
stichting 

mathematisch 

centrum 

AFDELING MATHEMATISCHE BESLISKUNDE 
(DEPARTMENT OF OPERATIONS RESEARCH) 

O.J. VRIEZE 

BW 66/76 

THE STOCHASTIC NON-COOPERATIVE COUNTABLE-PERSON GAME 
WITH COUNTABLE STATE SPACE AND COMPACT ACTION SPACES 
UNDER THE DISCOUNTED PAYOFF CRITERIUM 

~ 
MC 

NOVEMBER 

2e boerhaavestraat 49 amsterdam 

BIBLIOTHEEK MA THEMr\TISCH CC:i ! ' 
-Alv:C>TE:=tD,~M-

t--...,. r _ -- " 



PJu.nt.ed a,t :the Ma,thema.:ti.cai. Centlte, 49, 2e BoeJLha.avu.tJuux;t, Am6.:teJLd.am. 

The Ma,thema.:ti.cai. Centlte, 6ounded :the 11-.:th 06 FebJtu.all.y 1946, ,u, a. non­
pJto 6..U ..i.n1>.ti:tu.ti.o n a,im,lng a,t :the pJtomoUo n o 6 pUll.e ma,thema.:ti.C-6 a.nd U:.6 
a.ppUc.a.Uon1>. 1.:t ,u, .6pon1>0Jted by :the Ne:thvr.1.a.nd.6 GoveJtnment. .:thJtough :the 
Ne:thvr.1.a.nd.6 OJtga.n-i..za.:ti.on 6oJt :the Adva.nc.ement. 06 PU/le Ruea.Jtc.h (Z.W.O), 
by :the Mun-i..c...i.pa.U:ty 06 Am6.:teJtd.am, by :the Un-i..veJt-6..Uy 06 Am6:teJLd.am, by 
:the FJtee Un-i..veJt-6..Uy a,t Am.6.:teJLd.am, a.nd by .lndU-6.tluU. 

AMS(MOS) subject classification scheme (1970): 93E05 



The stochastic non-cooperative countable-person game with countable state 

space and compact action spaces under the discounted payoff criterium. 

by 

O.J. Vrieze 

ABSTRACT 

This paper considers stochastic non-cooperative countable-person games 

with countable state space and compact action spaces. Under some continuity 

assumptions on the payoff functions and the transition probabilities it is 

shown in section 2 that under the discounted criterium there exists an 

equilibrium point within the class of stationary strategies. 

Next in section 3 we show for the most general class of stochastic 

games, under the only condition that the payoffs should be uniform bounded, 

that, if there exists an equilibrium point within a subclass of the station­

ary strategies, which has the property that all the players pure stationary 

strategies belong to these subclass, then this point is also equilibrium 

point within the most gen~ral class of strategies. 

KEY WORDS & PHRASES: Stochastic game, non-cooperative-game, countable-person 

game, discounted payoff model, equilibrium point, 

optimal stationary strategies, most general stochastic 

game with most general strategy spaces. 





l • INTRODUCTION 

This paper treats a countable-person non-cooperative stochastic game, 

specified by a five-tuple r = (I,S,A,g,P) 

I the set of players 

S the state space 

A= X X A.(s), where A.(s) is the set from which player i in states 
SES iEI i i 

will take his actions. 

g = {g. I i EI}. Let A(s) = X A.(s) and SA= {(s,a) I a E A(s)} 
1 iEI 1 

I then g . SA + lR , Vi E I. 
i 

g.(s,a(s)) is the immediate payoff to player i if in states the joint 
i 

players action is a(s) E A(s). 

P = {p(Hls, a(s)) I VH E BS, V(s,a(s)) E SA}, where BS is the a-algebra of 

Borel subsets of S. Pis the set of transition probabilities. For each 

(s,a(s)) E SA is p(•ls,a(s)) a probability measure on S defined for 

each HE BS. p(Hjs,a(s)) denotes the probability that the next state is 

an element of H, if in states the players joint action is a(s). 

We make the following assumptions on these game parameters: 

I is a countable set 

Sis a countable set 

A.(s) is a compact subset of some metric space, Vs ES, Vi EI. 
i , 

g.(.,.) E V(SA) (V(SA) will be defined below) 
i 

and sup I g.(s,a(s))j ~ M, Vi EI. 
SA 1 

As : p (s I I • , • ) E V (SA), Vs I E s. 

Let M(S) be the class of all bounded real valued functions on S. Let C(A(s')) 

be the class of continuous real-valued functions on A.(s), Vs ES. 
i 

Let V(SA) be the class of functions such that f E V(SA) iff f SA+ lR1 

and f(•,a(•)) E M(S), Va(•) EA and f(s,•) E C(A(s)), Vs ES. 

Behaviorally the game runs as follows: 

An initial state sO ES is specified; simultaneously each player i EI 

chooses an action ai(sO) E Ai(sO); to player i there takes place an imme­

diate payoff gi(sO,a(sO)) where a(sO) = (a1(sO),a2(sO), ••••.. ); 
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the game moves according to the probability measure p(.ls0 ,a(s0)) to a new 

state s 1, which may be viewed as a new starting state, etc. 

Let M.(s) be the set of all Borel subsets of A.(s), Vs ES, Vi EI. 
1 1 

We now define a mixed action for player i in states as a probability mea-

sure µi(s) on Ai(s), defined for each HE Mi(s). 

Let N.(s) be the set of all mixed actions for player i in states, Vs ES, 
1 

Vi EI, endowed with the weak topology (see e.g. PARTHASARATHY [7], page 39). 

Since Ai(s) is compact metric it follows from PARTHASARATHY [6] (theorem 

6.4, page 45) that N.(s) is compact in the weak topology and can be metrized. 
1 

Let N(s) = X N. (s). From Tychonoff's theorem (e.g. ROYDEN [9] page 166) 
. I i 1E 

we see that N(s) is compact in the product topolgy. N(s) is· the set of pro-

duct measures defined on the product a-algebra on A(s). As N.(s) is compact 
1 

and can be metrized we note from KELLEY [6] (theorem 17, page 125) that the 

weak topology on N.(s) satisfies the first axiom of countability. But then 
1 

also N(s) satisfies the first axiom of countability, which ensures that 

the topology of N(s) can be characterized by sequences (see KELLEY [6], 

theorem 8, page 72). An element of N(s) will be denoted by 

µ(s) = (µ 1 (s),µ 2 (s), •••.•• ). If in states the players joint mixed actions 

are µ(s), then the expected immediate payoff g.(s,µ(s)) to player i equals: 
1 

I.I. gi(s,µ(s)) = f gi(s,a(s) dµ(s) 

A(s) 

Vi EI. 

In the same way we can express the expectation of the transition probabi­

lities under µ(s) E N(s): 

p(s' ls,µ(s)) = J p(s' ls,a(s)) dµ(s), 

A(s) 

Vs' ES. 

A stationary strategy for 

that µ.(s) E N.(s), i.e. every 

player i is a mappingµ. defined on S, such 
1 

1 1 
time the play stays in states, player i 

plays mixed action µ.(s), Vs ES. 
1 

A joint stationary strategy for the players is a mappingµ defined on S, 

such that µ(s) = (µ 1(s),µ 2(s), .••••• ) E N(s), Vs ES. 



Let N. = 
l. 

N.(s) and let N = 
l. 

3 

X N(s). 
SES 

In the same way as with the space N(s) above we can show that both N. and N 
l. 

are compact in the product topology and both topologies satisfy the first 

axiom of countability, so both topologies are characterized by sequences. 

An element of N. represents a stationary strategy for player i and conversely. 
l. 

An element of N represents a joint stationary strategy for the players and 

conversely. 

In section 2 we only consider stationary strategies. In section 3 we 

also allow non-stationary strategies and they will be defined there. 

Let F.(s) be the set 
l. 

of all finite signed measures on A.(s), defined for 
]. 

each H E M. ( s) 
l. 

endowed with the we¥ topology. In VRIEZE [II], le11DD.a 2.1, it 

is proven that F.(s) is a linear topological space. 
l. 

Let F(s) = X F.(s) and F = X F(s), then Fis in the product topology 
iEI l. SES 

again a linear Hausdorff topological space and N is a compact convex subset 

of F. 
In this paper we consider the discounted model, so there is specified 

th a discount factor 8 E [0,1) i.e. a payoff on the t -step to player i will 
t be discounted with a factor f3, t = 0,1,2, •••• 

t th Let Vi(s0,µ) denote the expected payoff to player i at the t -step when the 

play is started_ in s0 and the players use stationary strategy µ E N, 

t = 0,1,2, .••• 
(X) 

Let V. (s0 , µ) = I f3t V~{s0 , µ), then Vi. (s0 , µ) represents the total expected 
1. t=O 1. , 

discounted payoff to player i when the play starts in s0 and the players use 

stationary strategyµ EN. 

Note that lvi(s,µ)I is uniform bounded by 1~8, for from assumption A4 

it follows that lv~(s,µ)I ~ M, so that IV.(s,µ)I ~ I f3t I V~(s,µ)I ~ 1~ 0 • 

1. 1. t=O 1. µ 

* DEFINITION: An elementµ E N is called an equilibrium point iff 
* -i* V.(s,µ) ~ V.(s,(µ ,µ.)), Vµ. EN., Vi EI, Vs 

l. l. l. l. l. 

-i* E S, where (µ · , µi) de-

notes the joint stationary strategy with player i playingµ. and the other 
l. 

* players playing according toµ • 

In section 2 we show the existence of an equilibrium point for the game 

r as specified above, within the class of stationary strategies. 



4 

In section 3 we show that this point 1.s also equilibrium point in the most 

general class of strategies, namely the class of behavioral strategies. 

An extension of the model presented here is earlier studied by SOBEL 

[10] and FEDERGRiiN [5]. The extension concerns the state space. They both 

considered a compact state space. Sobel's set of players is arbitrary and 

Federgriin's set of players is finite. However they both made a mistake in 

their proofs of the existence of an equilibrium point and for both it holds 

that it is very hard to rectify their proofs, if possible. Therefore now­

adays it is unclear whether and under which conditions there exists an equi­

librium point in a stochastic game model with the state space uncountable. 

When in the model of Federgriin we take the statespace countable then his 

proof goes on. When we do the same in Sobel's method then there must be 

made further restrictions on the other game parameters to come to the exis­

tence of an equilibrium point. 

One of the main reasons why we present our method is that 1.n our proof we 

do not need to use a selection theorem. By D the end of a proof will be 

denoted. 

2. EXISTENCE OF AN EQUILIBRIUM POINT WITHIN THE CLASS N. 

We start with two continuity lemma's. 

LEMMA 2.1. For every function f(.,.) E V(SA) the function f(s,µ(s)) defined 

on SN == { ( s , µ ( s) ) I µ ( s) E N ( s) } as 

f(s,µ(s)) = J f(s,a(s)) dµ(s) is for each s ES 

A(s) 

a continuous function in µ(s) on N(s). 

PROOF. For fixed s ES the proof is analogue to the proof of Lemma 2.2 in 

VRIEZE [ll], which is an extension of the proof of Lemma 2.1 in PARTHASARATHY 

& MAITRA [8], which is also used by FEDERGRu.N [5]. 

Therefore the proof will not be repeated here. D 

LEMMA 2.2. The total expected discounted payoff function V.(s,µ) for player 
l. 

i is for fixed s a continuous function on N, Vs ES, Vi EI. 
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PROOF: The proof 1s quite analogue to the proof of Lennna 2.2 in FEDERGRiiN 

[SJ. However, as a referee of his paper pointed out, because their strategy 

space is an uncountable product of metrisable topological spaces, the pro­

duct topology of this space need not be characterized by sequences, so for 

his case the proof of Lemma 2.2 fails. 

However, in our case the product topology of the strategy space 1s charac­

terized by sequences as we already pointed out in section I, so in our 

case the proof of his Lemma 2.2 can be applied and will therefore not be 

repeated here. D 

We now define a mapping T: N + N (analogue to the mapping Tin VRIEZE 

[II]) which is the key to the proof of the existence of an equilibrium point 

within the class N. 

In assumption A3 we stated that Ai(s) is a compact subset of some metric 

space so there exists a countable subset d. (s) = {d. (s), n = 1,2, .•• } c A. (s), 1 1n 1 
which lies dense in A.(s) (cf. ROYDEN [9], proposition 13, page 163). 

1 

Let A~ E N.(s) be the probability measure on A.(s) such that 1 1 1 s -n s . A.(d. (s)) = 2 , n = 1,2, ... , so A. 1s concentrated on d.(s). 1 1n 1 1 
Chooseµ EN and let V.(s,µ) be the total expected discounted payoff to 

1 

player i when the game starts in states. 

V.(s,µ) satisfies: 
1 

2.1. V/s,µ) = gi(s,µ(s)) + sf V/s',µ)p(ds'ls,µ(s)), Vs ES 

s 
This can be seen from e.g. BLACKWELL [2], page 231, DENARDO [3], page 166. 

Let 

2.2. y . ( s , µ , a . (s) ) 
1 1 

-1 = g.(s,(µ (s),a.(s)) + 
1 1 

+ f3 J V.(s',µ)p(ds' ls,(µ-i(s),a.(s))) 
1 1 

s 

Va.(s)E A.(s), Vs ES, Vi EI 
1. 1 
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-i 
Here(µ (s),ai(s)) is the joint action in states where player i plays ai and 

the other players play according to µ(s). Note that y.(s,µ,a.(s) is the total 
1 1 

expected discounted payoff to player i if the play starts in states, the 

joint players action in this starting state is (µ-i(s),a.(s)) and after the 
1 

first step the players play according toµ. 
I -1 From assumption A5 and Lemma 2.1 we see that p(s' s,(µ (s),ai(s))) for 

fixed s',s and a.(s) is a continuous function in µ(s) (inµ) on N(s) (on N). 
1 

Since V.(s,µ) is continuous inµ and uniform bounded we may apply proposition 
1 . 

18, page 232 of ROYDEN [9] on the expression f V.(s',µ)p(ds' ls,(µ- 1 (s),a.(s))) 
1 1 

s 
to conclude that this expression is continuous inµ on N for fixed 

s E S,a.(s) E A.(s). 
1 1 , 

From assumption A5 and Lemma 2.1 it follows that g.(s,(µ- 1 (s),a.(s))) 
1 1 

is continuous inµ for fixed s ES and a.(s) E A.(s), and so we may conclude 
1 1 

that y.(s,µ,a.(s)) is continuous inµ on N for fixed s ES and a.(s) E A.(s). 
1 1 1 1 

In the same way we can show that y.(s,µ,a.(s)) is a continuous function in 
1 1 

a.(s) on A.(s) for fixed s ES andµ EN. 
1 1 

Let 

2.3. qi.(s,µ,a.(s)) = max{ O,y.(s,µ,a.(s)) - V.(s,µ)}, 
1 1 1 1 1 

Let 

2.4. \P. (s,µ,H) 
1 = J 

H 

Vs ES, Va.(s) E A(s), Vi EI 
1 

s qi.(s,µ,a.(s))dA. = 
1 :t 1 I 

d(s)EH 
in 

Vs ES, 

s qi. (s,µ,d. (s))L (d. (s)) 
1 in 1 in 

VH E M.(s), Vi EI 
1 

The mapping T N ➔ N will now be defined as: 

2.5. 
µ.(s)(H) + \P,(s,µ,H) 

(Tµ). (s) (H) = - 1 ------1--..,....,... 
1 1 + \P,(s,µ,A.(s)) 

1 1 

, Vs ES, VH E M.(s), Vi EI. 
1 

We now succesively prove two properties of this mapping T. 

PROPERTY 

PROPERTY 2 

For everyµ EN we have Tµ EN. 

T: N ➔ N is a continuous mapping and possesses at least 

one fixed point. 



Proof of Property 1: From (2.5) we see that (Tµ).(s)(.) is a probability 1. 
measure on A.(s) defined for each Borel subset HE M.(s), so it follows 

1 1. 
that Tµ EM. D 
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Proof of Property 2: We have already shown that y. (s,µ,a. (s)) is continuous 
1. 1. 

in µ for fixed s E s and a. (s) E A. (s) and that y. (s,µ,a. (s)) is continuous 
1. 1. 1. 1. 

in a. (s) for fixed S E s andµ E N. 
1. 

In exactly the same way as the proof of property ] in VRIEZE [ 11] it follows 

that ~.(s,µ,a.(s)) is continuous inµ and a.(s), next that ~.(s,µ,H) 1.s con-1. 1. 1. 1. . 
tinuous inµ for each s ES, HE M.(s) and from the definition (2.5) we then 

1. 
see that (Tµ).(s)(.) is 1. continuous 1.n the weak topology inµ on N, for 

Vs ES, Vi EI. So if µn + µ0 on Nin the product topology, then Tµn + Tµ 0 
on Nin the product topology. Applying the Schauder-Tychonoff Theorem (e.g. 

DUNFORD & SCHWARTZ [4], page 456) gives us then the existence of a fixed 

point in N for the above defined mapping T. 

A more detailed version of this proof one can find in VRIEZE [11] (proof of 

Property 1) • D 

THEOREM 2.I. : The stochastic gamer= (I,S,A,g,p) under the assumptions 

A1 ,A2 ,A3 ,Al+ and A5 possesses an equilibrium point within the class of sta­

tionary strategies. 

* PROOF : Letµ be fixed point of the above defined mapping T. And let 

* V. (s, µ ) bi~ the payoff to player i when play starts in state s. 
1. 

We are going to prove: 

* * * Tµ = µ ¢."> µ is equilibrium point, 

Quite analogue to VRIEZE [11] (proof of Property 2) it follows that 

2.6. * Tµ * = µ 

We should prove: 

·* 
( *) max { ( ( -1. ( ) ( ) ) ) ~Vis,µ = a.(s)EA.(s) gi s, µ s ,ai s + 

1. 1 

·* * I -1. V.(s',µ )p(ds' s,(µ (s),a.s)))} 
1. 1 

Vs ES, Vi EI. 
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2.7. µ* equilibrium point ~ 
·* -1 * V.(s,µ) = 

1 
max {g.(s,(µ (s),a.(s))) + 

a. (s)EA. (s) 1 1 
1 1 

+ 13 

s 
Vs E S, Vi E I. 

. * Fix the strategies of all the players onµ except for playerci. Then we can 

in the usual way define a Markovian decision problem for player i, namely: 

Statespace S, pure action space A.(s) in states ES, immediate payoff 
-i* 1 

g.(s,(µ (s),a.(s))) in states when he plays pure action a.(s) and transi-
1 1 "* .1 

tion probabilities p(s' ls,(µ- 1 (s),a.(s))). 
1 

It is only a matter of substitution to see that, if player i plays in the 

above Markovian decision problem stationary strategyµ. E Ni, then he yields 
1 • 

a payoff W.(s,µ.) which is the same as the payoff V.(s,(µ- 1 *,µ.)), which 
1 1 1 1 

he would get if in the gamer player i playsµ. &nd the other players play-
1 

* ing according toµ • 

BLACKWELL [2] has shown that for the above mentioned Markovian decision pro­

blem a stationary strategy is then and only then optimal for the discounted 

criterium if his payoff satisfies the optimality criterium. 

So hereµ. EN. is optimal for the above Markovian decision problem if£: 
1 1 

·* 2.8. W.(s,µ.) = 
1 1 

-1 
max , {g. (s, (µ ,a. (s))) + 

1 1 a. (s)EA. (s) 
1 1 

·* 
W.(s,µ.)p(ds' ls,(µ- 1 ,a.(s)))} 

1 1 1 
Vs ES 

·* -1 
As W.(s,µ.) = V.(s,(µ ,µ.)) we see from (2.6) and (2.8) that: 

1 1 1 1 

2.9. * Tµ * = µ 

is optimal for his Markovian decision problem when the other players are 
-i* fixed atµ , Vi EI. 



So from (2.9) we see: 

2. 1 o. * Tµ * = µ 

which is the same as 

* * * Tµ = µ ~ µ 

·* -1. * 
= V. (s, (µ ,µ.)) = l. l. 

·* -1. 
= V. (s, (µ , µ.)), l. l. 

equilibrium point. 0 

3. EXTENSION TO GENERAL STRATEGY SPACES 

* W.(s,µ.) ~ W.(s,µ.) = l. l. l. l. 

Vi E I , Vµ . E N • • l. l. 

In this section we impose milder condition on the parameter of the 

gamer= (I,S,A,g,P). 

I is an arbitrary set of players. 

Sis an arbitrary state space, with defined an arbitrary a-algebra 

BS on it. 

A= X X A.(s), where A.(s), the set of pure actions for player 
SES iEI l. l. 

i in states, is an arbitrary space. 

9 

g = {g. I i EI} where g. is the payoff function for player i, i.e. if l. l. 
in states ES the joint players action is a(s) E X A.(s), then g. 

. I I. I. l.E 
specifies an immediate payoff g.(s,a(s)) to player i. The only condition l. 
on the g. 's is · sup I g. (s,a(s)) I = M. 

1 ISA 1 ' , 
P = {p(Hls,a(s))I VH E B8 , Vs ES, Va(s) E X A.(s)} Pis the set 

. I I. l.E 
of transition probabilities, i.e. if in states the joint players 

actions are a(s) E X A.(s), then P specifies probabilities p(H I s,a(s)) 
. I I. l.E 

for each set HE BS i.e. p(Hls,a(s)) is the probability that the next 

state belongs to H if in states joint action a(s) has taken place. 

No further condition on Pis made. 

What we intend to do in this section is the following: 

Assume that in the stochastic game model specified by B1,B2,B3,B4 and B5 , 

we have found in the discounted case an equilibrium point within a later 
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to be specified subclass of the stationary strategies then we show that this 

point is also equilibrium point in the most general class of strategies. 

So there is specified a discount factor 8 E [0,1). Let M.(s) be a a-algebra 
l. 

on A.(s), Vi EI, Vs ES. Let A(s) = X A.(s) and let M(s) be the product 
l. iEI l. 

a-field on A(s). Let N.(s) be the set of probability measures on A.(s) de-
1. l. 

fined for each BE M.(s). Let N(s) = X N.(s). N(s) is the set of product 
l. iEI l. 

probability measures defined on the product a-field M(s). 

An element µ.(s) E N.(s) should be viewed as a randomized action for player 
l. l. 

i in states and an element µ(s) E N(s) should be viewed as a joint action 

of the players in states. 

Let ht be the history of the game until time t, i.e. 

where a(s.) E X A.(s.) 
J iEI 1 J 

We are now going to define the most general strategy space for the players. 

As a result of AUMANN [l] we may restrict ourselves to behavioral strategies, 

without loss of any generality, when we quite naturaly assume that the play 

is of perfect recall, i.e. each player remembers at every time t the whole 

history ht and knows exactly in what state st he is. 

A behavioral strategy for player i is a strategyµ. which specifies 
l. 

for each t, each history h and each state st an element µ.(t,h ,s) E N.(s ). t l. t t l. t 
Let IT. be the set of all strategies for player i and let IT= X IT .• 

l. iEI l. 

Then an elementµ of IT should be viewed as a joint strategy for the players 

and µ(t,ht,st) E N(st). 

If µ.(t,ht,s) E IT. depends for every t through h only on s0 , so 
1 t 1 t 

µ.(t,h ,st)= µ.(t,s 0,s ), then we speak of a semi-markov strategy for 
1 t 1 t 

player i. If µ.(t,h ,s) E IT. depends for every t not on ht, so 
1 t t 1 

µi(t,ht,st) = µi(t,st), then we speak of a Markov strategy. 

If µ.(t,ht,st) E IT. depends only on s , so µ.(t,ht,s) = µ.(st), then we 
1 l. t 1 t 1 

speak of a stationary strategy. 

Note that there is a one-to-one correspondence between the set of stationary 

strategies for player i and the set X N.(s). 
SES l. 

It is easy to see that when we take an arbitraryµ E IT then we get great 

measurability and integrability difficulties with the calculation of the 
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expected payoff to player i, Vi E I. Following DENARDO p] page 175, we 

therefore use the following trick. Let T be an arbitrary topological space: 

let f(.) bE~ an arbitrary function on this space T and let p(.) be a proba­

bility measure on this space T, defined for each Borel subset B c T. Let 

K(T,f(.),p(.)) = {v Iv: T ➔ JR'; f(t) ~ v(t), \ft ET and v(.) 

is integrable on T with respect top(.)} 

We now define: 

3. 1. I f(t) dp(t) -

T 

inf I v(t) dp(t). 
VEK(T,f(.),p(.)) T 

In what follows all integrals used are meant in the sense of 3.1. 

Let µ(-(s 0 ,a0 (s0))) be the joint stationary strategy generated byµ E TI, 

defined as: 

where ((sO,aO(sO)),ht) is a history consisting of t+l -states and t+l 

-joint actions, \fs 0 E s, \fao<so) E X A. (s0), Vi E I. 
. I i iE 

Define for each s E s and each i E I a sequence of mappings 

{Zsi IT ➔ JR' , t = O, 1,2, •••• } as follows: 
t 

r 
3.2. j 

A(s) 

3.3. 
s'i 

Zt-l (µ(-(s,a(s)))p(ds' ls, a(s))} dµ(O,h0 ,s) 

Ifµ is such, that every integral, which appears in the sequence {Z~i(µ)} 

can be calculated without making use of the sense (3.1) then we see that 

Z~i(µ) equals the expected payoff to player i at the t th step if the play 

starts in states and the players joint strategy is ii E IT. 

M,\THE;,,~,\, ,,, - . , 

-AMS TE ii DAM--
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Now in general we define the expected payoff to player i as 
. n . 

Zs 1 (µ) = lim I StZ~ 1 (µ) when the play starts in states ES and the 
n--)<)O t=O 

joint player's strategy isµ E IT. As 

sup jg. (s,a(s)) I :::; M, it follows that izsti(µ) I :::; Mand 
I t' A i 

, i.), 

1zs1(µ)j :::; l~S • Vs ES, Vi EI, Vµ E IT. 

The concept of equilibrium point will be defined in the usual way 

* DEFINITION: An elementµ E IT is called an equilibrium point iff 

si -i* si * 
Z ( µ , µ.) ~; Z ( µ ) , Vs E S, Vi E I, Vµ . E IT. , 

1 1 1 
-i* 

where (µ ,µ .. ) is the joint strategy where player i playsµ. and the 
1. 1 

other players play according toµ * 

Now we are able to state our main theorem of this section: 

THEOREM 3, I. Let Q be a class of stationa,ry joint strategies for the 

players with t;he property that if µ E Q, then also (µ -i ,ai) E Q, 

Va. E x8A. (s). Ifµ* E Q is an equilibrium point within this class Q., then 
1 SE 1 

µ* is ;,n equiUbriwn point within the most general class of strategies TI. 

Before proving this theorem we prove a useful lemma. 

. ·* S1 -1. 
LEMMA 3.1. Let W.(s) == sup Z (µ ,µ.), 1. µ. E TI. 1 

obeys theorem 3.1. l 1. 

Then W.(s) satisfies the equation: 
1. 

3.4. W. (s) = 
1. 

* Vi EI, Vs ES, whereµ 

·* 
+ sf W.(s')p(ds' ls,a(s))}d(µ-1. (s),a.(s))} Vs ES, Vi EI. 1. 1. 

s 



PROOF: First note that 

3.5. 

Vs e: S. 

e: From (3.4) we see that for every e: > O, there exist aµ. e: TI. such that 
l. l. 

. ·* 
3.6 

SI. -1. e: 
Z (µ ,µ.) ~ W.(s) - e:, 

l. l. 
Vs E S, Vi E I. 

Since µ.(-(s,a(s))) e: TI. we see from (3.4) that 
l. l. 

3.7. 
' . . * s l. -1. Z (µ ,µ.(-(s,a(s)))) ~ W.(s'), 

l. l. 
Vµ . e: TI. , Vs e: S 

l. l. 

Va(s) e: A(s), Vie: I. 

Combining (3.5), (3.6) and (3.7) yields: 

3.8. 
. ·* 

W.(s) - e: ~ Zs 1 ( -1. e:) 
l. µ 'µi ~ I {gi(s,a(s)) + 

A(s) 

I -1. e: I ·* 
+ B Wi(s')p(ds' s,a(s))} d(µ (s),µi(O,hO,s)) 

s 
~ sup { f {gi(s,a(s)) + 

ai(s)e:Ai(s) A(s) 

13 

sf Wi(s ')p(ds'ls,a(s))}d(µ-i(s)~i(s)}'} Vs e: s, Vie: I 
s 

So one part of the leIIDD.a is proved. 

Consider now the expression: 
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3.9. 

. . * 
Sl. -1. Then Z (µ ,(µ.,a.(s))) represents the expected payoff to player i when 1. 1. 

play starts in states, player i plays in the first step pure action a.(s) 1. 
and after the first step he playsµ., while the other players 

1. 
play according 

* to µ during th,e whole game. So by (3.4). 

. ·* Sl. -1. 3.10. Z (µ ,(µ.,a.(s)):::; W.(s), 1. 1. 1. 

£ Choose nowµ. such that: 1. 

I • • * 

Va . ( s ) E A . ( s ) , Vµ . E II. • 1. 1. 1. 1. 

3. 1 l • 
s 1. -1. £ Z (µ ,(µ.(-(s,a(s)))) ~ W.(s') - £, Vs' ES, 1. 1. Vs ES, 

Va(s) E A(s), Vi EI. 

Combining (3.9), (3.10) and (3.11) yields: 

3.12. W.(s) 1. 

s 
·* J {gi (s,a(s) 

A(s) 
+ sf W.(s')p(ds'ls,a(s))}d(µ-1. (s),a.(s)) 

1. 1. - £ 

s 
Va.(s) E A(s), Vs ES, Vi EI. 

1. 

So from (3.12) we can conclude 

3.13. W.(s) + e 1. ~ sup { I {gi(s,a(s)) + 

ai (s) EA(s) A(s) 

sfwi(s 1 )p(ds' !s,a(s))} d(µ-i~s),ai(s))}, 

s 

Combining (3.8) and (3.13) proofs the lemma. 0 

Vs ES, Vi EI. 
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PROOF OF THEOREM 3.1 : Fix player i and choose E > O. 

From Lemma 3.1. we see that for each s there exists an a.(s) E A.(s) 
1 1 

such that: 

3.14. I {gi(s,a(sH"+ efwi(s')p(ds'ls,a(s))}d(µ-i*(~),ai(s)) ~ Wi(s) - e(l-e). 

A(s) S 

·* I -1 
Let Q. = {µ. µ. EN. and(µ ,µ.) 

1 1 1 1 1 
E Q}, so by the assumption on Qin 

Theorem 3.1. we have Q. ~ X A.(s). 
1 S 1 SE 

Let µ7 be the stationary strategy for player i which prescribes to play 
1 

E action a. (s) in state s, where a. (s) obeys (3.14), so µ. E Q· .• 
1 1 1 l. 

Then from (3.14) and (3.2): 

3.15. 

~W.(s), 
1 

Vs ES. 

Substitution of the left side of (3.15) for W.(s') in the left side of 
1 

(3.14) yields : 

3. 16. 

I I ·* I -1. E 
+ S W. (s")p(ds" s' ,a(s'))d(µ (s'),µ. (s') + 

1 l. 

A(s) S 

·* I -1. E 
+ E(l-S)} p(ds' s,a(s))d(µ (s),µ.(s)) ~ W.(s)- e(l-S). 

1 1 · 

Or using (3.3): 

3.17. 

Vs ES, 

where 
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I 2 (Wi)(s) I I I I Wi(s")p(ds"l''s',a(s'))d(µ-i~s'),µ~(s')) 

A(s) S A(s) S 
·* I -1. e: 

p(ds' s,a(s))d(µ (s),µ.(s)) 
l. 

In the same way it is easy to prove by induction that: 

3.18. 
k t 

W.(s) - e:(1-B) l B 
1 t=O 

Since IW. (s) I ~ M, it follows I Ik+l (W.) (s) I ~ M, 
l. l. 

Vs E S, Vk. 

As. 

we see from 3.18 that 

. . * 
3.19. ZSl.( -1. e:) W () µ ,µi ~ is - e:, 

. ·* Sl. -1. e: z (µ ,µ.), 
l. 

Vs ES, 

e: So for every e: > 0 there exists a µi E Qi such that (3.19) holds. 

Therefore we may conclude: 

3.20. W. (s) = 
l. 

sup 
µ. ElT. 

l. l. 

. ·* Sl. -1. 
Z (µ ,11.) = 

l. 
sup 

µ.EQ. 
l. l. 

. ·* Sl. -1. z (lJ ,µ.) = 
l. 

Vs ES. 

Vs ES. 

* As i was arbitrary chosen (3.20) holds for every i EI, so we see thatµ 

is also equilibrium point within the class IT. D 

* THEOREM 3.2. The equilibrium pointµ EN as found in section 2 for the 

gamer= (I,S,A,g,P) under the conditions A1,A2,A3,A4 and AS within the 

class N, is also equilibrium point in the most general strategy class for 

that game. 

PROOF: As the conditions B1,B2,B3,B4 and BS are all weaker than respecti­

vely A1 ,A2 ,A3,A4 and AS and as N satisfies the condition on Q in Theorem 

3.1, we may apply theorem 3.1. D 
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