, 
1 kEK(i) 1 j iJ 

with v(O) a given vector. 
* 00 It is well known that {v(n) - ng }n=I may fail to converge. In a 

forthcoming paper [19] it will be shown that there exists an integer J 

such that 

(r) {v(nJ+r) * u. = lim - (nJ+r)g.} 
1 1 

n--+oo 

exists for all i, with (r+J) (r) (previous proofs in [4] and [13] u. u. 
1 1 

· both incorrect) • 

are 

* 00 Accordingly, define v as the Cesaro-limit of the sequence {v(n) - ng }n=I· 

Example 1 with q! = 0 and v(O) = [I O I .6] shows that in general vi V 

(v(2n) 1=1; v(2n+1) 1=0; v(2n) 2=0; v(2n+t) 2=1; v(n) 3=1; v(2n) 4=.8; 

v= [ . 5 • 5 1 • 7 ] i. V) • 

The relation between v and Vis as follows: 

THEOREM 4.4. 

I * R (a) {v. i E R } E V • 
1 

(b) There exists a vector v EV, such that v ~ v with equaZity for components 
. * -z,n R • 

(r+l) k * , k (r) PROOF. Note that for all i En: u. = max. K(') {q. - g. + l· P .. u. }, 
1 k€ 1 1 1 J 1J J 

since for all n sufficiently large the maximizing alternatives in (4.9) be-
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long to L(i) as observed in C4J and [13), 

Since v = !. ,J-l u (r), we obtain by averaging over r = O, ••• ,J - I: 
J lr=O 

- k * v . .::: q. - g. + 
1. 1. 1. 

' k -l P• .v., 
j l.J J 

i = l, •.• ,N and k E K(i). 

- * -Take any f E SPMG to obtain: v.::: q(f) -g +P(f)v, and hence, using lennna 2.1: 

v.::: Z(f)[q(f) - g*] + Il(f)v, with equality for i E R(f). This implies: 

v.::: maxf S {Z(f)[q(f) - g*J + Il(f)v} with equality for components in R*. 
E PMG _ 

Using (4.4) and (4,5) we obtain that the vector v defined by (I) vi= vi, 

i ER* and (2) v. = maxf S {Z(f)Cq(f) - g*J. + l· R* Il(f) .. v.} for 
1. E PMG 1 J E 1.J J * 

i E Q - R*, belongs to V with vs v and equality for components in R D 

* V. THE n DEGREES OF FREEDOM INV 

In this section we show that the convex polyhedral set VR has dimen­

sion n* and that its elements, and hence V, are fully determined by n* 

parameters (y1 , ••• ,yn*). 

ROMANOVSKY [15] obtained the same result for the functional equations 

that arise in discrete time Markov models with g* = <g*>!_. In addition, as 

our methods involve the chain structure, a fuller characterization of the 

parameter space is possible. 

The key observation is that any two vectors v,v EV have the property: 
~ . *Ct * v. - v. =constant= y for 1. ER , a= l, ... ,n. 

1. 1. Ct 

By fixing v 0 EV and picking these n* constants, one thus determines 
~ * ~ 0 0 (v. liER) and hence v by (4.5) in terms of v • Hence, by fixing v, and 

1. 

sweeping out all permitted values of y, we sweep out all vectors; in V. In 

particular (5.1) below shows that; is a convex piecewise linear function 

in v. 

THEOREM 5. I. Let v E V. The fo'lZouJing Cll'e equivalent: 

(a) v + x E V 

(b) xi= ma~EL(i) [b{v)t + lj 
(c) xi= maxfESPMG [Z(f)b(v,f) 

k P •• x. 1, 
1.J J 

+ IT{f)x]., 
1. 

i = 

i = 

1, ••• ,N 

I , ••• , N 
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(d) 

(5. 1) 

(5.2) 

n* 
[Z(f)b(v,f). + l ( l IT(£) .. \.s], 

1 B=l jeR*B iJ/Y 

* 
Ya ;;: Z(f)b(v,f)i + 1 ( l a IT(£). ·)Ya, 

B=l j eR* iJ 

* a= 1, .•• ,n 

. * 
1 E n \ R 

* *ct. a= 1, ••• ,n; i e R , f e SPMG" 

PROOF. 

(a)...,. (b): bis the requirement that v + x e V. 

(a)...,. (c): Cf. (4.1) and the definition of b(v,f). 

* * (a)...,. (d): Take f e SRMG. As v,v + x e V, we have from part (e) of theo-
* * * * rem 3.1: v. = [q(f) - H(f )g + P(f )v]. and 

1 * * * * 1 * * (v+x). = [q(f) - H(f )g + P(f )(v+x)J. for all i e R = R(f ). 
1 1 

Subtraction yields: x. = [P(f*)xJ. = f.IT(f*)xJ. = <Tia(f*),x> 
1 1 1 

for i e R*a, which proves the first part of (5.1). Moreover, 

this implies the remainder of (d), using (4.4) and (4.5) and 

the definition of b(v,f). 

(d).,.. (a): Use (4.4), (4.5) and the definition of b(v,f). D 

Fix v e V. Define the set of allowed constants 

* Y(v) ={ye En I y satisfies (5.2)}. 

The following theorem is obvious from the definition of Y(v), theorem 4.1 

part (a) and the fact that: 

(5.3) Z(f)b(v,f) s 0 for all f e_ SPMG. 

(5.3) follows from lemma 2.1, with x = O, using b(v,f) s O and IT(f)b(v,f) = 

= 0 (cf. theorem 3.1 part (d) and (e)). 

THEOREM 5.2. For- any v e V, Y(v) is a a'losed, aorwe:r: poZyhedT'aZ set aon­

taining y = O, (i.e. Aye V, for- A e [0,1] if ye Y(v)J. 

FUPthemoroe, Y(v) is unbounded as [y J e Y(v), impZies 
a 

*ct. [ya+ c 1 + c2g J e Y(v), for- any saaZa:es c 1,c2• 



Clearly, by (5.3), (5.2) is automatically satisfied for (a,i,f) with 

L· R*a Il(f) .. =I.We accordingly define: 
J€ 1J 
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K(a) = {(i,f) I i E R*0 , f E SPMG' l Il(f) .. < I}, 
j ER*a 1J 

* a=l, ••• ,n, 

and make the partition {1,2, ••• ,n*} =Eu F, where 

E = {a I K(a) = 0}, F = {a I K(a) I 0}. 
For;= (i,f) E K(a), define 

q; = [Z(f)b(v,f)]., 
a 1 

and l Il(f} .•• 
• R*B 1J J€ 

Note that q! ~ o, p!s ~ o, I;:l !!s = I, p!a < I for all a€ F, and;€ K(a). 
Then Y(v) consists of ally E En satisfying 

* 
(5.4) 

; n ~; 
Ya~ q + l PaaYa, 

a B=l .., .., 
a€ F,; E K(a). 

The following theorem expresses that (y laEE) are fully independent 
a 

degrees of freedom: 

THEOREM 5.3. 

(a) 

(b) 

Let (y I aEE) be arbitrary. Then (y I aEF) can be found such that y E Y(v). a a 
If y E Y(v), then after arbitrary decreases in any of the Ya, a EE, y 

is stiZZ in Y(v). 

PROOF. 

(a) Take ya= maxBEE y8, a E F. 

(b) The inequ~lities (5.4) are either unaffected or strengthened by de­

creasing (y laEE). D 
a 

A ray for the solution set to a set of linear inequalities is a solu­

tion to the corresponding homogeneous set of inequalities (cf. [22]). The 

rays to Y(v) are therefore the solutions (y1, ••• ,yn*) to: 

Y ~ 
a 

* n 
'i' ~; 
l p aSY 8' 

8=1 
a E F, ; € K(a). 



Define U as the set of rays to Y(v) and remark that U is independent 

of v, since F, K(a), P!e a~e. Since U is the set of rays to Y(v), it has 

the following important and easily verified properties: 

(a) if u,6 E: U, then c 1u + c 26 E: U for all c 1 ,c2 :c: 0 

(b) if v € V, y € Y(v) and u € U, then y + cu E: Y(v) for all c :C: 0 

REMARK 3. Theorem 5.3 applies to U as well as to Y(v). 

Note from theorem 5.2 and theorem 5.3 that the vectors u with u = cg*a 
- - a 

and ii, with ii = c, a E: F and u s c, a E: E are members of U, for any sea-a a 
lar c. Additional properties of U are discussed in theorem 5.4 and section 6. 

In order to show that Y(v) is an n*-dimensional polyhedral set, we need 

the following discrete time Markovian model with state space {1, ••• ,n*}: 

For a E: F, let K(a) be the set of feasible decision. For~ E: K(a), let q~ 
a 

and P!e denote the associated reward and transition probabilities (we al-

ready noted that p!e :c: o, le p!e = 1). 

For a E: E, add a decision~ to the empty K(a) with ~q~0 = -1 and F~0 = o o a ae ae. 
Let~ denote the set of pure policies. 

For cf> E: ~, the quantities q(cf>), P(cf>), Il(cf>) and Z(cf>) are defined analogously 

to q(f), P(F), IT(f) and Z(f) for f € Sp. 
~* Also let {ga} be the maximal g~in vector for the new process. Note that 

q(cf>) s O for any cf> E: ~. The following theorem characterizes the subchains 

of P(cf>) on F: 

THEOREM 5.4. (P1topeJL.tlu 06 .6ubc.ha..l~ 06 P(cf>) on F}. 

Fix v E: V. Suppose for some poZ.icy cf> E: t., P(cf>) has a subchain c £ F. Then 

(a) Chas at Z.east two members. 

(b) q(cf>) is strictZ.y negative for at Z.east one a E: C. 
a 

(c) There exists a bou:nd M = M(v) such that 

max I ya - ye I s M 
a,eE:C 

(d) If y is a ray to Y(v) then ya= Ye, for aii a,e E: c. 

for any y E: Y(v). 



PROOF. 

(a) Part (a) follows from P~ < 1 for any a e F, and~ e K(a). aa 
(b) Let policy~ use action (i(a),f(a)) e K(a) for each a e C. For a e C, 
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define S(a) = {j I P(f(a)~( ). > O, for some n = 0,1,2, ••• }. Note that 
1 a J 

i(a) e S(a) and that: 

(5.6) a e C, i e S(a) imply P(f(a)) .. > 0 only if j e S(a). 
1J 

Now, assume to the contrary that for each a e C, 0 = q(~) = a 
= Z(f(a))b(v,f(a))i(a)" Since f(a) e SPMG' b(v,f(a)) ~ 0 with equality 

for components in R(f(a)). Hence, using (2.3), 0 = q(~} = a 

= ljtR(f(a)) b(v,f(a))j = ljtR(f(a)) r:=o [P(f(a))]~(a)j"b(v,f(a))j.· 
Hence: 

(5.7) b(v,f(a)). = 0 
J 

for j e S(a), a e C. 

We now exhibit a policy f 0 e SRMG with the contradictory properties 

that R0 = u C [R*a u S(a)] is closed under P(f0 ) while every state ae 
in R0 is transient for P(fn). 

f * * · f 0 f 11 Take e SRMG" Define as o ows: 

Initially, for i e R* set {k I f~k > O} = {k I f~k > O}. Then for 

i e S(a) add {k I f(a).k > O} to {k I f~k > O}. Finally, for i en\ R0 , 
1 k 1 

set {k I f~k > 0} = {k e L(i) I b(v). = O}. 
1 · 1 

From (5.7) the definition off* in combination with theorem 3.1 

part (e), and the definition of f 0 on n \ R0 it follows that f1k > 0 

implies b(v)~ = O, for all i, hence f 0 e SRMG" 

For i e R0 , (5.6) and the fact that f* e S~G imply that 

P(f0 ) •• > 0 only for j e R0 ; hence, R0 is closed under P(f0 ). 
1J 
As ljtR*a IT(f(a))i(a)j > O, there exist a j t R*a, and an integer 

n ~ 1, with P(f(a))~( )" > 0 and so P(f0 )~( ). > O. Hence i(a) e R*a is 
1 a J 1 a J 

transient under P(f0 ), since the subchains of a maximal gain policy are 

all contained within a single R*S (cf. theorem 3.2 part (c)). 
b h f h 11 . *a . Now, o serve tat or eac a e C, a states 1n R conmun1cate 

with i(a) e R*a for P(f0 ), since they communicate with i{a) for P(f*). 

However, this implies that each state in u C R*a is transient, since a 
ae 

transient state cannot be reached from a recurrent state. 
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It remains to prove that e·ach j E S(a), (a.EC),· is transient for P(f0 ). 

Fix j E S(a), a E C. Since f (a) is maxim.al gain, there is a state r ER *6, 

for some S, such that P(f(a))~ > 0, for some m ~I. Hence P(f 0 )~ > 0. 
Jr Jr 

Let n be such that P(f(a))~( ). > O. Finally SEC, follows from 
l. a J 

II(f(a)). ( ), 
1 a r = [P(f(a))t;r(f(a))J.() 

1 a r 

n 
~ P(f(a)).( )" II(f(a)). > 0 

1 a J Jr 

and the fact that C is a subchain of P(¢). This implies that r 1s tran­

sient for P(f0 ) and so is j, since a transient state cannot be reached 

from a recurrent state. 

(c) Introduce a slack vector t ~ 0 and rewrite (5.4) as: 

(5.8) y = q(¢) + t + P(¢)y. 

Let {ic(¢) I a EC} denote the unique equilibrium distribution of P(¢) 
a 

on c. Multiply (5.8) with Z(¢). Then, since Z(¢) 6 = 0 for SEC, y ,t. C 
y . 

( cf. ( 2 • 3) ) : 

Y = l Z(¢)sy(q(¢)Y+ty) + l nc(¢)YyY, 
S YEC yEC 

all S E C 

Part (c) follows with the choice M = 2 maxs C n: C IZ(¢)s I [ lq(¢) I+ t J} 
E O.E a. a. a. 

provided one shows that [t I a E CJ are bounded uniformly in y, How­
a. 

ever, by multiplying (5. 7) with 1f (¢) one obtains: 

The boundedness of [t 8 I SE CJ follows since nc(¢) 8 > 0 for SEC. 

(d) Use part (c) and (5.5). D 

Together part (b) of theorem 5.4 and the choice q!0 = -1, for a EE 

imply: 

COROLLARY 5.1. g: < 0 for a 



THEOREM 5.5. (Cf. theorem 3 of [15J.) Fi:r: v € v. Given a:ny {y I a€ E} a 
there e:x:ist {y I a€ F} such that 

a 

* 
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~ (5.9) 
~ n ~~ 

Y > q + I P sYs, 
a a S=l a 

for> aZZ a€ F, ~ € K(a) 

holds with strict inequaUty. 

PROOF. It suffices to show that there exists a solution y0 to (5.9) for some 

{y: I a€ E} since a solution for any {ya I a€ E} is then obtained by add­

ing a ray u with u = y - y0 , for a€ E (cf. remark 3). 
~~ a a~~ a 

Since q O = -1 and P O = 1, for a EE, the solution set to (5.9) is 
a aa ~ * ~ 

1 d b" dd . h . 1 · . ~ 0 ,n ~ 0 E not a tere ya 1ng t e 1nequa 1t1es Ya> qa + lS=l PaSYS' a€ • Now, 

assume to the contrary, that the solution set of (5.9) is empty. Then for 

the LP-problem: 

min Z subject to 

we have min Z ~ O, which according to theorem 2 of [14], implies 

max * g* ~ O. This contradicts corollary 5.1. D a= 1, ••• , n a 

Since the solution set to (5. 9) is open, for any y satisfying (5. 9), there 

exists a o > O, so that ly - y'I < o implies y' € Y(v). Hence then* para­

meters (y 1, ••• ,y *)maybe chosen independently over some (finite) region. 
R n * 

V and V have exactly n = RE u FD degrees of freedom, of which DEi are 

globally independent and DFD are only locally independent. 

VI. TRIANGULAR DECOMPOSITION OF Y(v) 

Define the following partition of F: 

FR, = {a c F for every ct, €~,a reaches E with certainty under P{ct,)l 
Ft {a a is transient ~ R, 

= E F under any P(ct,), ct,€~, but at F} 
Fr = {a E F a is recurrent for some P(ct,), cf, E ~}. 
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The set of inequalities (5.2) then decouples into 3 parts: 

(6 .1) Ya ~ [er!+ I 
SEEU(F\Ft) 

~~ ] I ~~ 
paBYB + SEFt paSYS' a € Ft 

' ~ € i<a> 

(6.2) [ci! + I P!sYs] 
~~ FR, i<<a> Ya ~ + I P sY B' a € ~ € 

SEFR, a ' SEE 

(6.3) ~ [ci~ + I P!aYa] + I 
~~ r 

~ € i<<a>. Ya p aSY B' a € F ' 
SEEu(F\Fr) SEFr 

The above decomposition implies that the following vectors belong to U: 

u0 = cJ' a€ E; ua = c2, a€ FR,; ua = c3 , a€ Ft u Fr; for all c 1,c2,c3 with 

cJ s c 2 s c3 • For~€~, let W{~) = [P(~)08 J0 ,SEFR.uFt• 
Then W(~) is a substochastic transient matrix, with limn+<><> W(~)n = 0 

and [I - W{~)J-l = I:=o W(~)n exists and is non-negative. Then, taking to­

gether (6.1) and (6.2) and using the proof of lemma J of [7], we obtain: 

(6.4) 

Insert (6.4) into (6.3) in order to obtain: 

(6.5) 

where 

Notice that q~'~ s O and P~'~ ~ 0 with\ P~'~ = J. 
a ' aB l13€EuFr aB 

Observe that (6.5) relates {y I a€ Fr} to {y I a€ E}, and remark 
a a 

that (6.5) always has a solution {y I a€ Fr} no matter how {y I a€ E} 
a a 

are specified (take ya= maxSEE y8, for all a€ Fr). 

THEOREM 6.1. Fix v € V. 

(a) If y € Y(v), i.e. if y satisfies (6.1), (6.2), (6.3) it satisfies (6.5) 

as weiz. 



(b) 
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ConverseZy, if one piaks {y I a EE} a:t'bitra:PiZy, ne:x:t piaks 
a 

{y I a E Fr} to satisfy (6.5), ne:x:t defines {y I a E Ft u Ft} as the 
a a 

right-hand sule of (6.4), then the resuZting veator {y I a EE u F} 
a 

satisfies (6.1), (6.2), (6.3), henae beZongs to Y(v). 

PROOF. 

Part (a) follows from the above remarks. 

(b) Observe that the right-hand side of (6.4) may be interpreted as the 

maximal total expected return of a terminating discrete-time Markovian 

model, with Ft u Ft a~-state space. Because of the choice: 

(6.6) 

,,. Ft t for a ~ u F , 

it hence follows from corollary 2 of [21] 

+ LeEEuFr P($)aeYe + LeEFtuFt W($)aaYe, a 
satisfies (6.1) and (6.2) 

that y = q($) + 
t a a 

E F. Hence, the vector y 

In addition, using corollary 1 of [21], it follows that there 

exists a$* E i that maximizes the right-hand side of (6.6) simulta­

neously for all a E Ft u Ft, given any {y0 I a EE u Fr}. Consider the 

* inequalities (6.5) for$=$ , and use (6.6) in order to show that the 

vector y satisfies (6.3) ~swell. D 

REMARK 4. This provides a triangular decomposition in that one first deter­

mines {y I a EE}, next {y I a E Fr} and finally {y I a E Ft u Ft}. The 
a a a 

last part can actually be decomposed further, by first determining 

{y I a E Ft} and then determining {y I a E Ft} via 
a a 

t 
a E F 

y = max l [I - W($)t]~~ [q($)e + l P($)Byyy], (l E Ft, 
a $E~ SEFt yEEuFiupr 

where the transient matrices W($)t and W($)t are defined by: 

t ~ 
W($) = [P($) SJ S pt• a a, E 
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Example 2 below has 

R* = 7 R*i with R*i 
ui=I 

E ={a= I}; Fi= {a= 

N = 7, 

= { i}' 

4}; Ft 

* o, g. = 
1 

i.e. * n 

= {a = 

L(i) = K(i) for all i 

= 7 

7}; Fr = {a= 2,3,5,6}. 

Vis the solution set to the following decomposed set of inequalities: 

a = I : VI arbitrary 

a = 4: V4 
> 2 - q4 + v I 

a = 7: V7 > q2 + - 7 .5(vtv2) 

a = (2,3}: q~ ~Vz""'V3~ ~1 
a = 2 (5,6): vs 2 q5 + v6, 

v6 2 q2 
6 + V5, 

1 k 

I 1 
--- ---

2 1 

2 

3 1 

2 
--- ---

4 ] 

2 
--- ---

5 ] 

2 

6 l 

2 

3 

7 I 

2 

k q. 
1 

0 
---

0 

0 

0 

0 
---

0 

0 
---

0 

0 

0 

0 

0 

0 

0 

k Absent p .. are zero. 
1J 

2 
q5 + 

qi+ 

1 
---

---

I 
---

.5 

.5 

3 
.S(v tv 2), 

2 3 2 .r(v 1+v 3) q6 + q5 + q6 + .5q2 + 

.5(v1+v2), q3 + 2 + .5(v1+v 2) • 
6 • 5q2 

ExamEle 2 

--- --- --- --- --- ---

I 0 

0 l 

0 1 

l 0 
--- --- --- --- --- ---

I 

--- --- --- --- --- ---
l 0 

0 1 

0 l 

I 0 

.5 

I 

.5 
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