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On N-person stochastic games with denumerable state space 

by 

A. Federgruen 

ABSTRACT 

This paper considers non-cooperative N-person stochastic games with a 

countable state space and compact metric action spaces. We concentrate upon 

the average return per unit time criterion for which the existence of an 

equilibrium policy is established under a number of recurrency conditions 

with respect to the transition probability matrices associated with the 

stationary policies. These results are obtained by establishing the exis

tence of total discounted return equilibrium policies, for each discount

factor a E [0,1) and by showing that under each one of the aforementioned 

recurrency conditions, average return equilibrium policies appear as limit 

policies of sequences of discounted return equilibrium policies, with dis

count factor tending to one. 

Finally, we review and extend the results that are known for the case 

where both the state space and the action spaces are finite. 

KEY WORDS & PHRASES: non-coopePative stochastic games, denumePable state 

space, compact metPic action spaces, equilibPium poli

cies, avePage and total discounted PetUPn cPitePiwn. 





O. INTRODUCTION AND SUMMARY 

A huge literature on Markov Decision Problems exists, in which a 

single decision maker controls the development of some system. However, in 

many stochastic control problems arising in various applications such as 

the modelling of economic markets, the description of biological systems 

etc. (cf. SOBEL [23]), the system is simultaneously controlled by more than 

one decisionmaker. As a consequence these problems have to be modelled 

using stochastic games. 

This paper considers non-cooperative N-person stochastic games with a 

countable state space and compact metric action spaces. We ~oncentrate 

upon the average return per unit time criterion for which both existence 

of an equilibrium policy and solutions to the optimality equation are es

tablished, under a number of recurrency conditions with respect to the 

transition probability matrices associated with the stationary policies. 

These results are obtained by showing that the average return crite

rion arises as a (first) sensitive discount optimality criterion. More 

specifically we show that under each one of the aforementioned recurrency 

conditions, average return equilibrium policies appear as limit policies 

of sequences of total discounted return equilibrium policies with discount 

factor tending to one. 

Accordingly, after giving some preliminaries and notation in section 

I, we first establish in section 2 the existence of a total discounted 

return equilibrium policy for each discountfactor a E [0,1) (an existing 

proof in [23] appears to be incorrect). 

In section 3, existence of an average return equilibrium policy and a 

solution to the optimality equation are established, whereas in section 4, 

we review and extend the results that are known for the case where both 

the state space and the action spaces are finite. 

1. PRELIMINARIES AND NOTATION 

This paper treats an N-person noncooperative stochastic game specified 

by the objects S, Ai(s), q and r. 
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Sis a countable set, and for each i = l, ••• ,N ands ES, Ai(s) is a 

compact metric space where the set S denotes the state space of some system, 

and Ai(s) denotes the set of actions, available to player i, in states. 

We define A as the union of all Ai(s) (sES; i=l, ••• ,N) and C as 

(I.I) C = ~=I A. 

q associates with each pair (s,_a) ES x Ca probability distribution q (a) s. -
on the elements of S; and ri is a bounded real-valued function on S x C, for 

all i = I, ... ,N. 

A stochastic game may be considered as a sequence y 1 ,y2_, ••• of non

cooperative games played by the N players, wheres ES indexes the set 

{rs I s ES} from which yt (t=l,2, ••• ) is drawn. Note that all the players' 
I N actions in yt = s (t=l,2, ••• , SES) constitute a vector a= [a , ••• ,a] E 

E C(s) where 

(I. 2) C(s) N i 
= xi=l A (s), SES. 

When yt = s i.e. when the system is in states and the vector a E C(s) de

notes all the players' actions in yt' then the one-step expected reward to 
i player i, is given by r (s;~) and the system moves to state t with proba-

bility qst (~). 
i For each s ES, and i = 1; ... ,N let F(A (s)) denote the set of all 

signed measures on B • the Borel subsets of Ai(s), endowed with the 
A1 (s)' 

weak topology (cf. VARADARAJAN [27], p.16-17). The sets belonging to the 

base by which this topology is defined satisfy the Hausdorff postulates for 

neighbourhoods, and are in addition locally convex. As a consequence we ob

tain that F(Ai(s)) is a linear Hausdorff locally convex topological space. 
i 

Let M(A (s)) be the subspace of all probability measures on BAi(s)' 

with the induced topology. It then follows from th. 3.4 in [27] that 

M(Ai(s)) can be metrized as a compact convex metric subspace of F(Ai(s)) 

since A1 (s) is a compact metric space. 
N i Next we define for each s ES, F(C(s)) = Xi=I F(A (s)), and M(C(s)) = 

= ~=I M (Ai ( s) ) , i = I , •••• N. 

Note that F(C(s)) is again a linear Hausdorff locally convex topologi

cal space, and that M(C(s)) is again a compact convex metrizable subspace 
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of F(C(s)), s ES. Finally, we observe· that M(C(s)) can be identified as 

the space of all product probability measures on BC(s)' the product cr-field 

in C(s). Moreover, for any sequence{µ }00 
1 withµ E M(C(s)), n = 1,2, ••• 

--n n= -n 
it follows from th. 3.2 in BILLINGSLEY [3] that 

(I .3) as n + 00 

for all real-valued and continuous functions r(•) on C(s) 

if and only ifµ +µ(in the product topology). 
-n -

We use the (abbreviated) notation [µ-i,v] for the N-person randomized ac-
. 1 i-1 i + 1 N - 1 N 

tion [µ , .•• ,µ ,v,µ , ..• ,u] that results fromµ=[µ , ••• ,µ] when the 

i-th player changes from µi to v, the other players continuing to use their 

respective actions in~- Defining ri(s;~) = Eµri(s;_!) and q8 t(~) = 
I N -= E n (a) for allµ=[µ , ..• ,µ] E M(C(s)), s ES, i = l, ..• ,N, we obtain 

~ .:1st - -

(l .4) i f i r (s;~) = C(s) r (s;_!) dµ(,!) = 

f i l N 11 NN 
N r (s;a , ••. ,a) dµ (a ) ••• dµ (a) 

A (s) 

(I • 5) 

where the second equality in (1.4) and (1.5) follows from Fubini's theorem. 

Observe that ri(s;µ) and q (µ) are both multilinear inµ, i.e. for all 
- st -

A E [0,J]: 

( I • 6) 

( l. 7) 

i 1 j N 
+ (1-A) r (s;µ , ••• ,v , ..• ,µ) 

I • N 
+ (1-A) q (µ , •.• ,vl, .•. ,µ ). 

st 

i 1 j N Ar (s;µ , .•• ,µ , ••• ,µ) + 

1 . N 
= Aq (µ , ... ,µl, ... ,µ) + 

st 
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Hereafter we assume that for each s ES, 

( I • 8) i r (s;a) and q (a) are continuous on C(s), st -

and t ES. 

for all i = l, ••• ,N 

Observe from (I.3) that (1.8) implies that for each s ES, the one-step ex

pected rewards and transition probabilities are continuous on the space of 

all randomized N players' actions M(C(s)) as well: 

(I • 9) 

Let tii 

i r (s;_µ) and q (µ) are continuous on M(C(s)) for all i = l, •.. ,N 
st -

and t ES. 

i 
= XsESM(A (s)) be the set of all decision rules for player i, 

(i=l, ••• ,N) i.e. of all functions oi mapping each states into an action 

oi E M(Ai(s)). A policy for a player 
s 

••• ) of decision rules. Using policy 

i is a sequence Tii = (oi(I),oi(2), 

Tii means that oi(n) is employed at 

time n; thus if the system is observed in states at time n, then player i 

chooses action oi(n), the s-th component of oi(n). We write oi(oo) for the 
s • • 

stationa;roy policy (o 1 ,o 1 , ••• ) for player i. 
i As a consequence we let ti represent the class of all stationary poli-

cies for player i as well. 

A stationary policy oi(oo) E tii is said to be pure if in each state 

s ES it prescribes a specific action in A1 (s) with probability one. 

Finally, the set of all policies for player i is denoted by ITi, and 
N i 

IT= Xi=l IT represents the class of all N players' policies, with 

ti= Xf=I tii the subset of the stationaPIJ N players' policies. 

We associate with each stationary policy i(oo) E ~, the transition 

probability matrix P(f), i.e. 

with then-th power Pn(f) indicating the matrix of n-step transition proba

bilities, i.e. P0 (o) = P(o) Pn-l(o), n ~ 2. 
- -I N i i 

For any policy 2:_ = [TI , ••• ,TI] E TI we define V (n,s) and g (2:_,s) as 
a -
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the total expected a-discounted return~ and the long-run average return per 

unit time to player i, when the initial state is s: 

(1. 10) 

(I. I I) 

i V (-rr;s) = 
a-

i 
g (2!_; s) 

I , ••• ,N; s E S; 0 ~ a < I 

l, ••• ,N; s Es 

where E indicates the expectation given the players' common policy 2!_ E .!!. 
Tr 

is used-and where {sk;k=0,1,2, ••• } and {~;k=O,I, .•• } denote the stochastic 

processes of the states and actions that result from policy -rr. 

1 f 1 . . * [ *I *NJ . .d - a· An N-tup e o po 1c1es 2!. = -rr , ••• ,-rr E .!!. is sa1 to be an a- ~s-

cou:nted equilibrium point of policies (a-DEP) if, simultaneously for every 

initial state of the systems, 

(1.12) i * V (-rr ;s) a-

where 

(I.I 3) 

i 
~ V (-rr;s) for all 

a-
-i * i = l, ... ,N and -rr E IT (2!_ ): 

I N {-rr = [-rr , ••• ,Tr J E IT j 'f i}. 

* Similarly we define -rr as an average return equilibrium point of policies 

(AEP), if simultaneously for every initial states, 

(1.14) i * i -i * g (2!_ ;s) ~ g (~;s) for all i = I, ••• ,N and -rr E IT (!!_ ). 

* Hence, whenever the players choose an a-DEP (AEP)!!_, none of them, whatever 

the initial state of the system, can increase his own total expected a-dis

counted return (expected average return per unit time) by changing to some 
. i J *i 1 other policy -rr r -rr E IT, the other players continuing to use their res-

pective policies in!!.*· 

Note that we do not consider history-dependent policies, i.e. policies 

which prescribe for each time t, a randomized action in dependence on the 

entire history Ht= (s0 ;~0 ;a1, ..• ,st-l'~t-l'st) of the system up to time t, 

rather than in dependence on the current state st alone. The justification 

for our confining ourselves to the class.!!_ is provided by [13], who showed 



6 

as an adaptation of the corresponding result in DERMAN & STRAUCH [7] that 

whenever a policy!!..* is an a-DEP or AEP within.!!_, it is an equilibrium po

licy within the broader class of history-dependent policies as well. 

We conclude this section by observing that if the sets Ai(s) (i=l, .•• , 

N; SES) are convex compact subsets of some linear metric space themselves, such 

that for all i = I, ... ,N ri(s;~) is linear or even concave in the i-th com

ponent of~ (cf. (1.6) and (1.7)) then the existence of a pure instead of a 

randomized stationary a-DEP or AEP is guaranteed under the same conditions 

as follows from an examination of the analysis below. 

2. EXISTENCE OF STATIONARY a-DEP'S 

O'. E 

In this section we prove the existence of a stationary a-DEP for each 
*) [O,l) • 

For each policy i(oo) E ~, the total expected a-discounted return to 

player i, when starting in states ES, is denoted by 

00 

(2. I) I 
n=O 

n a 

The following lennna proves that Vi(o( 00);s) is a continuous function on i 
a-

for all i = l, •.• ,N, s ES and a E [0,1): 

LEMMA 2.1. Fix s ES, 1 :,:; i:,:; Nanda E [0,1). Then V~(i(oo);s) is continu

ous on i. 

PROOF. We first observe that since i is metrizable, it suffices to show 
i (oo) i (oo) - oo 

that limn➔ooVa(£n ;s) = Va(i ;s) whenever {~n}n=l ➔ i, with £n E i. 
00 

Fix a sequence {o} 1 with lim o = o and note that o E _i, in view of -n n= n➔oo -n -
the compactness of~. Let M be such that 

(2.2) i 
Ir (s ;~) I :,:; M for alls ES, and a E C(s). 

It is then easily verified that 

(2.3) for all ~(oo) E ~ands ES. 

*) Shortly after completing this paper, I became aware from a recent bibli-

ography of a report by IDZIK [14] in which similar existence results for 

a-DEPs seem to be obtained. 
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Next, observe by complete induction that as a consequence of (1.8) 

Pk(i)st is continuous on~ for all s,t ES and k = 1,2, •••• This 7 in turn, 

implies using proposition 18 on p.232 in ROYDEN [18] that for each 

l = 0.1 ••.• 

(2.4) 

Finally, pick e > 0 and choose K such that aK s e(1-a)/4M. Let Hk(s) = 
,k-1 l, l i n = ll=O a ltES P (.!J..)st r (t;.!)_(t)) for all k = 1,2, ••• and.!!. E ~. 

Observe that for each n E ~= - -

(2.5) 

K K 
In view of (2 .4) there exists an integer N0 such that lH0 (s) - H0 (s) I s e/2, 

for all n ~ N0 . We thus obtain that for all n ~ N0 : -n 

K 
+ a I I 

tES 

e I 2 + e (I -a) 2M 
4M (1-e) = e:. D 

We now turn to the existence of an a-DEP. 

For a compact, metric state space and under somewhat stronger continuity 

assumptions with respect to the one-step expected rewards, and transaction 

probability functions, the existence of an a-DEP was first proved by SOBEL 

[23]. Unfortunately there seem to be a number of serious errors which in

validate the approach. Although with a considerable amount of additional 

work, the proof in [23] can be rectified for the case of a denumerable 

state space we prefer to give a different proof. 

Our approach uses an extension of the Kakutani fixed-point theorem 

which was obtained independently by GLICKSBERG [11] and FAN [9]. First, for 

each compact set U let 2U denote the class of all (non-empty) closed sub

sets of U. A point to set mapping i: U + 2U (with U satisfying the first 

countability axiom) is said to be upper semi-continuous, if for each 



8 

CX) 

(2.6) ➔ x, yn E ~(K ), {y} I ➔ y .. y E ~(x). n n n= 

LEMMA 2.2. Given an upper semi-continuous point to convex set mapping 

~= U + U of a convex compact subset U of a linear Hausdorff locally convex 

topological space into itself, there exists a point x E ~(x). 0 

Observe from the analysis in section 1, that X S F(C(s)), the space 
SE 

of all functions f mapping each states into a N-tuple of (finite, signed) 

measures f E F(C(s)), endowed with the product topology is ·again a linear 
s 

Hausdorff locally convex topological space, with~, the countable topologi-

cal product of the spaces M(C(s)) (sES), a metrizable subspace which is in 

addition convex and compact, as a consequence of Tychonoff's theorem. The 

fixed point theorem in lennna 2.2 will be applied by constructing a point 

to set mapping on~' as a subspace of X S F(C(s)). 
SE 

We finally need the following lennna, the proof of which follows from 

th. 6-f in BLACKWELL [5]: 

LEMMA 2.3. Fix O ~a< I. A stationaPy policy o(oo) = [ol(oo) , ••• ,oN(oo)J is 

an a-DEP, iff V~(i(oo);s) satisfies the optimality equation: 

(2. 7) 
i -i max { r ( s ; [ o ( s ) , µ J ) + 

µEM(Ai(s)) 

q t([o-i(s),µJ) Vi(o(00);t)} 
s a -

for aU s E S, i = I , ••• ,N. 

THEOREM I. There exists a stationary a-DEP for each a E [0,1). 

PROOF. We first observe that for each o E 6 and i = I, .•• ,N there exists, 
i as a result of (l-8) an n E 6 such that for alls ES: 

(2 .8) ri(s;[o-i(s),n(s)]) +al q8 t([o-i(s),n(s)J) V~(i(oo);t) = 
tES 



For any i = l, ••. ,N and§_ E !, let ~i(~_) denote the set of all n E 6i that 

satisfy (2.9) for alls ES, and define the point-to-convex set mapping 

We next show the upper-semi-continuity of this point-to-set mapping. Fix 
00 00 

{~n}n=l' [~n}n=l with (1) ~n' Dn E !, (2) limn__, ~n = §_; limn-+<» !lu =!!and 
(3) n E ~(o ) • -n -n . 
Substitute cS for·o and nl. for n in (2.8) and let n tend to infinity. It 

-n --: n 
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then follows that nl. satisfies (2 .8) for §_, and this for all i = 1, .•. ,N and 

s ES, as a consequence of (1.8), lennna 2.2, the boundedness of Vi(o(00)·s) a. -n , 
and proposition 18 on p.232 in ROYDEN [18]. 

As a consequence of the upper-semi-continuity of~, and the fact that 

~ is a point-to-convex set mapping of a convex compact subset 6 of the 

linear Hausdorff locally convex topological space X S F(C(s)) into itself, 
SE 

it follows from lennna 2.2 that there exists a o* E 6 such that o* E ~(§_*) 

which implies (2.7) and hence proves the theorem (cf. lennna 2.3). D 

3. THE EXISTENCE OF AVERAGE RETURN EQUILIBRIUM POLICIES (AEP'S) 

We first introduce the following notation: 

For any§_ E 6 we define the matrix p*(§_) as the Cesaro limit of the sequence 
n oo 

{P (§_)}n=l' For each pair of states s,t ES, we denote by m0(s,t) the mean 

first passage time, i.e. the expected number of transitions-needed to get 

from states to state t, under policy §_(00
) E 6. Let R(§_) denote the set of 

recurrent states under P(§_) and recall that a state t ER(§_) is positive 

recurrent if and only if p*(o) > 0. For each states ER(§_), let A(§_)~ I. 
- tt 

denote the period of the suhahain (closed, irreducible set of states) to 

which states belongs, and if R(§_) I 0 let A(§_) be the least common multi

ple of the periods of the different subchains (which may be infinite). We 

next define for each pair of states s,t ES; each policy§_ E ! and 

r = 1 , ••• , A (§_) : 

f* (r;cS) as the probability that the system under P(o) will ever reach 
st - -

state tin the course of the transitions r; A(§_)+ r; 2\(§_) + r, •.• when 



starting in states. Note from th. 4 on p.31 in CHUNG [6] that for each 

o Eb and s,t ES: 

(3. I) lim PUA (j_)+r (tS) 
- st 

= {A(i)t.f:t(r;i) p*(i)tt 

0 

if t E R(i) 

otherwise. 

If P(i) has a single subchain the states of which are recurrent, let 

{Cm(i) I m = 1, •.• ,A(i)} denote the set of cyclically moving subsets 

(c.m.s.) of this recurrent class which are numbered in such a way that for 

any m = I, ... ,Ali): 

(3.2) only if t E Cm+ 1 (i) 

with the convention that the superscript min Cm(i) is taken modulo A(i), 

Note that the sets {Cm(i) Im= I, ... ,A(i)} are the subchains of the matrix 

PA(i)(i), Finally let f*(s;r,Cm(i)) withs ES, m,r = O, ... ,A(i) - I indi

cate the probability that the system will eventually be absorbed in Cm(i) 

in the course of the transitions r; A(i) + r; eA(i) + r; ... when starting 

in state s. We recall from th. 3 on p.31 in [6] that for all o Eb and s ES: 

(3.3) 

Finally if the single subchain'of P(i) is a positive recurrent class there 

exists a unique stationary probability distribution n(i) such that 

* P (i)st = n(i)t for all s,t ES. 

Next we introduce a number of recurrency conditions, each of which 

will be shown to guarantee the existence of an AEP. 

Al. For each o E ~' P(~_) has a single subchain. In addition there exist 

integers, v,d ~ I, a number p > 0 and for each o Eb a nonnegative mat

rix Q(i) such that for each subset Ac S: 

(3.4) S E S 

where [x] denotes the largest integer less than or equal to x. 



A2. There exists a number R such that ·for each player i = l, ••• ,N and for 
. . f . 1 . . {.l'l .l'i-1 .l'i+l .l'N} f any combination o stationary po icies u , ••• ,u ,u , ••• ,u o 

the other players, there is a policy oi E 6i for player i, for which 

the mean first passage time m0(s,t) from any state 

under policy o = [ o 1, ••• , oN] is bounded by R, i.e. 
I i-1 -i+l N . j j . .J. {o , ••• ,o ,o , ••• ,o} with o E 6 for all Jr 

i i o E 6 such that 

s to any state t, 

for each 

i, there exists a 

(3.5) I N for all s,t ES where o = [o , .•• ,o ]. 

We first exhibit a number of properties that follow from as~umption Al: 

LEMMA 3.1. Assume Al holds. Then 

(a) dis a multiple of the period A(~) for each i E ~-

I I 

(b) For each i E ~ the unique subchain of P(i) is a positive recUPrent class. 

(c) For each o E 6 and r = O, ..• ,d-1 there exist nonnegative matrices 

Q(r)(i) (~ith-Q(O)(i) = Q(i)) such that for each subset A.'.:_ S: 

(3.6) I I S E S 
tEA 

where 

(3.7) = { 0 - for au 
* m A(o)f (s;r;c (o))TT(o) for all 

- - - t 

t t R{_§_) 
m 

t E C (i) , m = I , ••• , d • 

(d) For each o E 6 and r = I, ... ,A(i): 

A(i) 

l f*(s;r;Cm(o)) = 
m=l -

for all S E S 

and 

n [n/v.d] P (o) ~ I - (1-p) for alls Es and m = 1,2, •••• - st 

* (e) P Ci) = lim n~ 
~A(o) nA(o)+r * - . 

1/A(o) Lr=T P - (i) and P (i) depends cont~nuously 

on o E 6, i.e. foraU s,t ES lim 0 p*(o 0 ) =P*(o) whenever{o 0 } ➔ {0}. 
- ,e_~ -,e_ st - st -,e_ -
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PROOF. 

(a) follows immediately from (3.1) and the fact that for each pair s,t ES: 

lim Pnd (o) exists. 
n-+ro - st 

(b) By choosing A= {t} in (3.4) we obtain that lim pnd (o) = Q(i)st 
n-l-<X> - st 

for all s,t ES; and by choosing A= Sin (3.4) it follows that 

' Q(o) = I for alls Es. ltES - st 
Assume to the contrary that the unique subchain of P(f) contains tran

sient or null-recurrent states; we then obtain in both cases, in view 

of part (a) and (3.1): 

= 

thus proving part (b) by contradiction. 

(c) For r = 0 the assertion follows from the fact that R(i) is a single 

positive recurrent class (cf. part (b)) and the combination of (3.1) 

and (3.3) as well as the fact that Q(i)st = limn-+<><> Pnd (i)st for all 

s,t ES. Next, note that for r = 1, ••• ,d and any subset Ac S: 

I I 
UES 

~ I 
UES 

thus showing the existence of nonnegative matrices Q(r)(o) which satis

fy (3.6), The explicit expressions in (3.7) then follow again from the 

fact that R(o) is a single positive recurrent class, and the combina

tion of (3.1) and (3.3). 

(d) Note that l TT(o) = 1/A(i) form= 1, ••. ,A(i) and use (3.7) to 
tECm(o) - t 

conclude that for each s ES: 

= Q(r)(o) 
- st 

= TT(O) 
- t 

= 



= 

A(_§) 

I 
m=I 

A(.Q.) * m 
A(o) .f (s;r;C (.§_) = 

A(~_) 

I 
m=I 

* m f (s ;r ;C (.§_). 

The second assertion follows from (3.6) with the choice A= R(.§_) and 
' (r) the observation that ltER(o) Q (.§_)st= I (cf. (3.7)). 
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(e) Since p*(.§_) = I/A(.§_) l~~f)-Q(r)(.§_) it suffices to show the continuity 

of each of the matrix functions Q(r)(.§_) (r=l, ••• ,d) on!· Fix s,t ES 

and observe in view of (3.6) that we can fix n sufficiently large such 

that uniformly for all.§_ E !, Pnd+r(.§_)st comes arbitrarily close to 

Q(r)(o) • Part (d) then follows from the continuity of Pnd+r(o) on 
- st - st 

!, for all n = 1,2,... . D 

Condition Al is of course awkward to check; however there are a number 

of easily checkable and widely fitting recurrency conditions which im

ply Al , such as: 

Al.I: There exists a finite set K, a positive integer n, and a positive 

real number c such that ltEK Pn(.§_) ~ c for alls ES and o E 8. 

In addition, for each.§_ E !, P(.§_) has exactly one subchain. 

Al.2: There is an integer v ~ 1 and a number p > 0 such that for each 

pair of states (s 1,s2) and for each o E 8: 

00 

(3.8) l min{Pv(o) t' Pv(o) t} ~ p. 
t=l - st - s2 

* Al.3: There exists a states such that for each policy.§_ E !, the mean 

* first passage time m0 (s,s) is finite and uniformly bounded in 

s ES, and.§_ E !· 

Both the first condition in Al.I as the assumption Al.2 are generali

zations of the Doeblin condition (cf. e.g. DOOB [8], p.197) to a collection 

of Markov chains; the former was introduced by HORDIJK [12] as the simul

taneous DoebUn condition, and the latter is an adaptation of a con.dition 

introduced in TIJMS [26]. We note that Al.2 with v = 1 is equivalent to 

the condition that there is a number p > O, such that for each four ele

ments (s 1,s 2 ,~1,~2) with s 1 f s2 and ~I E C(s 1), ~2 E C(s 2): 

00 

(3.9) 
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For, fix s 1,s2 ES and Hi E M(C(s 1)), ~2 E M(C(s2)) and observe that, as a 

consequence of (3.9): 

(3. I 0) 

00 (X) 

= 

where the interchange of expectation and summation is justified by the non

negativity of min{qs 1t(~ 1),qs2t<~2)}, and where the inequality part follows 

from Jensen's inequality and the concaveness of min(.,.) on R2 • Note fin

ally that (3.10) coincides with the special case of (3.8) where v =I.In 

Markov Chain terminology, the condition (3 •. 9) is known as the assumption 

that for each stationary and pur>e policy i(oo), the associated tpm P(i) is 

scrambling (cf. [I]) and has an ergodic coefficient of at least p. 

Assumption A3.2 is an adaptation of a condition introduced in ROSS[17]. 

Note that both under Al.2 and Al.3 the tpm P(i) of each i E p._ has a 

single subchain, the states of which are positive recurrent. In a forth

coming paper we will show that assumption Al.I implies Al and the fact that 

Al.2 is a special case of Al follows along lines with the proof of theorem 

I in ANTHONISSE & TIJMS [I]. 

Moreover in this same paper it will be shown that under the assumption 

that states* can be reached from any states under any policy i(oo) E p._, 
conditions Al, AI .I and AJ.3 are equivalent; this of course implies in par

ticular that Al.3 is a special case of AI as well. 

We finally note (without proof) that under assumption Al, each one of 

the policies i(oo) E p._ satisfies the Doeblin condition. 

For each a (05a<l) we choose a specific a-DEP o E ~- Next we fix any 
-a 

* states and define: 

(3. l I) 
i 

V (s) 
a for alls ES and i = l , ••• ,N. 

i LEMMA 3.2. Both under asswrrption Al and A2, the family of functions {va(•); 

0 5 a< l} is uniformly bounded. 
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i PROOF. Under condition A2, the uniform boundedn_ess of {va(•), i=l, •.• ,N} 

follows from the proof of ·th.12.8 in HORDIJK [12]. To prove the lemma under 

condition Al, we show subsequently: 

(a) lviu/00\s)-Vi(O(oo);s')I s; 4Mvd/p for all s,s' E:Cm(o ), m= I, .•• ,>..(o ); 
a -a a -a -a -a 

a E [0,1). 

(4v+2p)Md/p for all s,s' E R(o ). -a 

(6v+2p )Md/p for all s E S\R(o ) and s' E R(o ) • 
-a -a 

Note that the assertion follows easily from the combination of (a), (b) and 

* (c) for any choice of s ES. 

To prove (a), fix a E [0,1), I s; is; N, I ~rs; >..(o) and s,s' E Cr(o ). 
+ -a -a 

Let>..= >..(o ), and for any scalar a, let a = max(a,O) and a-= max (-a,O). 
-a 

Observe that for each n = 0,1, ••. and m = I, •.• ,>.. there exist two sets A+ 
- + -and A with A ,A .=. S such that for each s ES: 

(3. I 2) 

= 

+ 
where the inequality follows from (3.6) with the choice A= A-. Using the 

fact that Q(m)(£a)st = Q(m)(£a)s't for all t ES, m = I, •.• ,d as well as 

the equality a= a+ - a- and the fact that lri(t;a) I s; M for all t ES, 

a E C(t) and i = I, ••• ,N, we obtain: 

1v!<£(00);s) 

>.. oo 

s: I I I 
m=I n=O 

;\ 

+ I I I 
m=I n=O 

n 
a 

Vi(o(oo).s')I 
a - ' 

s; I 
A CX) 

I I n I i a r (t;o (t)). 
m=l n=O tES -a 

• {Pnd+m(o ) 
-a st 

- pnd+m(o) }I 
-a s't 

s; 
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A co 

I I I n I ri(t;o (t)).{Pnd+m(o) Q(m)(~a)s't}+J + a 't m=I n=O tES -a -as 
00 A 

I I I n I i nd+m Q (m) (o ) }-I s 4Mvd a r (t;o (t)).{P (o) , -a s't + -a -as t m=I n=O tES 

where the last inequality follows from (3.6). 

To prove (b), fix s E c 13 (o) ands' E cY(o) such that y - S = m (mod-
-a -a 

ulo A). Note that in view of (3.2) and using part (a): 

m 

I + 
l=l 

m-1 s mM + 4Mvd/p + (l+a+ ... +a ) Ms (4v+2p) Md/p. 

Next, let , be the Markov time, defined by -r = inf{n I s E R(o )} 
n -a 

where {sn}:=I denotes the Markov chain associated with the policy §~00
). 

Observe from lemma 3.1, part (d) that E-r s vd/p, such that using (b) we ob

tain for alls ES, ands' E R(o ): 
-a 

which proves (c). D 

T 
+ a 

+ 

,-1 s E,.M + (4v+2p) Md/p +ME {l+a+ ... +a } s 
T 

s (6v+2p) Md/p 

p 
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We now prove the existence of an AEP, making use of a technique intro

duced by TAYLOR [25], and used inter alia in ROSS [17]. 

THEOREM 2. Suppose that Al or A2 holds. Then there exists a stationary AEP 

0~ 00
) E 6, and for each player i = I, ... ,N a constant g1 and a bounded func-

-1. .-

tion v 1 (•) such that 

00 

(3.13) g i + vi ( s ) = max. { r i ( s ; [ _§_ - i ( s ) , µ ]) + l q s t ( [ _§_-i ( s ) , µ J ) vi ( t ) }, 
µEM(A1 (s)) t=l 

for all s E S 

where o1 (s) attains the maximum on the right-hand side of (3.13) fer all sES. 

Moreover, gi(.§_( 00);s) = gi, for alls ES, i = 1, .•. ,N. 

PROOF. We first observe that lo-a.) Vi(o(oo);s*)I ~ M for all a. E [0,1) and 
a. -a. 

i = l, .•. ,N. This together with lemma 3.2 and the fact that for alls ES, 

any sequence of points in the compact metric space M(C(s)) has a convergent 

subsequence, imply, using the diagonalization procedure, the existence of N 

constants g1., N bounded functions vi(•), a policy _§_(oo) E 6 and a sequence 
00 

{a.k} k= l, with a.k E [O, I) and li~-+<» a.k = 1, such that: 

(a) li~-+<» 

(b) li~-+oo 
i (oo) * 1. 

V ( o ; s ) = g 1. = 1 , ••• ,N. 
a.k. -a.k . 

(c) lim. v1. (s) 
K-><x> a.k 

= vl.(s), for alls ES, i = l, ... ,N. 

i * Now, fix i E {l, ... ,N}, ands= s0 ES and subtract Va,k(s) from both sides 

of (2. 7) with a= ak, ands= s 0 , in order to obtain (cf. (3.11)): 

(3.14) i 
V (s 0 ) = 

a.k 

00 

+ I q tcca-ics0),µJ) vl. Ct)} 
t=l so -ak ak 

1. 
where oa,k(s 0) attains the maximum on the right-hand side of (3.14). Letting 

k tend to infinity in (3.14) we obtain (3.13) with 01.(s 0) attaining the 

maximum on the right-hand side of (3 .13), as a consequence of (a), (b) and 



(c), (2.1) and proposition 18 on p.232 in ROYDEN [18]. 

Next, it follows from th. 6.17 in ROSS [17] that policy o(oo) is an AEP 

and 
i ( 00 ) i 

that g Ci ;s) = g for alls ES and i = l, ... ,N. D 

The proof of theorem 2 also shows the following corollary: 

COROLLARY 3.3. If either Al or A2 is satisfied, then each Zimit policy ob

tained from a sequence of a-DEPs with discount factor tending to one~ is an 

AEP. □ 

We conclude this section by observing that the existence of an AEP was 

recently proven under assumption Al.3 in STERN [24]. 

We note in addition, that condition Al.3 can be weakened as .follows: 

Al. 3': For each policy i (oo) E ~ there exists a state ~o, such that the mean 

first passage time ~0 (s,s 0) is finite and uniformly bounded in s ES, 

and o (m) E !:. • 

The fact that under Al.3 1 the family of functions {v1 (·) I Os a< l} 
a 

is uniformly bounded, follows from the proof of th. 6.29 in ROSS [17], such 

that theorem 2 and hence the existence of an AEP, applies to this condition 

as well. 

4. STOCHASTIC GAMES WITH A FINITE STATE AND ACTION SPACE 

In this section, we finally consider the N-person stochastic games 

with finite state and action space, as studied in ROGERS [6] andSOBEL[21]. 

We first need the following supplementary notations: 
i { i i Let A (s) = 1, ... ,K (s)} and let ask' for any po;icy i E ~' denote the 

probability with which the kth alternative (lsksK1 (s)) is chosen by player 

i when entering states ES. 

For any policy i E ~. we define the fundamental matrix Z(i) = [I-P(i)+ 

p*(o)]-I and for each i = l, ... ,N the bias-vector wi(o) by (cf. BLACKWELL 

[ 3]) : 

Observe that for each o E _!:., gi(_o( 00 ),·s) = \ p*(6) r 1 (t·o(t)) for 
Lt - st '-



19 

all 1. = I, ... ,N, s E S, and that: (cL [3]) 

( 4. I) 
i (00 ) gi 1 o( 00),.s) i l. 

V (o ·s) = -=--~~=------- + w (o) + o (a;o) , for all i = 
a - ' 1-a - s - s 

l, ••• ,N, 

i where lo (a;o) I decreases monotonically to zero as at I. 
- s 

s ES, a E [0,1), 

Denote by n(~_) the number of subchains (closed, irreducible sets of 

states) for P(o) and let Cm(.§_) indicate the mth subchain (l~m~n(.§_)). Finally, 

let 6 c 6 denote the finite set of pure and stationary policies and define 
-p --

(cf. SCHWEITZER & FEDERGRUEN [20]): 

(4 .2) R* = {s Is E R(i) for some policy.§_ E ~p}, 

the set of states that are recurrent under some pure policy. 

Although the existence of an a-DEP is always guaranteed, it is known 

from a well-known counterexample by GILLETTE [10] that even in the two per

son-zero sum case an AEP does not need to exist when for some of the poli

cies .§_(m) E ~' P(.§_) is multichained (i.e. n(.§_)~2). This seeming contrast 

with the Markov Decision Processes (MDPs) with finite state and action 

space is explained by the fact that in stochastic games, as distinct from 

the former, an essential use is made of the set of all randomized actions, 

whereas in addition the above result perfectly corresponds with what is 

known to be the case in MDPs with a finite state space, but arbitrary com

pact action space (cf. BATHER [2]). Under the assumption that for each 

o(m) E ~, P(o) is unichained, the existence of an AEP was first proved in 
- -p -
ROGERS [16] and SOBEL [21]. Moreover, in SOBEL [22], as a still stronger 

property, the existence of a (g,w)- or bias-equilibrium policy o* E ~ was 

treated, which we believe should be defined as an AEP .§_*, for which: 

(4. 3) ' i * i -i * * w (o) ~w (n) for all i= l, ..• ,N, SES and _!lE TI (.§_) nTIAEP(.§_ ), 
- s - s 

where 
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(the definition 3 in [21] does not extend the (g,w)-optimality notion in 

Markov Decision Theory; moreover, with the definition in [22], a (g,w)-op

timal policy does not even need to exist in the case N = I, i.e. in the 

case of an MDP). 

In SOBEL [22], the question of the existence of a (g,w)-equilibrium 

policy was treated using the Brouwer fixed-point theorem with respect to 

the point-to-point mapping~:!:_ ➔ !:_, with for all i E ~. s ES and k EA: 

where 

and 

( I ) 
]._ 

ask= max{0, 

(2) 

(3) 

I qst([o-]._(s),k]) gi(i(oo) ;t) 
tES 

+ I t qst([o-1-(s),k]) wi(i)t -

gi(_o( 00 );s) - w1 (o) }, otherwise. 
- s 

where z1 (o) = -Z(o) w1 (i). 

Unfortunately, the mapping~ may be discontinuous in i, since the 

ct,ik(o) can be discontinuous in those o that satisfy, for all i = l, ... ,N, 
s -

s ES the functional equation: 

(4.4) 



21 

or the functional equation (4.5) 

(4.5) i -i 
max {r (s;[o (s),k]) + 

kEAi(s) 

but for which, in any sphere in~ containing i, policies .!l can be found 

that do not satisfy (4.4) (or (4.5) respectively). (As an example consider 

the MDP with S = {1,2,3}, A= {1,2,3}, qll (•) = q22 (•) = I; q31 (1) = q31(2)= 

= I; q32 (3) = I; r(I,•) = I; r(2,•) = O; r(3,I) = -M; r(3,2) = r(3,3) = O; 

where M >> 0. Leto denote the policy that chooses action 1 in state and 
X 

2 with probability one, and in state 3 with probability x, whereas in state 
I 3 action 3 is chosen with probability 1-x. Observe that ~32 (o) is discon-

tinuous in o1 .) 
While under the assumption in SOBEL [22] that P(i) is unichained for 

every policy _o E 6, the proof in [22] can be 
-p 

the existence of an AEP (merely by rectifying 

case only criterion (2) is needed), we observe 

rectified in order to show 

~i (o) = bi since in this 
sk - sk 

that this result follows im-

mediately from theorem 2 and the observation that with Sa finite state 

space, the simultaneous Doeblin condition, and hence assumption Al.I is 

automatically satisfied. 

We note that in both the counterexamples (to the existence of an AEP) 

by BATHER [2], example 2.3 and GILLETTE [10], the matrix p*(i) is discon

tinuous in o E 6. 

In this section we show in fact that the existence of an AEP is guar

anteed, if either p*(~) is a continuous (matrix)-function on~' or if the 

Markov Decision Process that results for any player i E {l, .•• ,N} when the 

other players have chosen some stationary policy, is a communicating system 

(cf. BATHER [2] and condition B.2 below). Moreover we show that the former 

property is met under condition B.l below which is an assumption upon the 

chain structure of the pure (stationary) policies. 

In addition, the approach used in this section has again the advantage 

of showing that AEPs appear as limit policies from a sequence of a-DEPs 

with discount factor a tending to one. 

Let i 1, ... ,~L be an enumeration of ~p' and consider the following 
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equivalence relation on (cf. SCHWEITZER & FEDERGRUEN [20], proof of Th.3.2): 

Let C !.:,,! C' if there exists {C(I) = c,c< 2) , ... ,c<n) = C'} with c(i) EC, 
C) (i+l) 

and Ci n C · f 0, for i = l, ... ,n-1. 
(l) (n*) Let C , ... ,C be the corresponding equivalence classes on C, and 

*(I) *n* * let R , ... ,R be the corresponding partition of R (cf. (4.2)): 

The following lennna shows that under assumption B.l, all policies in 

6 have the same number of subchains, i.e. n(f) is constant on~: 

*Cl) B. I. Every (pure) policy _8 E 6 has exactly one subchain within each R , -p 
* l = 1, •. ,.,n. 

LEMMA 4.1. If B.l holds., then all the policies i-n 6 have the same number 

of suhchains. 

PROOF. Fix o0 E 6. We prove that P(fO) has exactly one subchain within 
*Cl)-, -

each R (L=I, ••. ,n) by showing subsequently: 
0 * (I) R(f ) .::=_ R ; 

(2) any subchain of P(fO) is contained within one of the sets R*(l); 
*Cl) . . o (3) in every one of the sets R there is exactly one subchain of P(f ). 

(1) and (2) follow immediately from parts (a) and (c) of Th. 3.2 in [19], 

so that (3) remains to be shown. 

Fix l (Islsn*) and assume first that R(oO) n R*(l) = 0. It then fol

lows from Lennna 2.2 in [20] that there exists a pure policy n E 6 , with 
-p o *(l) .. 

R(n) .::=_ R(f ) , such that R(.!J..) n R = 0, contradicting B.1. Finally, ob-

serve that for any pair i 1,i2 E ~p' the subchains of £i and £2 that are 
. d . h' R*(l) . . . ld h ' . containe wit in must intersect, since it wou ot erwise be possible 

to construct a o3 E 6 with two subchains within R*(l), contradicting B.l, 
- -p 

and verify that this property implies that P(o) cannot have two or more 
b h . . h' R*(l) -su c ains wit in . 
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REMARK. Assume that every policy in~ is unichained (cf. SOBEL [22], 
-p 

ROGERS [16]) and observe that this a~sumption implies for any pair (i 1,~2) E 

E ~ that their subchains must intersect, so that all the subchains in C -p 
belong to the same equivalence class, i.e. n* = 1. 

It hence follows that the assumption in SOBEL [22] and ROGERS [16] is 

* identical with the special case of B.l where n = 1. 

We next introduce assumption B.2: 

B.2. For every i E {l, .•• ,N}; for every pair of states s,t ES, and for 

every combination {oJ E ~ I j # i} of the other players, there is a 

policy oi E ~ for player i and an integer l such that P(o)lt > O, 
-s 

which can be seen as an extension of the communicatingness-property 

(cf. BATHER [2], HORDIJK [12]). 

It is easily verified (cf, BATHER [2], part II, p.526) that under assump

tion B.2 the seemingly stronger condition (4.6) is satisfied. 

(4.6) for every i E { 1, •.• ,N} and for every combination { oj E ~ I j # i} 

of the other players there is a policy oi E ~ for player i, 

such that P(o) is an irreducible Markov Chain, where o = 
l N

= [o , ... ,o J. 

Using the fact that in an irreducible Markov Chain the mean first passage 

time from any states to any state tis finite one concludes that B.2 is in 

fact the relaxation of assumption A.2 to the finite state space model. 

Theorem 3 below proves, under B.l as well as under B.2 the existence 

of an AEP. 

THEOREM 3. There exists a stationary AEP, if either B.l or B.2 holds. 

PROOF. Assume first that B.l holds. Fix i = l, ••. ,N, s ES. It follows 

from Lemma 4.1 that n(_£_) is constant on fl, and hence from Th. 5 in 

SCHWEITZER [19] that p*(i) is continuous in i E fl, which in its turn in

vokes, by their very definition, the continuity of gi(_o(ro);s) and wi(o) 
- s 

in OE~. 

We first fix an a-DEP o E !l, for each a E [O,I). 
-a 
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Inserting (4.1) into both sides of (1.8) and multiplying both sides 

of the resulting inequality by (1-a) we obtain for all n e A 

(4. 7) i 
+ (I-a) o (a·o) ~ 

'-as 

i -i 
+ (I-a) o (a;[o ,nJ) . 

a s 

It next follows from the 
* ( 00) 

one can find a policy i e 

fact that~ is a compact metric space that 
00 

~. and a sequence {ak}k=I' with ak e [0,1) 

and li!l\+oo . * a1 = 1, such that lim. o = o . We further show: ( k+oo -a 
k 

(4.8) 

Merely proving the first equality in (4.8) (the proof of the second 

one being analogous), we observe that for each a e [O,l), oi(a;o) is con
- s 

tinuous in o e A, as a result of Lemma (2.2), relation (4.1) and the con-
-i ( 00 ) i 

tunuity of g (o ;s) and w (o) in o e A. 
- -s 

(4.8) then follows from the fact that for any 21 e ~. I (1-a) oi(a;n) I 
- s 

decreases monotonically to zero, as a+ 1, using e.g. Dini's Theorem (cf. 

ROYDEN [18], p.162). 

Finally:, let k tend to infinity on both sides of (4.7) with a= ak, 

and use (4.8) as well as the continuity of gi(i(oo);s) and wi(i)s in o e ~. 

in order to obtain: 

(4.9) gi(_-"*( 00 )•,s) >_ i [ *-i ](00
) ) u g ( o ,n ;s , for all i = l, ... ,N; 

Consider next the "decision problem" that arises when all players but. 

player i tie themselves down to their respective policies in i*, and ob

serve from (L1.8) that in this decision problem, o*i is a maximal gain pol

icy to player i within A. It then follows from Theorem 2 in BLACKWELL [4] 
*i . i 

that o is also optimal within n . This proves the theorem under B.I, 

whereas the existence of an AEP under B.2 follows immediately from Theorem 

2, B.2 being the relaxation of A.2 to the finite space model. D 
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We finally turn to the question under which condition(s) a pure in

stead of a randomized AEP exists, for every choice of the one-step expected 
i rewards r (s;a). 

So far the only stochastic games known to have this property are the 

so-called two person-zero sum games with perfect information, in which in 

each state of the system one of the two players has not more than one al

ternative. 

The existence of a pure AEP for this class of stochastic games was 

first treated by GILLETTE [10]. Unfortunately an incorrect extension of 

the Hardy-Littlewood theorem was used, as has been pointed out by LIGGETT 

& LIPPMAN [15]. 

The existence of a pure AEP, and, as an even stronger result, the 

existence of a pure bias-equilibrium policy may, however be derived from 

the fact that a pure stationary a-DEP exists for each a E [0,1), where the 

latter has already been proved by SHAPLEY [21]. 
. * *l *2 Since t:, is a finite set, we can therefore find a policy _o = (o ,o ) E 

-p 00 

E ~panda sequence {an}n=l' 1with an 

n= 1,2, •.•• Let r(s;!!:_) = r (s;!!:_) = 

= -v2(n·s) and observe that V (n;s) 

* . t I, such that o is an an-DEP for 
2 - 1 

-r (s;!!:_) and Va(_!l;s) = Va(.!}_;s) = 

a-' ' a -
= Lt[I-aP(n)J-l r(t;n(t)) is a ratio-- st -

nal function in a for all .!l E ~p ands ES. 
. ([ I ~*2] ) ( * ) ([ *I 2] ) ( * ) Since V n ,u ;s -V o ;s and V o ,n ;s - V o ;s are also a a- 1 2 a a-

rational functions in a, for all n ,n Et:, ands ES, and hence are either 

identically zero or have a finite number of zeros, there exists an 
~ 1 2 ~ I 2 a(n ,n ,s) such that, for all a> a(n ,n ,s): 

(4.9) 1 *2 * *1 2 v ([n ,o J;s) ~ v (o ;s) ~ v ([o ,n J;s). a a a 

Since Sand ~pare finite, we thus obtain an a* such that o* is an a-DEP 

for all a> a*. It then follows by comparing the Laurent series expansion 
* I *2 * * I 2 , for V (o) and V ([n ,o ]) as well as the one of V (o) and V ([o ,n J) a- a a- a 

that o* is a bias-equilibrium policy, and more generally an equilibrium 

policy under all of the sensitive discount optimality criteria (cf. MILLER 

& VEIN0TT [15a]). 
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REMARK. The proof in LIGGETT & LIPPMAN [15] for the existence of a pure 

AEP is more complicated than the one above; moreover, it requires an addi

tional argument. More specifically, instead of th.5 in BLACKWELL. [4] we 

need the stronger result that in each Markov Decision Model there exists a 

* * discount factor a such that any policy that is a-optimal for some a> a 

* is a-optimal for all a> a, which is iI!lillediate from the proof of th.5. 

Relation (5) in [15] should be adapted in this sense. 

One might wonder whether the existence of a pure AEP is also guaran

teed in the case of two-person, nonzero-sum, or even more generally in the 

case of N-person games with perfect information. The following two-person 

game is, however a counterexample, which is due to VRIEZE & WANROOIJ [28]. 

Let S = {1,2} and A1(1) = A2(2) = {1,2} with A2(1) = A1(2) -= {I}. Let 

r 2(I;(l,l)) = r 1(2;(1,I)) = I and r 2(t;(2,I)) = r 1(2;(1,2)) = -1, the other 

rewards being zero, and let 

q 11 (I,l) = q21 (t,l) = 2/3 and q 11 (2,l) = q21 (1,2) = 1/3. 
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