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Non-cooperative countable-person games with Compact action spaces
by

0.J. Vrieze.

ABSTRACT

This paper considers non-cooperative countable-person games. The space
of actions for each player is assumed to be compact topological, satisfying
the first axiom of countability. The payoff functions of the various players
are assumed to be continuous on the product space of the action spaces in
the product topology. With the aid of an intrinsic metric introduced on the
action spaces it will be shown, that there exists an equilibrium point within

the class of mixed actions.

KEY WORDS & PHRASES: Countable-person games, non—cooperative games, compact
topological action spaces, intrinsic metric, equilib-

rium point.






1. INTRODUCTION

This paper treats a countable-person non-cooperative game specified by

a three-tuple T = (I,A,g)

I: the set of players.

A= XleI A , where A Vi € I, is the set from which player i will take his

actlons.
= {gi|i e 1}, where 8;* A->TR', Vi € I and gi(a) is the payoff to player

i if the joint players' actions are a € A.

We make the following assumptions on these game parameters:

Al: I is a countable set.

A2: Ai’ Vi € T is a compact topological space, satisfying the first axiom
of countability (cf. KELLEY [5], page 50).

A3: gi(-) is a continuous function on A in the product topology and

sup Igi(a)l =
iel,acA

Note that as a consequence of Tychonoff's theorem (e.g. ROYDEN [91], page
166) A is compact in the product topology. As I is countable it follows
from assumption A2, that the product topology satisfies the first axiom of
countability, so this topology is characterized by sequences (KELLEY [5],
theorem 8, page 72). By A\A we denote the product space Xk I k:hA.kand a ©

will denote an element of A\A . Let G(a) = Z 2 1g (a), then G(a) is the

=1

limit of the sequence {Zi 2" g (a)} and as 85 (a) is uniform bounded by M,

=]
this sequence of continuous functlons converges uniform to G(a), so G(a) is

a continuous function on A (see e.g. ROYDEN [9], problem 17, page 149).

Following WALD [11] and TAKAHASHI [10] we now define an intrinsic metric on

A.:
1
i 3 -i _ -1
(1.1) S (ail’aiz) = _tflax |G(a ’ail) G(a ,aiz)l,V(ai],aiz)eAixAi,
a YeA\A.
1
where

-1
(a ",a.,) = (a],...,ai_l,a

ik ik’ i1



The space (A1 8 ) has now become a pseudo—metrlc space, which can easily be
2) = 0, so gk(a , il) = k(a ,a ) Va EA\Ai,
Vk € I, then it not necessarlly holds that a, i = a;,. However if
i
st (a. i1°%42 ) =0 and st (a. 12034 3) = 0, then also § (ail’ai3) = 0, so Ai can be

verified. If § (a ],a

partitioned in equivalence classes eij’ in such a way that each two elements
of the same class have distance zerc. Let E. be the space formed by these
equivalence classes The metric (1.1) can be extended to E as follows:

§ (e $1°%19 ) =6 (a l,e ), V(e. i1°%12 ) € E xE, i where a., is an avbitrary

il

element of e., and a., 1is an arbltrary element of e... From definition (1.1)

11 12 12

1 < i
we see that § (eil’eiz) < 2M, V(eil’eiZ) € EiXEi, Vi e I.

From the definition (1.1) and the fact that e and e, are equivalence

classes, it can easily be seen that it does not matter which a;| € e and
. i, . .
a;, € e, will be chosen. The space (Ei,6 ) is a metric space.

When we define gk(ai,...,a ,a .) = gk(ai,...,a.

. a,.
i—l’eij i+1°°° i-1°3i-1"%15°

a .) where aije eij arbitrarily, Veij € Ei’ Vk ¢ I, then player i may

i+l?°
restrict his pure action set to the set Ei’ without drawback on his possi-
bilities to influence his payoff.
i, . .
We now prove that (E.,é ) is a compact metric space.
If we take a sequence {e } in E, i then we can correspond with this
sequence a sequence {a. !} in A., where a, € e, arbitrarily., From assump-—
in i in in
tion A, it follows that there exist an element a,. . ¢ Ai and a subsequence

2 10

{ain,} of {ain} such that {ain,} converges to a,. in the topology of A..

10
Let e-o be the equlvalence class such that a;g € 0
Lo -1 B -1
Let an be so that & (e 10°%in ) = -fmx {1G(a ,aio) G(a ,ain)l}
a “eA\A.
i
(1.2) - leat,a. ) - cata. )l n=1,2
’ n *2i0 n *%in 2T

This is possible because also A\Ai is a compact topological space satisfying
the first axiom of countability and IG(a—l,a. ) - G(a—l,a. )I is as a conse-

quence of assumption A3 for fixed a g and a, a contlnuous functlon on A\A

. -1
Now there exists an element a, ¢ A\A such that {an,} contains a subse-

quence {an"} which converges to a i in the product topology on A\A. . But

0
then the sequence {an"’ain"} converges to (aol,aio) in the product topology

on A.



As G (a) is continuous on A and A\Ai’ it follows that G(a;ﬁ,ain") ->
Y . .

0 °%

From (1.2) we now see that dl(ei

-1 -i
> G(a 0) and G(an",ao) —>.G(a0 ,ao) as n'" > «,

O’ein") + 0 as n" » «, So the arbitrgry se-
quence {ein} in Ei contains a convergent subsequence in the metric §' and
therefore we may conclude that (Ei,ﬁl) is a compact metric space.

Of course the above procedure can be carried out for every player.

Let E = Xie E., then as I is countable and as él(ei],eiz), Vi is uniform

Ii
. _ @ -i i
bounded, E can be metrized, e.g. 6(e],e2) = Ei=] 26 (eil’eiZ)’

V(el,ez) e (ExE), where e, = (e]],32],e31,...) and e, = (312,e22,e32,...).

Define gi(-) on E as gi(e]) = gi(al) where a = (all’aZI’aBI"") with
a;; € ey arbitrarily. It is easy to see that the choice of a, has no in-
fluence on this definition as long as a; €e s Vi € I. We now want to show
that gi(~) is a continuous function on E in the product metric. Let {en} be
a sequence in E which converges to e- Assume lim sup gi(en) # gi(eo). Take

{a } such that a_ = ..) and a. € e. , Vi € I, Vn. Then there is
n n in in

(@23,
a subsequence {an,} such that limn+®gi(an,) # gi(eo). As the spaces Ai’

Vi € I satisfy the first axiom of countability we may apply Lemma 30, page
177 of ROYDEN [9] to conclude that the sequence {an,} contains a subsequence
{an"} such that the sequence {ain"} converges in the topology of Ai for ev-
ery i € I. Let ay = 1imn_>c° a; m Vi € I. Then

-i -i -1
gk(a sainn) - gk(a ’aiO)’ Yk € I, Va L € A\Ai,

which means 61(e. ns€..) > 0, where e. 1is the element of E. to which a.
in 1% i* i 10
belongs, Vi € I.

But then d(en",e*) -+ 0 and in combination with {en} + e,, this yields

0’
e, = ey

Now gi(eo) = gi(e*) = gi(ao) = limn_j)00 gi(an") = 1imn+m gi(an,) # gi(eo)
so starting from the assumption lim sup gi(en) # gi(eo), we have come to a
contradiction and therefore lim sup gi(en) = gi(eo) and in the same way we
can show lim inf gi(en) = gi(eo) so that lim gi(en) = gi(eo), or gi(-) is

continuous on E,.

In section 2 we prove that the game I' = (I,E,g) possesses an equilibrium
point within the class of mixed actions and in section 3 we show that this

equilibrium point also represents an equilibrium point in the original game.



Let m, be the c-algebra of Borelsubsets of (Ei,éi) and let Ni denote
the set of all probability measures on Ei defined for each H ¢ Mi' Ni must
be seen as the mixed action space of player i, i.e. if player i decides to
play a mixed action Hy o€ Ni then with the aid of a chance mechanisme accor-
ding to Hyo he selects a pure e, ¢ Ei' On Ni we define the weak topology
(see e.g. PARTASARATHY [7] page 39). As Ei is compact metric, it follows
from PARTHASARATHY [7] (theorem 6.4, page 45), that Ni is compact and can
be metrized, so the weak topology of Ni satisfies the first axiom of count-
ability (KELLEY [5], theorem 17, page 125). Let N = XieI Ni’ endowed with
the product topology, be the space of all product probability measures on
E, defined on the product c-field in E. Note that as I is countable, also
the product topology on N satisfies the first axiom of countability, so the
topology on N is characterized by sequences (see e.g. KELLEY [5] theorem 8,
page 72). An element of N will be denoted by u = (ul,uz,...) and if the
game 1is played with player 1 playing Hy o€ Ni’ Vi € I, then the expected pay-

off to player i can be written as:

gi(u) = ! gi(e)du(e) where u = (ui,uz,---)-
E
Definition: an element u* = (u:,u;,...) € N is called an equilibrium point
for the game I' = (I,E,g) iff:

. %

-1 * .
<
gl(U ,Ui) = 8i(u ’), Vlli € Nia Vi e I

where

*

_i *

(u ,yi) = (“T""’“;—l’“i'”i+1"")‘

When we make the simplification, that the set of players is finite, then we
get a model which is earlier studied by GLICKSBERG [3] and NIKAIDO-ISODA [6].
Glicksberg showed the existence of an equilibrium point under nearly the

same assumptions as we made. He used a point to convex set mapping which
appeared to be upper semi-continuous in the mixed strategy space and showed
in his paper that if the mixed strategy space is linear Hausdorff topologi-
cal, then this mapping must have a fixed point, which proved to be an equi-

librium point.



Nikaidd and Isoda have treated convex games. By a convex game they mean a

N-person non-cooperative game under the following assumptions:

a) Player ith strategy space is a compact convex subset Ai of a topological
linear space.
b) Player ith payoff function gi(al,...,ai,...,aN) is concave with respect
to his own strategy variable a. ¢ A..
N i i
c¢) The sum of the payoffs Ei=l gi(-) is continuous over A = Xy Ai'

i=1

d) For each a; gi(al,...,a._l,a.,a ...,aN) is a continuous function of

i i’7i+1?
the (N-1)-tuple (ai""’ai—l’ai+l""’aN) € A\Ai'
Under these assumptions they proved the existence of an equilibrium point
within the class of pure actions A, with the aid of some convexity theory.
Note Fhat in our model Ni the set of mixed actions is a compact convex set,
gi(u_l,ui) is linear in Hi» SO also concave and in section 2 we prove that
gi(-) is continuous on N = X.

1el
tions c) and d) are fulfilled.

Ni from which we see that also the assump-

So when we take I to be finite, then Glicksberg and also Nikaidd-Isoda have
solved our problem.

With the aid of our Lemma 2.2 the method of Glicksberg can be extended to
the case where I is countable.

It is unclear to us if also the method of Nikaidd-Isoda can be extended to
our case.

However we present a new method of solving the problem. The main reason for
this is, that our method proves to be very useful for attacking stochastic
games which will be shown in a later paper.

By O we denote the end of a proof.



2. EXISTENCE OF AN EQUILIBRIUM POINT

Denote by Fi the set of all finite signed measures on Ei’ defined for

1el
of all finite signed product measures on E defined on the product o-field

each H € Mi’ endowed with the weak topology and let F = X. Fi be the set

of E, endowed with the product topology. The space N = Xi€I Ni is a real

subset of F.

LEMMA 2.1. F. 18 a linear Hausdorff topological space and therefore also

F = XieI Fi 18 Llinear Hausdorff inm the product topology.

PROOF. If u., v, € F. and o, ¢ IR' and define CH as pi(H) = aui(H)+-Bvi(H),

VH € Ml, then it is easy to see that p e F, ;2 so F is linear.

Let ug, vg € F. and u # v B then it follows from PARTHASARATHY [7] (theorem

5.9 page 39) that there ex1sts a bounded real-valued uniform continuous func-

tion fi(-) on Ei’ so that:

f £.(e) du(e,) # f £,(e,) dvi(e,)
Ei Ei

Choose ¢ > 0, so that
0 0
If £, (e;) du.(e,) [ £.(e;) duj(e)] > ¢
E. E.
i i
Let
- Oty - €
0o {ui I M, € F. and If fi(ei)dui(ei) [ fi(ei)dui(ei)|< 2}
E. E.
i i
be an open neighbourhood of uo, of course v ¢ O

U.
Let 1

0= {vi | v, € F, and |{ fi(ei) dvg(ei)'-( fi(ei) dvi(ei)[<:§}
i

Y
E. E.
1 1

be an open neighbourhood of vg, of course u ¢ 0 o



Choose u, € 0 o arbitrarily, then
Hi

f 0
|| £5(ep) dviCep) - f £.(e;) du ()] =
E,

E.
1 1
JEEACH avl(e,) - f £, (e,) dui(e)) + f £, (e)) dui(e,) -
E. E. E.
1 1 1
j £.(e,) du, (e))] 2
E.
1
> lf £ (e) dvi(e) - f £,(e,) dufe)] - |f £, (e,) duile)) -
E. E. E.
1 1 1
- f f.(e.) duQ(e.)I >
1 1 1 1
E.
1

v

™

i
N m
Nfm

SO My ¢ OvQ.
1

In the same way v, ¢ ng = V. ¢ Oug.

So OUO and Ovo are disjunct open neighbourhoods of ug and vg respectively

and s& Fi is Hausdorff. O

LEMMA 2.2. gi(u) s a continuous function on N, Vi € I.

PROOF. The proof is an extension of the proof of lemma 2.1 in PARTHASARATHY
& MAITRA [8] as used in FEDERGRUN [2]. First note that if Wy > H in the
product topology on N, then LPNR R P Vi € I on Ni in the weak topology.
Consider now the family G(E) of continuous real-valued functions on E
of the form Zg_ T f..(+) where f..(-) 1is a continuous real-valued func-
j=1 "1el "1ij 1]
tion on Ei’ Vi € I and fij(-) = 1 for all but a finite number. Then it is

clear that this family G(E) is an algebra (closed under finite linear



combinations and finite products). Also this family contains the constant
functions ans separates the points of E. To see this last assertion, choose

e|s€ys € E, e, # €)s then there is at least ome coordinate j. such that ejl #

# e. - Let sz-) be a continuous real-valued function on Ej’ such that
f;(ejl) # f;(ejZ) (This is possible because of Urysohn's lemma (ROYDEN [91],
page 148)). Then the function LE fi(-) € G(E) defined as fi(-) =1, 14# ]
and fj(-) = f;(-), separates the points e and e,

So all the conditions necessary for applying the Stone-Weierstrass
theorem (ROYDEN [9], page 174) are fulfilled.
This means that, since gi(-) is a continuous function on E, this function

can be uniform approximated by a sequence out of G(E). So for every € > 0

we can find a member Z% T, ff.(*) of G(E) such that
j=1 1el "1j
k N .
(2.1) | Y « £..(e.) -g.(e)| <+, Ve € E.
j=1 iex ™ 1t t 4

Now consider the expression

m
£ QeI fij(ei) du(e), u e N,

As only a finite number, say m, of the fij(-) Z 1, we can rearrange the

coordinates to get

=B

(2.2) i 121 fij(ei) du(e)’= [ . fij(ei) du(e).

i 1

Let {¢in(ei)} be a.sequence of simple functions on Ei’ such that

lim ¢. (e.) = f..(e.), Ve. ¢ E., 1i=1,...,m.
in i ij i i i
n->oe
Then
m m
lim o ¢in(ei) > -E fij(ei)’ Ve ¢ N
n>e  i=1 i=1

(all functions f..(¢) are uniform bounded) and o ¢. (e.) is a simple
ij i=1 "in 1

function on E.



So
m m
(2.3) { 12] fij(ei) du(e) = rlli: f i;rl ¢in(ei) du(e).
E E
Now
m n(l) n(m) m
(2.4) f .I] d’in(ei) du(e) = L .o 'Z_ {T_r ¢in(ji)} ”(Eljl"”’
g 1= Jl—] Jm—l i=1

Emdm’Em+l’°")

where n(i) is the finite number of various values which the function ¢in(')

takes on, i = 1,...,m and Eiji is the Borel measurable subset of Ei where

¢in(°) has constant value ¢in(ji)’ i=1,...,m. As u(+) is a probability

measure defined on the product c-algebra of E, we see from HALMOS [4]

(Theorem B, page 157) that

(2.5) u(Elj],...,Emjm,Em+l,...) = (U]xuzx...xum)(Elj],...,Emjm)
and
(2.6) (upxug*e X I (Epg, 500 sBpj ) = il’] My Eijy)

as a consequence of Fubini's theorem (e.g. HALMOS [4]; theorem C, page 148).
Combining (2.2), (2.3), (2.4), (2.5) and (2.6) yields:

m
J 121 fij(ei) du(e) = f i:j fij(ei) du(e) = rlliz [ i:lwbin(ei)du(eﬂ‘
E E E
n(l) n(m) m
= lim Z { T ¢in(yi)} “(Eljl""’Emd ’Em+1"°') =
e j =1 i =1 Y=1 m
m
n(l) n(m) m
frin L LT G ) -
me = j=1 i=
n(i)

lim .Z IR IR
I no Ji=] 1 i

0
" a B
"ap

. 1 [ fij(ei) dui(ei).
E

i
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So
m
2.7 7 f..(e.) du(e) = = J f..(e.) du.(e.), Vu € N
2.7) fid (o) (&) = 1| £ Cep) duyCep)
E E.
i
if f..(*), i =1,...,m are the only functions which are not the constant
ij 0
function 1. So if Zj=1 Ml fij(ei) € G(E) then from (2.7):
k k
(2.8) f Z m f£..(e.) du(e) = z i f f..(e.) du.(e.), Vu € N,
p =1 del 3ot j=1 iel 4 o 1t

i
whereby only a finite number of expressions fE fij(ei) dui(ei) unequals 1.
. . . i
Now 1f um -> UO in N, so uin -> uiO’ Vi ¢ I, then because of (2.8) and

fEi fij(ei) duin(ei) > fEi fij(ei) duio(ei) and the fact that the right-
hand side of (2.8) depends only on a finite number of coordinates ui, we

may conclude that

k k
(2.9) ijzl i:I fij(ei) dun(e) > PJ:J.Z] iZI fij (ei) duo(e),
k
ij] izI fij(ei) e G(E).
Now

| J 81(3) dun(e) - ( gi(e) duo(e)l <
E E

IN

k k
| J Y om f;'(ei) dun(e) - I ) oo f;.(ei) duo(e)| + % =
- J'=_.] iel J E j=] iel J

(see (2.1))

IA

€, € _
7 + 7 =€ as n > N(e).

This last step is possible because of (2.9) [J

We now introduce a mapping T: N » N which possesses two properties, by

which we will be able to show the existence of an equilibrium point.
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Let p € N and let gi(u) the expected payoff to player i under this

joint mixed action. Let
- -1 .
(2.10) yi(u,ei) = gi(u ,ei), \7’e_‘.L € Ei’ Viel,

where g.(ul,e.) represents the expected payoff to player i, if he takes
i i

action e, and the other players play according to u. Let
(2.11) ¢, (ure;) = max {0,y, (u,e;) - g; (W}, Ve, € E;, Vi e I.
In section | we showed that (Ei,Gl) was a compact metric space, so there

. * * . . .
exist a countable subset Ei = {ein’ n=1,2,...} of Ei which is dense in Ei'

Let Ai € Ni be the probability measure defined as

¥ )y =2""" a=1,2,..., so A.(E}) = 1.
i in i1
Let
* *
H e, e€H
in

VH € m, Vi e I.
. *
Note that @i(u,-) is a measure on Ei concentrated on Ei'

Define now the mapping T: N - N as:

ui(H)+®i(u,H)
l+®i(u,Ei)

(2.13) (Tu)i (H) = VH € Mi’ Vi e I.

It is easy to see that (Tu)i € Ni’ Vi € I, so Tu € N.

We prove now two properties of this mapping T.
Property l: T: N + N is a continuous mapping and possesses a fixed point.
Property 2: Every fixed point of T is an equilibrium point for the game

r = (I,E,g) and conversely.

PROOF OF PROPERTY 1: Lemma 2.2 tells us that yi(u,ei) is continuous in u

BIBLIOTHEEK MATHEMATISCH CENTRUM

AMSTERDAM ———
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for fixed e, and continuous iz e; for fixed p. For arbitrary H ¢ Mi Ze can
order the set of points H n Ei according to decreasing value of Ai(ein),
e;n e Hn E;' Let {ezn,}, n' = 1,2,...,k(H) be this sequence where k(H) may
be ©», If H is such that k(H) is finite, then @i(u,H) is a weighted combina-
tion of a finite number of continuous functions in u and therefore ¢, (u,H)
itself is also.continuous in p for this H. If HO is such that k(HO) : o,
then 1imn,_)oo Al(e;n,) = 0.

Since Igi(u)l is uniform bounded by M, it follows from (2.10) and (2.11)
that

|¢i(“’ei)l < 2M, Ve. € E., Vu e N.

Choose N', such that Xi(ezN,) < eg/16M, for fixed € > 0. Then for HO:
N'
0
(2.14) [o, (u,H) = ]

n'=1l

IA
o
-
<
3=
m
2

* *
Ai(einl) ¢i(u’einl)l

If Ho - o then there exists a N(e) such that if n > N(e), then

N' N
* * * * €
(2.15) Inz=l Ai(ein') ¢i(un’ein') B n2=1 Ai(ein') 4)1'.(L10’ein')I =3

Combining (2.14) and (2.15) gives
0 0
[@i(un,H ) = . (g H )| < e, vn > N,

so ®i(u,H) is a continuous function in p for every H ¢ Mi' Especially

@i(u,Ei) is continuous in p. Let

Ui(H) ¢i(U,H)
Vi(U’H) = _]'+'q)"('u"E.)" and pi(UsH) = ]+<I>.('u','E.7 s VH € Mi’
1 1 1 1
then (Tu)i = v, (u,H) + oi(u,H).

Then we see that vi(u,-) is a measure on Ei which is weakly continuous in
i.e. if > in the product t . °) > V. .
U, L p t topology on N, then vl(un, ) vl(uo, )

in the weak topology on Ni'
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pi(u,-) is a measure on Ei which is setwise continuous on N, i.e. if
Wy Mg in the topology on N, then pi(un,H) > pi(uo,H), VH € Mi' As a set-
wise continuous measure is also weakly continuous, we may conclude that
(Tu)i is also weakly continuous in 4 € N, Vi ¢ I. So the mapping T: N > N
is continuous in the product topology.

As a consequence of the Schauder;Tychonoff theorem (e.g. DUNFORD &
SCHWARZ [1], page 456), which says that a continuous mapping T: N - N, where
N is a convex compact subset of a linear Hausdorff topological space F,
possesses at least one fixed point, we now can conclude that the mapping T,

as defined in (2.13), possesses a fixed point. [

PROOF OF PROPERTY 2:

a) Let u* e N be equilibrium point, then by definition of equilibrium point:

*

* _ -1 * .
(2.16) y;(wse) =g, (u " ,e) s g () Ve, € E;, Vi e I.
(2.17) (2.16) and (2.11) = ¢i(u*,ei) =0, Ve, cE,, Viel
(2.18) (2.17) and (2.12) = cpi(u*,H) =0, WHeM,Viel
* * .
(2.18) and (2.13) = (Tu )i = Vi e I,

* . . .
so u 1is a fixed point of T.

b) Let u* be a fixed point of T. From (2.13) we see that u* satisfies:
(2.19) M) -6, (W L,E.) = o, (u",H) VH Vi
e Ui iu’i—iu, 9 €Mi, lEI-

*
We now assume that Qi(u ’Ei) > 0 and show that this leads to a contradic-
. *
tion. If @i(u ,Ei) > 0, then from (2.19) we see that
*
. @i(u ,H)
(2.20) u. () = —/—/—4m—
t o, (1 L,E,)
i 1
. * . * .
Since @i(u ,*) 1s a measure on Ei concentrated on Ei’ it can be seen from

* . e
(2.20) that ui(-) is a probability measure on Ei concentrated on E; and
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o; (se) . (o)

(2.21) Wie.) =
1 1 *
®i(u ’Ei)

From (2.21) we see that uz(ei) > 0 if and only if ¢i(u*,ei) > 0 and

*

e. € E..
i i .
From the assumption @i(p ,Ei) > 0 it follows that there is at least one

* . *
ei € Ei with ¢i(u ,ei) > 0, Now we see that

Lk

g (W) = J g (b hep) duj(e) = J y; (7 hep) duite;) =

E. E.
1 1
* * * * *
= z % }’i(U ,ei) ui(ei) > z * gi(u ) ui(ei) = gi(u )'
e.€E, e.cE;
*l 1 *1 1
“i(ei)>0 “i(ei)>0

3 . . *
So we encounter a contradiction and therefore our assumption @i(u ’Ei) >

> 0 appears to be false.

So we may conclude
*
(2.22) @i(u ’Ei) = 0.

From (2.10), (2.11), (2.12) and (2.22) it follows that

.k

-1 * * .
(2.23) gi(u ’ei) < gi(u ), Vei € Ei’ Vi e I.

Lk
Then (2.23) together with the continuity of g.(u—1 e.) in e, and the
i 1 i

*
fact that Ei 1s a dense subset of Ei enables us to conclude

L *
-1 P * .
(2.24) gi(u ,ei) < gi(u ), Vei € Ei’ Vi e I.
AS Lk Lk
-1 -1
gi(U ,U-) = max gi(l—l ’ei)) vui € Ni!
eieEi

RS
we have the desired result gi(u L ,ui) < gi(u*): Vui € Ni’ Vi e I. O

THEOREM 2.1, The game T = (I1,E,g) possesses an equilibrium point.

PROOF. Combining the two properties of the mapping T as defined in (2.13)

gives the desired result. [J
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3. RETURN TO THE ORIGINAL PROBLEM

We denote the original topology of Ai by Ti. In section | we defined a
function G(a) which is continuous on A = Xi€I Ai in the product topology
and |G(a)| < M, Va € A. As A\Ai is compact it is easy to see that the func-
tion

max !G(a—i,ai) - G(a_i
a_ieA\Ai

250

is continuous on A for fixed a,, in the topology T

i0
Let O denote the set of open subsets of the metrlc space (E 5,6 )

is well- known that for a metric space a base at a point of this space for
the topology Oi is the countable set of open spheres of rational radius at

this point. So

_ S
{Oeio (r) = {ei ! e, € Ei’ 8 (eio

(r) | 0

eio ,ei) < r}, r rational}

is a base at a point o

Remember that an element ei € Ei can be seen as a subset of Ai' Then from

€ Ei for the topology Oi.

the above with a.. € e.

50 50 arbitrarily:

0 C(r) = {ei | 6 (e e ) <r} =

I

{a; [ st (a;,a;0) <1} =

1]

{ai | max lG(a-l,ai) - G(a—l,a
a-leA\A.
i

iO)[ < r} e Ti'

But this means that there is a base for Oi which is a subset of the topolo-

gy Ti'
As each element of the topology Oi is the union of members of his base
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we see that @i c Ti' So the metric topology of Ei is weaker than the origi-
nal topology Ti' Then the o-algebra of ?orel subsets of (Ai’Ti) contains
the o—algebra of Borel subsets of (Ei,Gl).

In section 1 we defined Ni as the set of.probability measures defined
on the o-algebra Mi of Borel subsets of (Ei,él). Let N; be the set of proba-
bility measures defined on the o-algebra M; of Borel subsets of (Ai,Ti).
From the above it may be clear that Ni c N;. So for the equilibrium point
u* € N in section 2 it holds that u; € NI, Vi € I and as

. K
-1
se;)

IA

*
gi(u ), Vei € E,

gi(u i

it also holds that

L%
-1
»a;)

IA

*
8i(u gi(u )’ Vai € Ai'

This last inequality ensures that

.k

-1 * * .
<
gi(u ’“i) < gi(u ) Vu, e N, Vi e I.

. * . cqsa s . . . .
But this means that p 1is also equilibrium point in the original class of

. . * *
mixed actions N = X, N..
1el 1
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In a later paper we will extend the method of section 2 to the case of
stochastic games, where an appropriate mapping appears to possess the same

properties as the mapping T in section 2.
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