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A General Markov Decision Method, I: Model and Techniques*) 

by 

G. De Leve, A. Federgruen & H.C. Tijms 

ABSTRACT 

This paper provides a new approach for solving a wide class of Markov 

decision problems including problems in which the state-space is general 

and the system can be continuously controlled. The optimality criterion is 

the long-run average cost per unit time. We decompose the decision processes 

into a common underlying stochastic process and a sequence of interventions 

so that the decision processes can be embedded upon a reduced set of states. 

Consequently, in the policy-iteration algorithm resulting from this approach 

the number of equations to be solved in any iteration step can be substan­

tially reduced. Further, by its flexibility, this algorithm allows to 

exploit any structure of the particular problem to be solved. 

KEY WORDS & PHRASES: Markov decision problem, general state space, continu­

ously controlled, average cost criterion, embedded 

decision processes, policy-iteration algorithm 

*) . . . . . . . h This paper is not for review; it is meant for publication elsew ere. 





I • INTRODUCTION 

This paper deals with a general Markov decision model introduced by 

DE LEVE [2]. In this model which generalizes the familiar Markov decision 

models treated by HOWARD [10] and JEWELL [12] the state space is arbitrary, 

the system can be controlled at each point of time and the decision processes 

may be general Markov processes. The criterion is the long-run average cost 

per unit time. This paper treats the model studied in DE LEVE [2] under the 

simplifying assumption that any decision process has a fixed regeneration 

state as is the case in almost any application. Under this assumption a 

self-contained exposition of the model will be given with proofs that have 

been considerably simplified. Emphasis will be put upon the presentation of 

a policy iteration method. 

The approach we will follow is based on the following decomposition 

idea. Any decision process is considered as the result of a so-called 

natural process and interventions made in certain states of the system. 

The natural process could be considered as an underlying stochastic process 

which describes the evolution of the state of the system when the system is 

left uncontrolled, and interventions could be considered as those decisions 

that disturb the natural process. Also, the costs incurred in any decision 

process are decomposed into costs incurred in the natural process and im­

mediate decision costs for taking interventions. It will appear that by this 

"decomposition approach" we can in fact restrict ourselves to embedded 

processes of the decision processes. This will have as main advantage that 

in the value-determination operation of the policy iteration method we need 

only to solve a system of equations for an embedded set of states instead of 

a system of equations having the same order as the number of states. This 

may considerably reduce the number of equations to be actually solved. 

Another advantage of considering embedded processes is the fact that these 

processes have often desirable properties (e.g. recurrency properties) which 

are not satisfied by the original processes. It is also worth mentioning 

that the above approach allows for exploiting any structure of the particular 

problem to be solved since this structure will be reflected in the natural 

process. However, as a consequence of the decomposition approach the policy 

iteration method needs another operation in addition to the familiar policy 
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improvement routine. This operation is called the cutting operation and 

involves actually the optimal stopping of a Markov process as was notified 

1.n WEEDA [ 15, I7]. 

The policy iteration method we will derive is not a "ready-made" tech­

nique, but its final form depends heavily on the structure of the particular 

problem to be solved. For each problem we have to specify the basic prin­

ciples of our method. This flexibility which is inherent to our approach may 

result in a simple algorithm. Roughly speaking, we attack a particular 

problem to be solved as follows. First we perform a preparatory part in which 

we choose a state space, a natural process and feasible decisions according 

to the following principles. The state space must be such that at each point 

of time the state of the system can be represented by a point of the state 

space. In each state of the system the set of feasible decisions contains 

"interventions" which cause an instantaneous (possibly random) change of 

the state of the system or the "null-decision" which leaves the natural 

process untouched, or both. The natural process and the feasible decisions 

must be chosen such that for any policy the corresponding decision process 

can be seen as a superimposition of the natural process and interventions 

prescribed by that policy. The choice of these elements will be determinat­

ive for the final form of the policy iteration method. Having made the above 

choices we can determine quantities which play similar roles as the one-step 

expected costs, the one-step expected transition times and the one-step 

transition probabilities in th~ familiar Markov decision models. We consider 

the average cost criterion for the class of stationary policies. An iteration 

step of the policy iteration method for determining an optimal policy involves 

three operations. In the value-determination operation we solve for the 

current policy a system of equations for the embedded set of states in which 

the policy prescribes an intervention. After we have computed the average 

cost and the relative values for the current policy, we next perform a policy 

improvement operation. By the design of our method this operation yields a 

new policy whose set of intervention states is at least as large as that of 

the previous policy. This implies the necessity for an additional operation 

which may cancel interventions in favour of the decision to leave the natural 

process untouched. This operation is called the cutting operation and in­

volves actually the optimal stopping of the natural process. Since in most 
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applications the natural process is a Markov process having specific struc­

ture, the ultimate form of this cutting operation usually turns out to be 

very simple. 

In section 2 the basic elements of our model will be defined. The em­

bedded decision processes are studied in section 3 where we also derive a 

formula for the average cost of a given policy. This formula in itself may 

be very useful. In section 4 we introduce the basic tools for the policy 

iteration method. This method will be further discussed in section 5. In the 

appendix we give several proofs. We should point out that in this paper we 

shall not discuss measurability questions. For a treatment of these questions 

we refer to DE LEVE [2]. Throughout this paper the words set and funation 

serve as abbreviations for Borel set and Baire functions. 

In a subsequent paper [4] we shall discuss several applications of the 

approach given in the present paper. 

2. THE ELEMENTS OF THE MODEL 

This section formulates the elements of the model. For any particular 

problem these elements have to be first specified before the actual solution 

of the problem can be started. 

ELEMENT I. There is a state spaae X suah that at eaah point of time the 

state of the system aan be desaribed by a point in X, where Xis a subset 

of a finite dimensional Eualidean spaae. 

ELEMENT 2. There is a stochastic process called the natural process. This 

process has X as state space and could be considered as a proaess describing 

the evolution of the state of the system when the system is left unaontrolled. 

The natural proaess is a strong Markov process having stationary transition 

probabilities, and sample paths whiah are almost surely right continuous and 

have a finite number of discontinuities in any finite time interval. 

We note that in applications the choice of the state space and the 

natural process may involve the use of the supplementary variable technique. 

The natural process will be controlled by interventions. 
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ELEMENT 3. For each state x EX there is a finite set D(x) of feasible 

decisions in state x, where a distinction is made between null-decisions 

and interventions.A null-decision is a decision that does not disturb the 

natural process. An intervention is a decision that interrupts the natural 

process and causes an instantaneous (possibly random) change of the state 

of the system. 

We may assume that a transition caused by an intervention takes no time 

because at each point of time the state of the system is defined. In most 

applications the effect of an intervention is deterministic. The assumption 

of the finiteness of the sets of feasible decisions is not essential in this 

paper. The elements 1-3 have to be chosen in such a way that the following 

element applies. 

ELEMENT 4. The states in which the null-decision is not feasible constitute 

a non-empty closed set A0 (say) such that for-each initial state, with 

probability I, the natural process will eventually reach the set A0. Further, 

with probability 1, any intervention in a state of A0 causes an instantaneous 

transition to a state outside A0 . 

ELEMENT 5. In the natural process there is incurred a cost at rate c 1(x) 

when the system is in state x, and there is an immediate cost c2 (x,y) at 

time t when the natural process is in state x at time t and is in state y 

at time t where xi y. There is' incurred an immediate decision cost c3(x,d) 

when in state x the intervention d E D(x) is made. The functions c 1, c2 and 

c3 are non-negative. 

The non-negativity assumption in element 5 is made only for convenience 

and may be considerably relaxed. In the next element we introduce the quan­

tities k(x;d) and t(x;d). It will appear hereafter that in our model these 

quantities play the same role as the one-step expected costs and transition 

times in the semi-Markov decision model. The sets A01 and A02 introduced 

below are only used to define the functions k(x;d) and t(x;d) and may be 

freely chosen. We need the following notation which will be frequently used 

hereafter. 
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Let 

x0 = {x!D(x) contains an intervention}, 

and for any x E x0 and intervention d E D(x), let 

T = the state into which the system in transferred instanta-x,d 
neously by the intervention din state x. 

ELEMENT 6. Choose two non-empty closed sets A01 ::_ A0 and A02 ::_ A0 such that 

for each initial state, with probability J, the natural process will even­

ually reach AOi for i = 1,2. Let k0 (x) = 0 for x E A01 , and, for xi A01 , 

let k0 (x) be the expected cost incurred up to and including the first epoch 

at which the system enters the set A01 when the system is subjected to the 

natural process and is in state x at epoch 0. For any x E x0 and inter­

vention d E D(x), let k 1(x;d) = c3 (x,d) + Ek0{Tx,d). That is, k 1(x;d) the 

expected cost incurred up to and including the first epoch at which the 

system enters A01 when at epoch O intervention dis made in state x and 

after this intervention the system is subjected to the natural process with 

the state resulting from this intervention as initial state. 

Similarly, let t 0 (x) = 0 for x E A02, and, for xi A02, let t 0 (x) be the 

expectation of the first epoch at which the system enters the set A02 when 

the system is subjected to th~ natural process and is in state x at epoch 

O. For any x E x0 and intervention d E D(x), let t 1(x;d) = Et0 (Tx,d). It is 

assumed that k0 ,k1,t0 and t 1 are finite functions. For any x E x0 and inter­

vention d E D(x), let 

Hence k(x;d) equals the immediate decision cost of intervention din state 

x plus the expected cost incurred in the natural process until the first 

entry of this process into the set A01 starting from the state which is the 

immediate result from intervention din state x minus the expected cost 

incurred in the natural process until it assumes for the first time a state 

of A01 starting from state x. Similarly, we can interprete t(x;d). 
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The class of policies we will consider is denoted by Zand is described 

by the following element. 

ELEMENT 7. Any poZicy z E Z is a measurabZe function that adds to each state 

x EX a singZe decision z(x) E D(x). The states in which poZicy z E Z pre­

scribes an intervention constitute a cZosed set A such that z 
Pr{T () EA}= 0 for aZZ x EA and Pr{T ()EA} is a Baire function 

X,Z X Z Z X,Z X 

of x E A for any set A. z 

The process resulting from the control of the natural process by a 

policy z E Z is called the decision process corresponding to policy z. 

Between two successive interventions the behaviour of the decision process 

is described by the natural process. It is characteristic for our model to 

regard the decision process corresponding to policy z as a superimposition 

of the natural process and interventions made in the states of the embedded 

set A. Observe that A0 c A c x0 • For any pa_rticular problem to be solved 
z - z -

we have some freedom in choosing the elements 1-3 provided that for any 

policy the superimposition of the natural process and the interventions 

prescribed by that policy agrees with the evolution_ of the system result­

ing from the specific control as executed by the decision maker in reality. 

Since the final form of the policy iteration method will depend in a 

crucial way on the choice of the elements 1-3, exploiting this freedom 

will turn out to enable considerable simplifications. 

REMARK I. We may also consider a wider class of stationary policies z where 

the closedness of the intervention set A is not required provided that for 
z 

each initial state the entrance state of the natural process into the set 

A is well-defined. A similar remark applies to the closedness of the above 
z 

sets A0 , A01 and A02 • Further, we may replace the assumption that, with 

probability I, any intervention prescribed by policy z causes an instanta­

neous change to a state outside A by the weaker assumption that for each 
z 

initial state x EA, with probability I, policy z transfers the system to 
z 

a state outside A after a number of interventions uniformly bounded in x. 
z 

The analysis below requires only minor modifications for this wider class 

of policies. 



7 

3. THE EMBEDDED DECISION PROCESSES 

In this section we derive a formula for the average cost of a policy in 

z and introduce the system of equations to be solved in the value determina­

tion operation of the policy-iteration algorithm. Unless stated otherwise, we 

assume that a fixed policy z is used. In this section and the next one, we 

introduce assumptions Al-A6. 

Al. For any poZicy z E Z there are positive 

under poZicy z for each initiai state x 

numbers o and£ such that z z 
EA the probabiZity that the z 

time untii the next 

o is at ieast £ • 

return of the decision process to the set A exceeds z 

z z 

This assumption implies that, with probability 1, the number of inter­

ventions is finite in any finite time interval. 

We now introduce a discrete-time Markov process embedded in the decision 

process corresponding to policy z. Given that at epoch O the system is in 

state x EA, define I as the state in which policy z prescribes for the z n 
nth time an intervention, n = 0,1, ••• (at epoch O p~licy z prescribes for 

the 0th time an intervention). Using the strong Markov property of the 

natural process, it can be shown that {I} is a discrete-time Markov process 
n k 

with state space A, cf. DE LEVE [2]. Fork= 0,1, ••• , let p (x,A,z) = 
z 

= Pr{Ik E AII0 = x} be the k-step 

Markov chain {I}, where we write 
n 

transition probability function of the· 
I p (x,A,z) = p(x,A,z). In the next assump-

tion we assume that for each policy z the process {I} has a fixed recurrent 
n 

state. 

A2. For any poZicy z E Z there is some states (say) such that Pr{I = s 
z n z 

for some n ~ 1 II0 = x} = 1 for aii x E Az and E(NJI0=sz) < 00 ~here 

N = inf{n ~III = s }. 
n z 

Now, by a general result in Markov chain theory (see Theorem 9 in the 

appendix), the Markov chain {I} has a unique stationary probability distri­
n 

bution Q(.,z) (say) such that 

(I) Q(A,z) 
-I 

=limn 
n-+<x> 

n 
L 
k=O 

k 
p (x,A,z) for all x and A, 
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(2) Q(A,z) = f A p(y,A,z)Q(dy,z) 

z 

for all A. 

A3. For any policy z E Z, 

(a) f A k0 (x)Q(dx,z) < 00 and f A t 0 (x)Q(dx,z) < oo 

z z 

(b) For each initial state x EX holds that under policy z both the time 

until the first return of the decision process to states and the cost z 
incurred during this time have a finite expectation. 

Now, let Z(t) be the total costs incurred during [O,t), t > O. We shall 

now derive a formula for the average cost of policy z. This formula in 

itself may be very useful, see [4]. 

THEOREM I. Suppose that Al-A3 hold. Then for each initial state, Z(t)/t 

converges fort+ 00 both in expectation and with probability 1 to 

(3) g(z) = f A k(x;z(x))Q(dx,z)/ f A t(x;z))Q(dx,z). 

z z 

PROOF. For n ~ O, let T be the epoch at which policy z prescribes for the n 
nth time an intervention, and let K be the decision cost of the nth inter­n 
vention plus the other cost incurred in (Tn,Tn+IJ. For any x E Az, let 

,(x,z) = E(T1 II0=x) and let K(x?z) = E(K 1 II0=x). 

Consider first the case where the initial state is s • Following the z 
proof of Theorem 7.5 in ROSS [13] and using Al, A2 and A3(b), we get 

(4) lim t- 1EZ(t) = 
t+oo 

n n 
I EK./lim n-J I E(T. 1-T.), 

i=O 1 n➔oo i=O i+ 1 

where both the numerator and the denumerator of the right side of (4) are 

finite. Next, by using a general result in Markov chain theory (see Theorem 

9 in the appendix), we get 

= f K(x,z)Q(dx,z)/ 
A 

z 

,(x,z)Q(dx,z). 
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We note that the finiteness of both the numerator and the denumerator of the 

right side of (5) follows frow the non-negativity of Kand T, Proposition 17 

on p.231 in ROYDEN [14] and the finiteness of both components of the ratio 

in (4). We now prove 

(6) 
IA 

K(x,z)Q(dx,z) = 
JA 

k(x;z(x))Q(dx,z) 

z z 

(7) 
JA 

T(x,z)Q(dx,z) = 
IA 

t(x;z(x))Q(dx,z). 

z z 

Observe that the right side of (7) is positive since the function Tis 

positive. In element 6 we have introduced the sets A01 and A02 and the 

functions k0 , k 1, t 0 and t 1. By Az =- A0 we have Az =- A0i for i = 1,2. Using 

this and the definitions of the functions k0 , k 1 , t 0 , t 1 , Kand T, it is 

easy to see 

k 1 (x;z(x)) K(x,z) + 
JA 

t 1(x;z(x)) = T(x,z) + 
JA 

z 

z 

k0 (y)p(x,dy,z) 

t 0 (y)p(x,dy,z) 

for all x EA, 
z 

for all x E A • 
z 

Now, integrate both sides of each of these equalities with respect to Q(.,z). 

Using the non·-negativity of the functions involved, part (a) of A3, relation 

(2) and the finiteness of both components of the ratio in (5), we get after 

an interchang,e of the order of integration the desired equations (6) and (7). 

Together (5)-(7) prove that EZ(t)/t converges to g(z) as t ➔ 00 • However, 

using part (b) of A3, it is easy to verify that limt➔ooEZ(t)/t is independent 

of the initial state. Moreover, by Theorem 3.16 in ROSS [13], we have for 

each initial state, with probability l, lim Z(t)/t equals lim EZ(t)/t. 
t➔oo t-¼o 

This ends the proof. 

The quantity g(z) represents the long-run average (expected) cost per 

unit time when policy z is used. This quantity is independent of the initial 

state. A policy z* E Z is called optunal when g(z*) ~ g(z) for all z E Z. 
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The average cost g(z) can also be found by solving an embedded system 

of equations. In solving this system we obtain in addition a function that 

will be used to improve policy z. 

A4. For any policy z E Z, 

(a) E (NJI0=x) is bounded in X E A where N = inf{n ~ I I = s } ., z n z 
(b) k(x;z(x)) and t(x;z(x)) are bounded functions of x E A. 

z 

Consider now the following system of functional equations for the states 

of A, 
z 

(8) v(x) = k(x;z(x)) - gt(x;z(x)) + Ev(I 1 I I 0=x), 

For any bounded solution {g,v(x)lx EA} to (8), define 
z 

(9) v(x) = Ev(S[x,A ]) 
z 

where for any x EX and closed set A.=. A0 we define 

X E A • 
z 

for x i A , 
z 

S[x,A] = the first state in the set A taken on by the natural 

process starting from state x. 

Observe that by A.=. A0 and element 4, the random variable S[x,A] is well­

defined. Further, observe that S[x,A] = x for x EA. 

The next theorem which is related to Theorem I in DERMAN & VEINOTT [6] 

shows that a bounded solution to (8) exists. 

THEOREM 2. Suppose that AI-A4 hold. Then 

(a) Let g = g(z) and, for x EA., let 
z 

(10) w(x) = nrO JA {k(y;z(y)) - gt(y;z(y))} pn(x,dy,z), 

z 

where po(x,A,z) = l for x EA, po(x,A,z) = 0 for xi A, and for n ~ I, 

Pr{I 
n 

for l x}. 
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Then {g,w(x) I x EA} is a bounded solution to (8) with w(s) = O. 
Z Z. 

(b) For any bounded solution {g,v(x)} to (8) holds g = g(z). 

(c) For any two bounded solutions {g,v1(x)} and {g,v2(x)} to (8) there is a 

constant c such that v 1(x) - v2 (x) = c for all x E Az. 

(d) Let y be an arbitrary state in X, then together (8) and (9) have a 

un1.-que bounded solution with v(y) = 0. 

PROOF. (a) By EN= 2:=0 Pr{N > n}, we have E(NllO=x) = 2:=0 pn(x,Az,z) for 

x EA. Using this and A4, we get that w(x) is bounded. From (3) and the 
z 

relation Q(A,z) = I; pn(sz,A,z)/E(NIIO=sz) (see (24) in the appendix), we 

get w(s ) = 0. Using this, A4 and the relation 
z 

... 11( A ) J ... n-1 ( A ) ( d ) p x, ,z = p y, ,z p x, y,z 
A \{s} 

z z 

for n ~ 1, 

we next find that {g(z),w(x) I x EA} satisfies (8). 
z 

(b) Integrating both sides of (8) with respect to Q(. ,z), and using the 

relations (2) and (3), we get (b). 

(c) Using part (b), we have v 1(x) - v2 (x) = J {v1(y) _- v2 (y)} p(x,dy,z) for 

x EA. Iterate this equality n times and average over n. Letting n + 00 and 

using\}), we get v/x) - v2 (x) = J{v 1(y) - v2 (y)} Q(dy,z) for x E Az which 

proves (c). 

(d) This assertion follows from (a)-(c) and the fact that {g,v(x)+y} satis­

fies (8)-(9) for any constant y when {g,v(x)} is a solution to (8)-(9). 

REMARK 2. In this remark we first give some relations which may be useful to 

solve (8)-(9) in applications. Let {g,v(x)} be any solution to (8)-(9). It 

irmnediately follows from (8)-(9) that 

( 1 1 ) v(x) = k(x;z(x)) - gt(x;z(x)) + Ev(T ( )) x,z X 
for x EA. 

z 

Further, let V be any closed set with V ~A. Then, by (9) and the theorem 
- z 

of conditional expectation, 

(12) v(x) = Ev(S[x,V]) for x I. A • 
z 
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We further note that in fact we need only to solve (8) in order to obtain a 

solution to (8)-(9). The dimension of the system of equations (8) is equal 

to the dimension of the embedded set A. However, the dimension of A is z z 
determined by the choice of the natural process because an intervention is 

a decision which interrupts the natural process. Therefore, to keep the 

number of equations to be solved as small as possible it may be advantageous 

to make "obvious optimal decisions" part of the natural process. Finally, we 

note that in applications in which the effects of the interventions are 

deterministic we may often solve (8)-(9) by solving a system of equations 

for the states T ( )' x €A. In particular for structured policies z the x,z X Z 

state T ()maybe the same for different states x € A which has a con-x,z X Z 

sequence that the dimension of the latter system of equations may be even 

considerably smaller than the dimension of the set A. This observation also 
z 

underlines the advantage of choosing the state space such that at each point 

of time the state of the system is well-defined. 

4. BASIC TOOLS FOR THE SOLUTION TECHNIQUES 

This section discusses the basic tools for the solution techniques. We 

fix a policy z1 €Zand a bounded solution {g(z 1), v(z 1;x)} to (8)-(9) with 

z = z 1. We now define for any x € X and d € D(x), 

ford= null-decision, 

(13) { 
v(z 1 ;x) 

v(d.z 1 ;x) = 

k(x;d) - g(z 1)t(x;d) + Ev(z 1;Tx,d) otherwise. 

Further, for any policy z € Z, define 

(14) j v(z(x).z 1;x) 

v([z]z 1 ;x) = 

Ev([z]z 1;S[x,Az]) 

for x €A, 
z 

for xi A. 
z 

Note that, by (11) and (13), v(z 1{x).z 1;x) = v(z 1;x) for all x, so, by (9) 

and (14), 
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(15) for all x EX. 

We now state the following main theorem which will be proved in the appendix. 

THEOREM 3. Suppose that Al-A4 haul. Let policy z E Z be such that 

v([z]z 1;x) $ v(z 1;x) for all x E x0 • Then g(z) $ g(z 1). The assertion 

remains true when both inequality signs are reversed. 

(16) 

This theorem implies that policy z 1 is optimal when 

v(z 1;x) = min v([z]z 1;x) 
ZEZ 

for all x E x0 . 

This relation may provide a direct approach for determining an optimal 

policy, see [3] and [4] for applications. However, in most cases an iterative 

approach will be used. When we want to improve policy z 1, relation (16) 

suggests to look for a policy z2 E Z such that 

(17) v([z2Jz 1;x) = min v([z]z 1;x) 
ZEZ 

for all x E x0 . 

Then, by (15) and Theorem 3, g(z 2) $ g(z 1). We shall now prove that a policy 

z2 satisfying (17) can be found by performing two operations. To do this, we 

need the following concept. For any policy z E Zand closed set A.=. A0 , let 

(18) X € X, 

where we write v(A.[z 1Jz 1;x) = v(A.z 1;x). By (15) and (18), 

(19) X € X. 

It may be helpful to interprete v(A.[z]z 1;x) as the expected stopping cost 

for the natural process starting from state x when this process must be 

stopped at the states of the set A and there is a cost of v([z]z 1;y) for 

stopping at state y. The next theorem which will be proved in the appendix 

shows that the stopping principle given by (18) enables us to generate 

improved policies. 
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THEOREM 4. Suppose that Al-A4 hold. Let z € Z be such that A ~ A and z - z 1 

v([z]z 1;x) ~ v(z 1;x) for all x E Az. Let A be any closed set with 

A0 .::. A.::. Az such that v(A.[z]z 1;x) ~ v([z]z 1;x) for all x E Az. Suppose that 

policy zA E Z where zA(x) = z(x) for x EA, and zA(x) = null-decision, other­

wise. Then g(zA) ~ g(z 1). 

This theorem states that policy zA is at least as good as policy z1 if 

for the natural process the set A is as stopping at least as good as the set 

A for each initial state of A when there is a cost of v([z]z 1 ;y) for z z 
stopping at state y. An important case of Theorem 4 arises when z = z 1 • 

The next lennna which follows from Lennna 10 to be proved in the appendix 

shows that A1 n A2 has the properties of the set A in Theorem 4 if both A1 

and A2 do. For this useful lemma, we need the following assumption. 

A5. For any closed set A with A0 .::. A.::. x0 holds that for each initial state, 

with probability 1, the nwnber of times where the natural process enters 

A before it enters A0 is finite. 

LEMMA 5. Suppose that Al-A5 hold. Let policy z be as in Theorem 4 and let 

the sets A 1 and A2 be as the set A in Theorem 4. Then, for the natural pro­

cess the set A 1 n A2 is as stopping set at least as good as each of the sets 

A1 and A2 for each initial state of Az when there is a cost of v([z]z 1;y) 

for stopping at state y. 

We now have available the tools for determining a policy z2 satisfying 

(17). To do this, we first perform a policy improvement operation in which 

we add to each state x € x0 a decision d € D(x) for which v(d.z 1;x) is 

minimal where we choose d = z 1(x) when this decision minimizes v(d.z 1;x). 

In this way we obtain a policy zj. It is assumed that zj € Z. By the con­

struction of zj and the fact that v(d.z 1;x) assumes the same value for both 

d = z1 (x) and d = null-decision, we have 

(20) 
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By taking z = zi and A= Az in Theorem 4, we have g(zi):,; g(z1). Although we 

obtain an improved policy, it will be clear from (20) that we need a second 

operation which may replace interventions prescribed by policy zi by null­

decisions. This so-called cutting operation will yield the desired policy 

z2 • Therefore we need 

A6.(a) There is a non-errrpty cl@s R of closed sets A with A0 .::. A.::. x0 such 

that, fo:r> aU x E x0 , v(A.[ziJz 1 ;x)::;; v(B.[ziJz 1;x) for any closed set 

B with Ao.::. B.::. XO. 

(b) The inte:r>section of aU sets belonging to R belongs also to R. 

Observe that A6(a) requires that there is a set A which is an optimal stop­

ping set for the natural process for each initial state of x0 when the natu­

ral process must be stopped at the states of A0 , may be stopped at the states 

of x0 , and must be continued outside x0 and there is a cost of v([ziJz 1 ;y) 

for stopping at state y. By a well-known result in the theory of optimal stop­

ping (cf. chapter 8 in DERMAN [7]) A6(a) holds when x0\A0 is finite. Further, 

we note that, by Lermna IO in the appendix, A6(b) holds when R is finite. 

In the appendix we shall prove 

LEMMA 6. Suppose that Al-A4 and A6(a) hold. Let A ER be such that Ac A, 
- zl 

and that poUcy zA E Z where zA (x) = zj (x) for x E A, and zA (x) = nuU-

decision, otherwise. Then z2 = zA satisfies (17). 

The next theorem which will be proved in the appendix shows that a set 

A ER such that Ac A, can be constructed. 
- zl 

* THEOREM 7. Suppose that Al-A6 hold. Let R be the intersection of aU sets 

belonging to R. Then 

(a) R * E R and R * c A ., 
- zl 

(b) R* is the smaUest closed set A with A0 c A c A , such that, for any 
- - zl 

(21) 

closed set B with A0 c B c A ., 
- - zl 

for all x EA,. 
zl 
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(c) Let A be any closed set with A0 ..::. A ..::. Az, such that (21) hoZds for aU 
1 . 

closed sets B with A0 ..::. B ..::. Az,. Suppose that poUcy z 2 E z, where 
1 

z2 (x) = zi(x) for x EA, and z2 (x) = null-decision, otherwise. Then z2 
satisfies ( 1 7). 

Since policy z2 satisfying (17) is optimal when z2 = z 1 (see (15)-(16)), 

Theorem 7 has as corollary 

THEOREM 8. Suppose that AI-AS and A6(a) with zj = z 1 hoZd. Then policy z 1 

is optimal when 

(a) v(d.z.1 ;x) ::::: v(z 1 ;x) for aU x E 

(b) v(B.z 1 ;x) ~ v(z 1 ;x) for all x E 

XO and d E D (x), 

A and all closed sets B with 
zl 

AO ..::. B ..::. Az . 
1 

5. POLICY ITERATION ALGORITHMS 

In this section we give a policy iteration alg9rithm and a modification 

of this method. As already stated, in solving any particular problem we have 

first to specify the elements 1-6 for this problem. We now give a policy 

iteration algorithm which generates a sequence {z} of policies such that 
n 

(17) applies for all n when z 1 .and z2 are replaced by zn and zn+l. 

Policy iteration algorithm 

Let z be the policy obtained at the end of the (n-l)th iteration step 
n 

(the first step is started with an arbitrary policy z 1 E Z). The nth step 

of the policy iteration algorithm proceeds as follows 

(a) Value-dete:Y'mination operation. Determine a bounded solution 

{g(z ), v(z ;x)} to (8) and (9) with z = z • n n n 
(b) Policy imp:Y'oVement operation. Construct policy z' by adding to each 

n 
state x E x:0 a decision d E D(x) for which 

v(d.z ;x) 
n 

= {v(zn;x) 

k(x;d) - g(z )t(x;d) + Ev(z ;T d) otherwise, 
n n x, 

ford= null~decision, 
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1.s minimal, where z'(x) = z (x) is chosen when z (x) is a minimizing 
n n n 

decision. 

(c) Cutting operation. Determine a closed set A with A0 .::. A.::_ Az, such that 
n 

A is an optimal stopping set for the natural process for each initial 

state x Ee A , when the natural process must be stopped at the states of 
z 

n 
A0 , may ·be stopped 

A, and there is a 
z 

n 

at the states of A, and must be continued outside 
z 

n 
cost of v(z'(y).z ;y) for stopping at state y. Define 

n n 

policy z +I by z 1(x) = z'(x) for x EA, and z +l(x) = null-decision, n n+ n n 
otherwisi=. 

This policy iteration method generates a sequence {z} of policies 
n 

where it is assumed that z ,z' E Z for all n ~ 1. It follows from the 
n n 

Theorems 3 and 7 that g(z 1) ~ g(z ) for all n. Further, policy zk is opti-n+ n 
mal when zk+I = zk. Under AI-A6 and the additional assumption that both 

states in A3 and the bounds in A4 can be taken independently of z E Z, it 
z 

can be shown that lim g(z) = inf 2g(z), see [5] where such a convergence 
n~ n ZE 

result has been also established under a recurrency condition which does not 

assume the existence of fixed regeneration states for the decision processes. 

We shall now discuss a modified policy iteration method which is based 

on Theorem 4 .. Therefore we first note that a policy f E Z may be improved to 

a policy f' E, Z (say) by adding to each state x E x0 any decision d such 

that v(d.f;x) ~ v(f;x) provided that we never choose d = null-decision in 

state x when f(x) is an intervention. Observe that this can always be done 

since v(f(x) .. f;x) = v(f;x). Then, we have Af' ~ Af and v([f']f;x) ~ v(f;x) 

for all x E Af,. 

We now state the following algorithm. 

Modified pollcy iteration algorithm 

Let policy f E Z be given. 

(a) Determine a bounded solution {g(f), v(f;x)} to (8)-(9) with z = f. 

(b) Construct a policy f' E Z by adding to each state x E x0 a decision 

d E D(x) with v(d.f;x) ~ v(f;x) such that dis an intervention when 

f(x) is an intervention. 



(c) Construct policy f" E Z by taking f"(x) = f'(x) for x EA and f"(x) = 
null-decision, otherwise, where A is any closed set with A0 .=.A.=. Af, 

such that for the natural process the set A is as stopping set at least 

as good as the set Af, for each initial state x E Af, when there is a 

cost of v(f'(y).f;y) for stopping at state y. 

REMARK 3. Taking z = z 1 = f' in Theorem 4 and taking into account the rela­

tions (15) and (19), we have that instead of step (c) of the above method 

the following step may also be applied. 

(c') Determine! a bounded solution {g(f'), v(f' ;x)} to (8) with z = f'. 

Construct policy f" as in the above step (c) by taking now v(f';y) as 

cost for stopping at state y. 

The modified policy iteration method may be in particular useful to 

generate a sequence of policies having each a prescribed structure, cf. [4]. 

Moreover, from a computational point of view the modified method may be more 

attractive than the policy iteration method first stated, cf. WEEDA [16,17] 

where in addition for the case of a finite x0 conditions for the construction 

off' and f" have been derived under which the modified method converges to 

an optimal policy after a finite number of iterations. In general we note 

that Theorem B may be applied to check whether a given policy is optimal 

among the class Z of policies. 

REMARK 4. To generate a set A as 1.n step (c) of (c') of the modified method 

the following procedure may be useful when Af, is countable. For a properly 

chosen sequence of points x E Af'' we may take the set A as the intersection 

of all those sets Af 1 \{x} such that for the natural process starting from 

state x the set Af,\{x} is as stopping set at least as good as the set Af'' 

see Lermna 5. Note that for each x this involves only the verification of a 

single inequality. 

6. APPENDIX 

In the appendix we give some results for discrete-time Markov processes 

with a general state space and we give the proofs of the Theorems and Lermnas 

of section 4. 

Consider a Markov chain x0 ,x1,x2 , •.. with stationary transition 
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probability function p(.,.) on (S,B) where the state space is a Borel set 

of a finite dimensional Euclidean space and Bis the class of' all Borel sets 

in S. For any n ~ O, let pn(.,.) be then-step transition probability func­

tion of the Markov chain. That is, pn(x,A) = Pr{Xn EA I x0 = x}. We assume 

that there is some states (say) such that 

(22) Pr{Xn = s for some n ~ I I x0 = x} = for all x ES, 

(23) E(N I x0=s) < 00 where N = inf{n ~ I I X = s}. 
n 

Let p0 (x,A) = I for x EA, let p0 (x,A) = 0 for xi A, and let 

n p (x,A) = Pr{X 
n 

For any set A EB, define 

00 

EA,~# s for 1 

(24) Q(A) = I pn(s,A)/E(N I x0=s). 
n=O 

Observe that, by EN= I; Pr{N > n}, 

00 

(25) I 
n=O 

x} for n ~ I. 

so, Q(.) is a probability distribution. We note that Q(A) can be interpreted 

as the ratio of the expected number of visits of the Markov chain to the set 

A before returning to states and the expected number of transitions needed 

to return to states starting from states. 

THEOREM 9. For any A E B, 

(26) 
-I 

n k lim n I p (x,A) = Q(A) for all x E S 
n-+oo k=O 

(27) Q(A) = f p(x,A)Q(dx). 
s 
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Further, Q is the unique stationa:l'y probability distribution of the Ma:l'kov 

chain {Xn}. Also, when x0 = s, 

(28) lim n-l 
n-+<x> 

I Ef(~) = JS f(x)Q(dx) 
k=O 

for any Baire function f such that f !f(x)IQ(dx) is finite. 

PROOF. For any x ES, let f 0 (x) = O, and let fn(x) = Pr{N = n I x0 = x}, n ~ 1. 

By (22), I; fn(x) = I for all x. Clearly, for any x and A (cf. p.365 in 

FELLER [9]), 

(29) n 
p (x,A) = for n ~ O. 

For x = s this relation is a renewal equation. By (23) and (25), both 

Inf (s) and LPn(s,A) are finite. Now, by applying the Key Renewal Theorem n 
(see p.292 in FELLER [8]), for any A EB, 

n CX) CX) 

(30) lim -1 
I 

k 
I pn(s ,A)/ I n p (s,A) = nf (s) = Q(A). 

n-+<x> k=O n=O n=O n 

Since I; fn(x) = I and pn(x,A)-+ 0 as n-+ CX) for all x and A, relation (26) 

now follows from (29) and (30). Using (26) it is easy to verify that Q 

satisfies the steady state equation (27) (cf. pp.133-134 in BREIMAN [I]). 

Since the Markov chain {X} has no two disjoint closed sets, Q is the unique 
n 

probability distribution satisfying (27), see Theorem 7.16 in BREIMAN [I]. 

To prove (28), let m be a finite measure on (S,B) such that m(A) > 0 if and 

only ifs EA. Then, by (22), m(A) > 0 implies 

Pr{Xn EA for some n ~ I lx0 = x} = for all x ES. Consequently, the Markov 

chain {X} satisfies the recurrence condition of Harris (cf. pp.206-207 in 
n 

JAIN [Ill). Relation (28) now follows from Theorem 3.3 in JAIN [11]. 

Before giving the proofs of the Theorems• and Lemmas of section 4, we state 

some relations which will be frequently used in these proofs. Let V and W 



21 

be any closed sets with V ::> A and W ::> A for the policies z1 and z. Then, 
- z 1 - z 

using the definitions (9) and (14) and the theorem of conditional expecta­

tion, we have for all x EX, 

Similarly, the following relation applies to (18). Let V be any closed set 

with V .=, A, then for all x EX 

PROOF OF THEOREM 3. Since v([z]z 1;x) ~ v(z 1;x) for x E x0 , it follows from 

(31) with V = W = x0 that 

Hence, for all x EA, z 

(33) k(x;z(x)) - g(z 1)t(x;z(x)) + Ev([z]z 1 ; T ) < x,z(x) -

By (13) and (14), the right side of (33) equals v([z]z 1;x). We have by (14) 

that 

(34) Ev([z]z 1; T ( )) x,z X 
= f v([z]z 1;y)p(x,dy,z) 

A 
z 

Hence, by (33), for all x EA, 
z 

for x EA. 
z 

(34) k(x;z(x)) - g(z 1)t(x;z(x)) + f A v([z]z 1;y)p(x,dy,z) ~ 
z 



------.-.---=-------•-+v•s•-•-•y-;-;;;-:;;;;-y 

22 

Now, integrate: both sides of (34) with respect to Q(. ,z). Using the bounded­

ness of the functions k, t and v, and using the relations (2) and (3) we get 

after an interchange of the order of integration g(z) $ g(z 1). Clearly, this 

proof carries over when the inequality signs are reversed. 

PROOF OF THEOREM 4. We first prove v(A.[z]z 1 ;x) = v([zA]z 1 ;x) for all x EX. 

For x EA this equality follows irmnediately from the relation v(A.[z]z 1;x) = 

= v([z]z 1;x), (14) and the fact that zA(x) is an intervention which equals 

z(x). For xi A we next have by (32) with V = A and (14), 

Next we prove v(A.[z]z 1 ;x) $ v(z 1 ;x) for all x EX. By the conditions of the 

Theorem, this inequality holds for x EA. Since Ac A 
z - z 

follows from (32) and (31) with V = A that, for xi A, 
z z 

and A c A 
z 1 - z 

it 

Together the above relations yield v([zA]z 1 ;x) $ v(z 1;x) for all x EX, 

so, by Theorem 3, g(zA) $ g(z 1). 

LEMMA 10. Suppose that Al-AS houi. Let u(x) be a bounded function on X. Let 

A1 and A2 be closed sets with AO .::. Ai.::. xO for i = 1,2. For i = 1,2 and 

x EX, let vi(x) = Eu(S[x,Ai]), and let v(x) = Eu(S[x,A1nA2J). Suppose that 

vi(x) $ u(x) for i = 1,2 and all x E A1 u A2. Then v(x) $ vi(x) for i = 1,2 

and all x E X. 

PROOF OF LEMMA 10. For reasons of syrmnetry it suffices to prove v 1 (x) ~ v(x) 

for all x EX. Clearly, this inequality holds with the equality sign for 

I C C 
x E Al n A2 • Let P(B x,A) = Pr{S(x,A) EB}. Now fix x E Al where A = X\A. 

Using the fact that u(y) ~ v2 (y) for ally E A1 , we get 

v l (x) JAc u(yl)P(dyl lx,Al) ~ 
2 

~ J u(y 1)P(dy1 lx,A1) + f c P(dy 1 lx,A1) {J u(y2)P(dy2 1y 1,A2) + 

A2 A2 Al 

+ f Ac u(y2)P(dy2IY1,A2)}. 
l 
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Using the fact that u(y) 2 v 1(y) for ally E A2, we next get 

Jc P(dyix,A1) Jc u(y2)P(dy2 iy 1,A2) 2 

A2 Al 

2 JAc P(dyl lx,AI) Jc P(dy2IY1,A2) {I u(y3)P(dy3IY2,A1) + 
2 Al A2 

+ f Ac u(y3)P(dy3IY2,A1)}. 
2 

Continuing in this way yields for n = 2,3, ••• 

J I ,n- l J I v 1(x) 2 A u(y 1)P(dy1 x,A1) + lk=l Be P(dy 1 x,B0 ) ••• 

2 l 

... f cP(dyklYk-l'Bk-1) J u(yk+l)P(dyk+llYk,Bk)+cn' 
Bk Bk+l 

where 

en= JBc P(dyl lx,BO) ... JBc u(yn)P(dynlYn-l'Bn-1), 
l n 

By AS and the boundedness of u(.), lirn c 0. Further, for any set B, n-+= n 

P(Bix,A 1nA2) = P(BnA2 ix,A1) + JAc P(dy 1 lx,A1)P(BnA1 IY 1,A2) + 

2 

+Jc P(dy 1 lx,A1)J c P(dy2 ;y 1,A2 )P(BnA2 iy2 ,A1) + .... 
AZ Al 

Using these relations we have Ju(y)P(dylx,A1nA2) equals the limit of the 

right side of the latter inequality as n ➔ 00 • Hence v 1(x) 2 v(x) for all 
C C x E A1• For reasons of symmetry, v2 (x) 2 v(x) for all x E A2 . From this we 

get v 1 (x) = u(x) 2 v2(x) 2 v(x) for all x E A1 \ (A1nA2). We now have proved 

v 1(x) 2 v(x) for all x EX which ends the proof. 
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PROOF OF LEMMA 6. By the first part of the proof of Theorem 4, 

(35) for all x EX. 

We shall next prove that, for all x EX, 

Clearly, by (13)-(15) and the construction of zi, this inequality holds for 

x EA,. Next it follows from (31) with V =A, and (14) that (36) holds for 
zl zl 

all x EX. By the construction of z; we have v(z(x).z 1;x) ~ v(zj(x).z 1;x) 

for all x EX and z E Z. Distinguishing between x EA, and xi A, it now 
zl zl 

follows from the latter inequality, (36) and the definitions (13) and (14) 

that, for any policy z E Z, 

(37) 

By (18), (37) and (14), for all z E Zand x EX, 

for all x EA. 
z 

Assume now to the contrary that-v([z0Jz 1;x0) < v([z2Jz 1;x0) for some z0 E z 

and x0 E x0 . Together this inequality, (35) and (38) contradict the in­

equality in A6(a). Hence z2 satisfies (17). 

PROOF OF THEOREM 7. 

(a) Let K be the class of all closed sets A with A0 .=.A.'.:. x0 such that 

v(A.[zj]z 1;x) ~ v([zj]z 1;x) for all x EX. Since v(Az.[z]z 1;x) = v([z]z 1;x) 

for all x EX and z E Z, we have 

(39) A, EK and R c K. 
z -1 

Further, by taking u(x) = v([zj]z 1;x) in Lelllllla 10 and using R .'.:. K, we easily 

get 



Denote by K* the intersection of all 

K* = R* which implies part (a) since 

sets belonging to 

A, EK. Clearly, 
zl 
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K. We shall now prove 

by R .=. K, we have 

K* c R*. Now, let BEK. Then, by (40), B n R* ER and so, by the definition 

R* R* K* R*'' 'd 1 of , B ~ • Hence ~ which gives the desire resu t. 

(b) We first observe that, by A6 and part (a), relation (21) holds for 

* A= R. Now, let A be any closed set as in part (b) of the theorem. Since 

the intersection of all sets belonging to K equals R* as proved in part (a), 

it suffices to show that A EK. Taking B =A, in (21) yields 
zl 

v(A.[zj]z 1;x) $ v([zj]z 1;x) for all x E Azj• Next, by (32) and (31) with 

V =A,, this inequality holds for all x EX. This shows A EK which ends 
zl 

the proof. 
* (c) Let the set A satisfy the assumptions of part (c). Then, by R CA " 

- zl 

* we have v(A.[zi]z 1;x) $ v(R .[zj]z1;x) for all x EA,. Further, by part (b), 
zl 

this inequality 

v(A.[ziJz 1;x) = 

also holds with the inequality sign reversed. Hence 
* . v(R .[z'Jz1;x) for all x EA,. Next, using (32) with 

I z 1 
. * v = A we find that this equality holds for all x E X. Since R ER, it now z', 

I 
follows from A6(a) that A ER. We now obtain part (c) from Lemma 6. 
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