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On N-person stochastic games with denumerable state space

by

A, Federgruen

ABSTRACT

This paper considers non-cooperative N-person stochastic games with a
countable state space and compact metric action spaces. We concentrate upon
the average return per unit time criterion for which the existence of an
equilibrium policy is established under a number of recurrency conditions
with respect to the transition probability matrices associated with the
stationary policies. These results are obtained by establishing the exis-
tence of total discounted return equilibrium policies, for each discount-—
factor o € [0,1) and by showing that under each one of the aforementioned
recurrency conditions, average return equilibrium policies appear as limit
policies of sequences of discounted return equilibrium policies, with dis-
count factor tending to one.

Finally, we review and extend the results that are known for the case

where both the state space and the action spaces are finite.

KEY WORDS & PHRASES: non—cooperative stochastic games, denumerable state
space, compact metric action spaces, equilibrium poli-

ctes, average and total discounted return criteriwi.






0. INTRODUCTION AND SUMMARY

A huge literature on Markov Decision Problems exists, in which a
single decision maker controls the development of some system. However, in
many stochastic control problems arising in various applications such as
the modelling of economic markets, the description of biological systems
etc. (cf. SOBEL [23]), the system is simultaneously controlled by more‘than
one decisionmaker. As a consequence these problems have to be modelled
using stochastic games.

This paper considers non-cooperative N-person stochastic games with a
countable state space and compact metric action spaces. We concentrate
upon the average return per unit time criterion for which both existence
of an equilibrium policy and solutions to the optimality equation are es-
tablished, under a number of recurrency conditions with respect to the
transition probability matrices associated with the stationary policies.

These results are obtained by showing that the average return crite-
rion arises as a (first) sensitive discount optimality criterion. More
specifically we show that under each one of the aforementioned recurrency
conditions, average return equilibrium policies appear as limit policies
of sequences of total discounted return equilibrium policies with discount
factor tending to one.

Accordingly, after giving some preliminaries and notation in section
1, we first establish in seétion 2 the existence of a total discounted
return equilibrium policy for each discountfactor o € [0,1) (an existing
proof in [23] appears to be incorrect).

In section 3, existence of an average return equilibrium policy and a
solution to the optimality equation are established, whereas in section 4,
we review and extend the results that are known for the case where both

the state space and the action spaces are finite.

I. PRELIMINARIES AND NOTATION

This paper treats an N-person noncooperative stochastic game specified

by the objects S, Al(s), q and r.



. . i .
S is a countable set, and for each i = 1,...,N and s € S, A" (s) is a
compact metric space where the set S denotes the state space of some system,
and A (s) denotes the set of actions, available to player i, in state s.

We define A as the union of all A'(s) (seS; i=1,...,N) and C as
(1.1) C = X. A,

q associates with each pair‘(s,é) € S x C a probability distribution qs'(g)
on the elements of S; and r' is a bounded real-valued function on SxC, for
all 1 = 1,...,N.

A stochastic game may be considered as a sequence ICERACTEREE of non-
cooperative games played by the N players, where s ¢ S indexes the set
{FS I s € S} from which Y, (t=1,2,...) is drawn. Note that al} the péayers'
actions in Yo = S (t=1,2,..., seS) constitute a vector a = [a ,...,a ] €
e C(s) where

N

(1.2) c(s) = X;_, als), s es.

When Y, =8 i.e. when the system is in state s and the vector a ¢ C(s) de-
notes all the players' ?ctions in Yeo then the one-step expected reward to
player i, is given by rl(s;i) and the system moves to state t with proba-
bility qst(g). .

For each s ¢ S, and i = 1,...,N let F(Al(s)) denote the set of all
signed measures on BAi )’ the Borel subsets of Ai(s), endowed with the
weak topology (cf. VARADARAJAN [27]1, p.16-17). The sets belonging to the .
base by which this topology is defined satisfy the Hausdorff postulates for
neighbourhoods, and are in addition locally convex. As a consequence we ob-
tain that F(Ai(s)) is a linear Hausdorff locally convex topological space.

Let M(Ai(s)) be the subspace of all probability measures on BAi(s)’
with the induced topology. It then follows from th. 3.4 in [27] that
M(Ai(s)) can be metrized as a compact convex metric subspace of F(Ai(s))
since Ai(s) is a compact metric space.

Next we define for each s ¢ S, F(C(s)) = X?=
- x|, mal(s)), i =1,....N.

Note that F(C(s)) is again a linear Hausdorff locally convex topclogi-—

| F@ (), and M(c(s)) =

cal space, and that M(C(s)) is again a compact convex metrizable subspace



of F(C(s)), s € S. Finally, we observe that M(C(s)) can be identified as
the space of all product probability measures on BC(s)’ the product o-field
in C(s). Moreover, for any sequence {En}:=l with Bo€ M(C(s)), n = 1,2,...

it follows from th. 3.2 in BILLINGSLEY [3] that
(1.3) [C(s) r(a) d un(i) > JC(S) r(a) du(a), as n > «

for all real-valued and continuous functions r(:) on C(s)

if and only if BT (in the product topology).

We use the (abbreviated) notation [Efi,v] for the N-person randomized ac-
tion [u],...,ul_l, ,ui+1,...,uN] that results from p = [pl, ..,uN] when the
i-th player changes from u. tow, the other players continuing to use their
respective actions in p. Defining r (s,u) = Epr (s3a) and qg (u) =

= Eu gst(i) for all u [u],...,u ] e M(C(s)), seS, i=1,...,N, we obtain

1]

(1.4) ri(s;g) = [C(s) ri(s;g_) du(a) =

i

f . cee J N ri(s;al,...,aN) dul(al)...duN(aN)
A (s) A (s)

(1.5) q (W) = Jc(s) q . (a) du(a) =

1

q (&', ...,a0 anl@ah...a @

st

JA1<s) o JAN(s)

where the second equality in (1.4) and (1.5) follows from Fubini's theorem.

Observe that rl(s;E) and qst(E) are both multilinear in u, i.e. for all
A e [0,1]:

o . . . C .
(1.6) rissut, a0, L) = art s, L, )+
i 1 ] N
+ (1-2) rl(s;u ,...,vJ,...,u )
1 i 3 N, _ 1 i N
(1'7) qSt(U s"'aku +(]—A)v 9o el ) = qut(u secesH 30005l ) +

1 .
+ (]")\) qst(ll s'-'y\)J"-',U )-



Hereafter we assume that for each s € S,

(1.8) rl(s;g) and qst(g) are continuous on C(s), for all i =1,...,N

and t € S.

Observe from (1.3) that (1.8) implies that for each s ¢ S, the one-step ex-—
pected rewards and transition probabilities are continuous on the space of

all randomized N players' actions M(C(s)) as well:

(1.9) rl(s;g) and qst(E) are continuous on M(C(s)) for all i =1,...,N

and t € S.

Let A" = X, M(A (s)) be the set of all decision rules for player i,

(i=],...,N) i.e. of all functions &% mapping each state s 1nto an actlon
6; e M(AY(s)). A policy for a player 1 is a sequence rt (6 (n, st (2),
.) of decision rules. Using policy ﬂl means that 8 (n) is employed at

time n; thus if the system is observed in state s at time n, then player i

i(x)

chooses action és(n), the s-th component of st (n). We write st for the

stationary policy (st 1

.) for player 1i.
As a consequence we let Ai represent the class of all stationary poli-
cies for player i as well.
A stationary policy Si(w) € Ai is said to be pure if in each state
s € S it prescribes a specific action in Ai(s) with probability one.

Finally, the set of all policies for player i is denoted by Hl, and

I = X?:] i represents the class of all N players' policies, with
A = XN A" the subset of the stationary N players' policies.

1=1
oo
We associate with each stationmary policy QF ) € A, the transition

probability matrix P(S), i.e.
P(8), = a4, (8(s))
with the n—-th power Pn(g) indicating the matrix of n-step transition proba-

bilities, i.e. P(8) = P(8) P (§), n > 2.

. 1 . i i,
For any policy n = [ ,...,HN] e m we define V;(E}s) and glgg,s) as



the total expected o-discounted return, and the long-run average return per

unit time to player i, when the initial state is s:

(1.10) V;(g}s) Eﬂ{2:=0akr1(sk;§k) [ so=s}; is= l;...,N; s € S; 0<sax<l

1
t+1

(1.11) gl(35s) lim sup

E (vt 1. . el i o= .
gfzk=0r (sk,gk)l S sty 1 1,...,N; s € S

where E1T indicates the expectation given the players' common policy m e II

is used and where {s, ;k=0,1,2,...} and {§k;k=0,1,...} denote the stochastic

k;
processes of the states and actions that result from policy m.

An N-tuple of policies _11* = ['lT*l,...,'iT*N] e I is said to be an a-dis-—
counted equilibrium point of policies (a-DEP) if, simultaneously for every

initial state of the system s,

(1.12) V;QE*;S) > V;(ﬂ;s) for all i = 1,...,N and 7 € H_l(If):
where
(1.13) H—l(gf) = {m = [ﬂl,...,ﬂN] e 1 | 7 = H*J, j# il

Similarly we define Ef as an average return equilibrium point of policies

(AEP), if simultaneously for every initial state s,
(1.14) gl(l*;s) > gl(g;s) for all i = 1,...,N and 7 ¢ H—l(gf).

*
Hence, whenever the players choose an a-DEP (AEP)_1 , none of them, whatever
the initial state of the system, can increase his own total expected a-dis-

counted return (expected average return per unit time) by changing to some

. i *1 i

other policy 7 # 7 e II
. . . . *
pective policies in m .

, the other players continuing to use their res-

Note that we do not consider history-dependent policies, i.e. policies
which prescribe for each time t, a randomized action in dependence on the
entire history H_ = 3838 5.0 T i

y Hy (SO’—O’ 12 ’St—l’ét—l’st) of the system up to time t,
rather than in dependence on the current state S, alone. The justification

for our confining ourselves to the class Il is provided by [13], who showed



as an adaptation of the corresponding result in DERMAN & STRAUCH [7] that
whenever a policy Ef is an o-DEP or AEP within II, it is an equilibrium po-
licy within the broader class of history-dependent policies as well,

We conclude this section by observing that if the sets Ai(s) (i=1,...,
N; seS) are convex compact subsets of some linear metric space themselves, such
that for all i = 1,...,N ri(sii) is linear or even concave in the i-th com-
ponent of a (cf. (1.6) and (1.7)) then the existence of a pure instead of a
randomized stationary o-DEP or AEP is guaranteed under the same conditicns

as follows from an examination of the analysis below.

2. EXISTENCE OF STATIONARY o-DEP'S

In this section we prove the existence of a stationary o-DEP for each
o e [0,

For each policy gﬁw) € A, the total expected a-discounted return to

player i, when starting in state s ¢ S, is denoted by

oo

2.1) U CRRET I LD N O SRS CTLIC PP
@ n=0 teS

The following lemma proves that V;(ﬁ‘m);s) is a continuous function omn A

for all i =1,...,N, s € S and a € [0,1):

LEMMA 2.1. Fix s € S, 1 < i < Nand o € [0,1). Then V;(g(m);s) 18 continu-

ous on A.

PROOF. We flrst observe that since A is metrlzable, it suffices to show

that 11m1_ \Y (6( ),s) v (6( )

;s) whenever {6 } + 8, with §n e A.

=1

Fix a sequence {&8 } with lim § = 6§ and note that § ¢ A, in view of
-n n=l n¥e -n = - =

the compactness of A. Let M be such that

(2.2) Irl(s;g)l <M for all s € S, and a € C(s).

It is then easily verified that

(m);s)l < M/ (1-a) for all n(m)

(2.3) [V;(g € A and s e S,

*)

Shortly after completing this paper, I became aware from a recent bibli-
ography of a report by IDZIK [14] in which similar existence results for

a~DEPs seem to be obtained.



Next, observe by complete induction that as a consequence of (1.8)
Pk(é)st is continuous on A for all s,t ¢ S and k = 1,2,... . This, in turm,
implies using proposition 18 on p.232 in ROYDEN [18] that for each
L =0,1,...

. L i a 4 i
(2.4) lim ] PT(8 ) v (e58 () = ] PU(8) . r(£;8(E)).
n->c°
. . ‘ K k
Finally, pick € > 0 and choose K such that a < e(l-a)/4M. Let Hn(s) =
= Zﬁ;é aﬂztes Pz(ﬂ)st rl(t{ﬂ(t)) for all k = 1,2,... and n « é:‘_
Observe that for each n € A:

(2.5) Vi(n(m);S) = #5(s) + OLKE P () v i =, ;E).
o= ul tes St
In view of (2.4) there exists an integer NO such that IH (s) - H (s)l < ef2,
for all n = NO. We thus obtain that for all n 2 NO: n
v se) - vie e < g @ - Hy(s) | +
DI I I A CARETS IR N A O SRR A CARSTS Y I
teS teS
e/2 + e(l=-0) 2M 0

4M (1-g) =&

We now turn to the existence of an o-DEP.

For a compact, metric state space and under somewhat stronger continuity
assumptions with respect to the one-step expected rewards, and transaction
probability functions, the existence of an o-DEP was first proved by SOBEL
[23]. Unfortunately there seem to be a number of serious errors which in-
validate the approach. Although with a considerable amount of additional
work, the proof in [23] can be rectified for the case of a denumerable
state space we prefer to give a different proof.

Our approach uses an extension of the Kakutani fixed-point theorem
which was obtained independently by GLICKSBERG [11] and FAN [9]. First, for
each compact set U let 2U denote the class of all (non—-empty) closed sub-
sets of U. A point to set mapping &: U -~ 2U (with U satisfying the first

countability axiom) is said to be upper semi—-continuous, if for each



(oo
sequence {x_} , X € U:
n n=1 n

(2.6) {x 1

o0 .
n’ n=1 > X, ¥, € Q(Xn), {yn}n=1 >y=2y e 0(x).

LEMMA 2.2. Given an upper semi-continuous point to convex set mapping
o: U -~ U of a convex compact subset U of a linear Hausdorff locally convex

topological space into itself, there exists a point x € ¢(x). [

Observe from the analysis in section 1, that XS€S F(C(s)), the space
of all functions f mapping each state s into a N-tuple of (finite, signed)
measures fs € F(C(s)), endowed with the product topology is again a linear
Hausdorff locally convex topological space, with A, the countable topclogi-
cal product of the spaces M(C(s)) (seS), a metrizable subspace which is in
addition convex and compact, as a consequence of Tychonoff's theorem. The
fixed point theorem in lemma 2.2 will be applied by constructing a point
to set mapping on A, as a subspace of XS€S F(C(s)).

We finally need the following lemma, the proof of which follows from
th. 6-f in BLACKWELL [5]:

=) sl N1 g

9000y

LEMMA 2.3. Fix 0 < a < 1. A stationary policy §

an o-DEP, Zff V;(gﬁw);s) satisfies the optimality equation:

i,0()

(2.7) v = max {ri(sile (o))

ueM(AL(s))

P ] TR v el
teS

for all s e S, i =1,...,N.
THEOREM 1. There exists a stationary o-DEP for each o ¢ [0,1).

PROOF. We first observe that for each § € A and i = 1,...,N there exists,

as a result of (1-8) an n ¢ AY such that for all s e S:

(2.8) (s30T )@ D +o ] 6T (e) ()] Vi) =
teS
= max (F(ssleT @D ra | oa (067N, v 0.

ueM(Al (s)) teS



For any i = 1,...,N and § ¢ A, let @1(§) denote the set of all n € AY that

satisfy (2.9) for all s € S, and define the point-to-convex set mapping
o: A > zé:§'+ 8(8) = X?=1@1(§).

We next show the upper-semi-continuity of this point-to-set mapping. Fix
8.3 ;> M}, with (1) 8, n e d, (2) lim 8 =83 lim _ n = nand
(3) n e 28 )
Substitute § for 6 and n for n in (2.8) and let n tend to infinity. It
then follows that n’ satlsfles (2.8) for 6§, and this for all i = l,...,N and
s € S, as a consequence of (1.8), lemma 2.2, the boundedness of V (6( ), )
and proposition 18 on p.232 in ROYDEN [18].

As a consequence of the upper-semi-continuity of &, and the fact that
¢ is a point-to-convex set mapping of a convex compact subset A of the
seS F(C(s)) into itself,
it follows from lemma 2.2 that there exists a § e A such that §* € ®(§f)

linear Hausdorff locally convex topological space X

which implies (2.7) and hence proves the theorem (cf. lemma 2.3). [

3. THE EXISTENCE OF AVERAGE RETURN EQUILIBRIUM POLICIES (AEP'S)

We first introduce the following notation:
For any § € A we define the matrix P*(g) as the Cesaro limit of the sequence
{Pn(g)}:=l. For each pair of states s,t € S, we denote by m (s,t) the mean
first passage time, i.e. the expected number of transitions needed to get
from state s to state t, under policy 6( ) € A. Let R($) denote the set of
recurrent states under P(§) and recall that a state t € R(Q) is positive
recurrent if and only if P*(§)tt > 0. For each state s ¢ R(S), let A(S) 2
denote the period of the subchain (closed, irreducible set of states) to
which state s belongs, and if R(§) # @ let A(S) be the least common multi-
ple of the periods of the different subchains (which may be infinite). We
next define for each pair of states s,t € S; each policy § € A and
r=1,...,A(8):

f:t(r;g) as the probability that the system under P($) will ever reach

state t in the course of the tramsitions r; A(§) + r; 2A(8) + r,... when
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starting in state s. Note from th. 4 on p.31 in CHUNG [6] that for each

§ € A and s,t € S:

(3.1) lim

N>

PO () {x(g)t.f:t(r;g) P'(8),, if t e R(S)

0 otherwise.

If P(8) has a single subchain the states of which are recurrent, let
{Cm(g) | m=1,...,A(8)} denote the set of cyclically moving subsets
(c.m.s.) of this recurrent class which are numbered in such a way that for
any m = l,...,A(8):

(3.2) s e C™§) =@ >0 onlyif t < ™ (5)

with the convention that the superscript m in Cm(é) is taken modulo A(§).
Note that the sets {Cm(g) | m = 1,...,A(8)} are the subchains of the matrix
Pl(g)(ﬁ). Finally let f*(s;r,Cm(é)) with s € S, m,r = 0,...,A(8) - | indi-
cate the probability that the system will eventually be absorbed in Cm(é)
in the course of the tramsitions r; A(S) + r; eA(8) + r;... when starting

in state s. We recall from th. 3 on p.3! in [6] that for all § €A and se S:
(3.3) £ (r38) = £ (s513C7(8) for all t e C"(8) and m = 1,...,M(8).

Finally if the single subchain of P(S) is a positive recurrent class there
exists a unique stationary probability distribution m(§) such that
*
P (§)St = ﬂ(ﬁ)t for all s,t € S.
Next we introduce a number of recurrency conditions, each of which

will be shown to guarantee the existence of an AEP.

Al. For each § ¢ A, P(S) has a single subchain. In addition there exist
integers, v,d = 1, a number p > 0 and for each § € A a nonnegative mat-

rix Q(8) such that for each subset A c S:

[n/v]; s € S

(3.4) ) {P“d@st - Q(g)st}l < (I1-p)
teA

where [x] denotes the largest integer less than or equal to x.
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A2. There exists a number R such that for each player i = 1,...,N and for
any combination of stationary policies {61,...,Gi_l,6i+l,...,6N} of
the other players, there is a policy Gi € Ai for player i, for which
the mean first passage time mé(s,t) from any state s to any state t,

under policy § = [6],...,6N] is bounded by R, i.e. for each

(6,88 st 6N} with 63 € A for all j # i, there exists a
st € Al such that
(3.5) mé(s,t) <R for all s,t € S where § = [61,...,6N].

We first exhibit a number of properties that follow from assumption Al:

LEMMA 3.1. Assume Al holds. Then

(a) d Zs a multiple of the period A(8) for each § e A.

(b) For each § € A the unique subchain of P(8) is a positive recurrent class.

(c) For each § € A and r = 0,...,d-1 there exist nonnegative matrices
Q(r)(g).(with Q(O)(Q) = Q(8)) such that for each subset A < S:

3-6) 1T ™6 - 3] < a- Y s es
— st — st
teA
where
(3.7) Q(r)(é)st _ { 0 . ) for all t¢ Réi)
A(S)E (s3r;C (é))ﬂ(g)t for all teC (8), m=1,...,d.

(d) For each § ¢ A and r = 1,...,A(8):

A(S)
Z f*(s;r;Cm(g)) =1 for all s € S
m=1

and

Z Pn(-(i)st 5] - (l_p)[n/\).d]

teR(S)

for all s e Sandm = 1,2,...

(e) P*(§) = 1imn+w 1/x(8) Zii%) Pnk(§)+r(§) and P*(g) depends continuously

on 8§ € A, Z.e. for all s,t € S 1imﬂ+mP*(§£)St==P*(é)stwhenever{QK}—>{§}.
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PROOF.
(a) follows immediately from (3.1) and the fact that for each pair s,t ¢ S:
lim  P"%(8)  exists. |
n->o —' st nd
(b) By choosing A = {t} in (3.4) we obtain that 11mn_>0o P (é)st = Q(§_)St
for all s,t € S; and by choosing A = S in (3.4) it follows that
ZteS Q(g_)St = 1 for all s € S.
Assume to the contrary that the unique subchain of P(é) contains tran-
sient or null-recurrent states; we then obtain in both cases, in view
of part (a) and (3.1):
. nd
1= ) AU , = ) lim P (&, =0
teS teS noe
thus proving part (b) by contradiction.
(c) For r = 0 the assertion follows from the fact that R(g) is a single
positive recurrent class (cf. part (b)) and the combination of (3.1)
g nd
and (3.3) as well as the fact that Q(§__)St = 11mn_)Oo P (é)st for all
s,t € S. Next, note that for r = 1,...,d and any subset A c S:
d+1r
DS AR JURED MR 0 N S CONNRCIC N0 1 B
teA teA ueS
T nd
[l PO, LIET®,, -a® P s
ueS teA ’
v v
< 1 PP a0 < /Y]
ueS
thus showing the existence of nonnegative matrices Q(r)(ﬁ) which satis—
fy (3.6). The explicit expressions in (3.7) then follow again from the
fact that R(S) is a single positive recurrent class, and the combina-
tion of (3.1) and (3.3).
(d) Note that Z o ﬂ(g)t = I/A(g) form = 1,...,)(8) and use (3.7) to
teC (g)
conclude that for each s ¢ S:

2 (8)
1= ] @, - ] @ e [ e, =
teS m=1 teCm(ﬁ)

i
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A (8) CA®

>\(.CS_) *..m _ *.‘m
YO) £ (s3r3C°(8) = ngl £ (s3r3C (8).

~
|o»

1]
| o~

1

i

The second assertion follows from (3.6) with the qhoice A = R(S) and

the observation that X (r)(é)st =1 (cf. (3.7)).

ter(8) @
(e) Since P*(é) = 1/x(3) Zii%) Q(r)(g) it suffices to show the continuity
of each of the matrix functions Q(r)(é) (r=1,...,d) on A. Fix s,t € S
and observe in view of (3.6) that we can fix n sufficiently large such

that uniformly for all § e A, Pnd+r(§)st comes arbitrarily close to

Q(r)(§)st. Part (d) then follows from the continuity of Pnd+r(§)st on

A, for all n = 1,2,... . g

Condition Al is of course awkward to check; however there are a number

of easily checkable and widely fitting recurrency conditions which im-

ply Al, such as:

Al.1: There exists a finite set K, a positive integer n, and a positive
real number c¢ such that ZteK Pn(g) 2 ¢ for all s € S and § € A.
In addition, for each § € A, P(S) has exactly one subchain.

Al.2: There is an integer v 2 1 and a number p > 0 such that for each

pair of states (s],sz) and for each § e A:

(3.8) Y min{PY(s) ., PY() .} = op.
—'s.t —"s,t
t=1 1 2
A1.3: There exists a state s such that for each policy 6 € A, the mean
first passage time ma(s,s*) is finite and uniformly bounded in

s € S, and § € A,

Both the first condition in Al.l as the assumption Al.2 are generali-
zations of the Doeblin condition (cf. e.g. DOOB [8], p.197) to a collection
of Markov chains; the former was introduced by HORDIJK [12] as the simul-
taneous Doeblin condition, and the latter is an adaptation of a condition
introduced in TIJMS [26]. We note that Al.2 with v = 1 is equivalent to
the condition that there is a number p > 0, such that for each four ele-
€ C(Sl)’ a, € C(sz):

ments (sl,sz,gl,gz) with 5, # s, and a

2 1 2

(3.9) tZl min{qslt(gl), qszt(gz)} > 0.
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For, fix S;s8, € S and B € M(C(sl)), EZ € M(C(sz)) and observe that, as a

consequence of (3.9):

(3.10) p <E r Zl min{qslt(g ) qszt(gz)}] =

) tZ] EE] 25 min{qslt(él)’qszt(gz)} ) tZ1min{qslt(El)’qszt(gz)}’
where the interchange of expectation and summation is justified by the non-
negativity of min{qslt(gl),qszt(gz)}, and where the inequalitz part follows
from Jensen's inequality and the concaveness of min(.,.) on R~ . Note fin-
ally that (3.10) coincides with the special case of (3.8) where v = 1. In
Markov Chain terminology, the condition (3.9) is known as the assumption
that for each stationary and pure policy gfw), the associated tpm P($) is
scrambling (cf. [1]) and has an ergodic coefficient of at least p.
Assumption A3.2 is an adaptation of a condition introduced in ROSS[17].

Note that both under Al.2 and Al.3 the tpm P(S) of each § € A has a
single subchain, the states of which are positive recurrent. In a forth-
coming paper we will show that assumption Al.l implies Al and the fact that
Al.2 is a special case of Al follows along lines with the proof of theorem
1 in ANTHONISSE & TIJMS [1].

Moreover in this same paper it will be shown that under the assumption
that state s can be reached from any state s under any policy é‘w) € A4,
conditions Al, Al.l and Al.3 are equivalent; this of course implies in par-
ticular that Al.3 is a special case of Al as well.

We fina11¥ ?ote (without proof) that under assumption Al, each one of

the policies & ¢ A satisfies the Doeblin condition.

For each o (0<a<l) we choose a specific a-DEP éa e A. Next we fix any

state s* and define:
(3.11) V;(S) = V;(§(m);s)-V;(§éw);s*), for all s e Sand i = 1,...,N.

LEMMA 3.2, Both under assumption Al and A2, the family of functions {v;(v);

0 < a < 1} <8 uniformly bounded.
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PROOF. Under condition A2, the uniform boundedness of {v;(-), i=1,...,N}
follows from the proof of th.12.8 in HORDIJK [12]. To prove the lemma under

condition Al, we show subsequently:

(a) |V;(§ém);s)—V;(§_(§w);s')| < 4Mvd/p for all s,s' e C™(5 ), m=1,...,A(8 )3
a e [0,1).

) [vEe50) -viel )]

A

(4v+2p)Md/p for all s,s' ¢ R(éu).

(@ Vi ey -vis i 5en)|

IA

(6v+20)Md/p for all se S\R(§ ) ands'eR(S ).

Note that the assertion follows easily from the combination of (a), (b) and
(c¢) for any choice of s* € S.

To prove (a), fix a € [0,1), 1 <1 <N, 1 <r < A(§a) and s,s' € Cr(ga).

Let A = A(ga), and for any scalar a, let a+ = max(a,0) and a = max (-a,0).
Observe that for each n = 0,1,... and m = 1,...,A there exist two sets A+

and A with A+,A_ < S such that for each s € S:

(3.12) z {Pndﬂn((S y - Q(m)((S ) }i _

=a’st -a’ st

= Je™M 6y - o™y 1 < (-p)

+ o -a’ st
teA ,St s

[n/v]

+
where the inequality follows from (3.6) with the choice A = A". Using the

fact that Q(m)(éa)St (m)(6 ) for all t € S, m=1,...,d as well as

at - a  and the fact that |rt (t;a)] < M for all t € S,

the equality a
ae C(t) and i

1,...,N, we obtain:

s (=), =) 1 YT o i
Vi 56) - vics o<l T ™ ] s ().
m=1 n=0 teS
nd+m nd+m
AP (Qa)St -P (éa)s't}! <

< | % f R CTTINCO D TE S YD SN KON I N R I

) m=1 n=0 : teS "o ) -a’st Q -a’ st

A o

s 10T o ] rheess (). "Ry - ™) 37|+

m=1 n=0  teS oSt T st
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A ©
n i . _ nd+m _ (m) +
' Ile nZO ) tzs i (t’éa(t))'{P (éa)s't Q (éu)s't} |
L e ,
DR IR A TR et R I LT NI R

m=1 n=0 teS

where the last inequality follows from (3.6).
To prove (b), fix s ¢ CB(éa) and s' € CY(§Q) such that vy - 8 = m (mod-

ulo A). Note that in view of (3.2) and using part (a):

m .
|v (5( ), 5s) - Vo (5( ),s')l < ) ot ) Irl(t;§u(t))I PZ(§Q)
£=1 teS
+ o™ Y lVi(G(m);t) v (6( ),s')l PP(s )+
teCY(§u) o —o -a” st
+ (l—am) IVi(§ém);s')i <
< pM + 4Mvd/p + (1+a+...+am_l) M < (4v+2p) Md/p.

Next, let T be the Markov time, defined by T = inf{n | s € R(éa)}

where {sn}: denotes the Markov chain associated with the policy gém).

=1
Observe from lemma 3.1, part (d) that Et < vd/p, such that using (b) we ob-

tain for all s € S, and s' ¢ R(§u):

. . T 7
vt (5< )iy - v;(§< )io)| < E L] ot Iolx(ess ()] PK(éa) e 7t
£=1 teS °
T i (m)_ _ i.(=), T
e th(éa) IVQ(Q st) Va(éu isD| P (§G)5t+

+

(" v 5en)]

T—l}

IA

Et.M + (4v+2p) Md/p + M ET{l+a+...+u

<

A

< (6v+2p) Md/p

which proves (c). 0
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We now prove the existence of an AEP, making use of a technique intro-

duced by TAYLOR [25], and used inter alia in ROSS [17].

THEOREM 2. Suppose that Al or A2 holds. Then there extsts a stationary AEP
g ) e A, and for each player i = 1,...,N a constant gt and a bounded func-
tzon vl(-) such that ’

3.13)  gtevie)= max  trisslsTi)ul ¢ ] a (8 H(e) v (D)),
neM(Al(s)) t=1 °

for all s € S

where 6 (s) attains the maximun on the right-hand side of (3.13) for all seS.
Moreover, g (6( ),s) = gl, for all s € S, i = 1,...,N.

(e )

PROOF. We first observe that |(1-a) V (6 )] < M for all o ¢ [0,1) and

i=1,...,N. This together with 1emma 3.2 and the fact that for all s € S,
any sequence of points in the compact metric space M(C(s)) has a convergent

subsequence, imply, using the dlagonallzatlon procedure, the existence of N

(«)

constants g , N bounded functions v ( ), a policy & € A and a sequence

{o, ). ., with a

k=1 e [0,1) and 1imk+m a = 1, such that:

k

(a) limk+m § = d.
k

(b) lim (l-a ) v (6( ),s*) =gt i=1,..., .
(e) 111111{%o to(s) = l(s), fér all s € S, i =1,...,N.
k

Now, fix i ¢ {1,...,N}, and s = s, € S and subtract V; (s*) from both sides

0
of (2.7) with o = o and s = Sg» in order to obtain (cf. (3.11)):

0

(3.14) vt (s)) = max {ri(s ;[s—i(s )oul) = (I-a ) Vi (s*) +
uk ueM(Al(sO)) 0 —uk 0 k uk

[ee]

+ ) oag (L8, (s ),ul) voo(8)}
t=1 70 %k
where §y k(s ) attains the maximum on the right-hand 51de of (3.14). Letting
k tend to infinity in (3.14) we obtain (3.13) with st (s ) attaining the

maximum on the right-hand side of (3.13), as a consequence of (a), (b) and
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(¢), (2.1) and proposition 18 on p.232 in ROYDEN [18].
Next, it follows from th. 6.17 in ROSS [17] that policy g(w)‘is an AEP
()

and that gl(g ;8) = gl for all s ¢ Sand i = 1,...,N. [

The proof of theorem 2 also shows the following corollary:

COROLLARY 3.3. Ifetther Al or A2 is satisfied, then each limit policy ob-

tained from a sequence of o-DEPs with discount factor tending to one, s an

AEP. 0

We conclude this section by observing that the existence of an AEP was
recently proven under assumption Al.3 in STERN [24].
We note in addition, that condition Al.3 can be weakened as follows:

Al1.3': For each policy G(w) e A there exists a state Sss such that the mean
first passage time m (s,s ) is finite and uniformly bounded in se S,

and 6( ) € A.

The fact that under Al.3' the family of functionms {v;(-) ] 0 <o <1}
is uniformly bounded, follows from the proof of th. 6.29 in ROSS [17], such
that theorem 2 and hence the existence of an AEP, applies to this condition

as well.

4, STOCHASTIC GAMES WITH A FINITE STATE AND ACTION SPACE

In this section, we finally consider the N-person stochastic games
with finite state and action space, as studied in ROGERS [6] and SOBEL [211].
We first need the following supplementary notations:
Let AY(s) = {1,...,K"(s)} and let &' ok’
probability with which the kth alternative (]SkSKl(s)) is chosen by player

for any policy § € A, denote the

i when entering state s e S.
For any policy § € A, we define the fundamental matrix Z(8) = [I-P(S)+
* - -
P (8)] ! and for each 1 1,...,N the bias-vector wl(g) by (cf. BLACKWELL
[3D):

(=)

W) = I, 20 Iri (e - gt 0.

Observe that for each § ¢ A, g (6( ), ) = Zt P*(g)st rl(t;éﬁt)) for
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all i =1,...,N, s € S, and that: (cf. [3])

s e i,.(=), . .
(4.1) V;(§F );S) = g_igf:;iil + w1(§)s + ol(a;é)s, for all i =1,...,N,

s eS8, ae [0,1),

where ]oi(a;g)sl decreases monotonically to zero as o + 1.

Denote by n(8) the number of subchains (closed, irreducible sets of
states) for P(8) and let Cm(g) indicate the mth subchain (ISmSn(é)). Finally,
let ép < A denote the finite set of pure and stationary policies and define
(cf. SCHWEITZER & FEDERGRUEN [201]):

*

(4.2) R ={s |se R(8) for some policy § « ép}’

the set of states that are recurrent under some pure policy.

Although the existence of an a-DEP is always guaranteed, it is known
from a well-known counterexample by GILLETTE [10] that even in the two per-
son-zero sum case an AEP does not need to exist when for some of the poli-
cies §fm) € A, P(8) is multichained (i.e. n($8)>2). This seeming contrast
with the Markov Decision Processes (MDPs) with finite state and action
space is explained by the fact that in stochastic games, as distinct from
the former, an essential use is made of the set of all randomized actions,
whereas in addition the above result perfectly corresponds with what is
known to be the case in MDPs with a finite state space, but arbitrary com-
pact action space (cf. BATHER [2]). Under the assumption that for each
é‘m) € ép’ P(8) is unichained, the existence of an AEP was first proved in
ROGERS [16] and SOBEL [21]. Moreover, in SOBEL [22], as a still stronger
property, the existence of a (g,w)- or bias—equilibrium policy Qf € A was

treated, which we believe should be defined as an AEP éf, for which:

(4.3) 16*) swh(n) for all i=1 N, seS and nell T(6%)nn.__ (6%
. w (S S__w n < or a i=1,...,N, seS and ne §)n ApptS )

where

* i _ i
HAEP(§_)"{QE.EI g (D)S-g (g)s for all se S}
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(the definition 3 in [21] does not extend the (g,w)-optimality notion in
Markov Decision Theory; moreover, with the definition in [22], a (g,w)-op-
timal policy does not even need to exist in the case N = 1, i.e. in the
case of an MDP). »

In SOBEL [22], the question of the existence of a (g,w)-equilibrium
policy was treated using the Brouwer fixed-point theorem with respect to

the point-to-point mapping ¢: A > A, with for all i € ¥, s € S and k € A:
i 1 i i
(g = G + 05, @N/U + § 4 ,(8)),
Leh
where

; ) .
¢Sk(§) =a_ +b_ , +tc

(1) ab = maxto, ¥ g (s e),kD) gt - g1 se,
sk st
teS
. i
. 0, if oL a_ >0,
2) b K =
° i, .- i i
max{0,r (s;[8 “(s),k]) + Zt qst([a (s),k1) w'(8) -
- gi(é(w);s) - wi(§)s}, otherwise.
. i
i o 1t zs zk a4k 7 0,
3) “sk

max{0, Zt qst([é—i(s),k]) zi(g)t - wi(g)s - zi(g)s, otherwise.

where zl(§) = ~Z(35) wl(§).
Unfortunately, the mapping ¢ may be discontinuous in §, since the
¢;k(§) can be discontinuous in those § that satisfy, for all i = 1,...,N,

s € S the functional equation:

G g6 = max § g (67D g7,

keAl(s) st
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or the functional equation (4.5)

4.5) W)+ gt ie) = max  ri(s;rsTie) kD +
s keAl(s) ‘

ARG R ORSILCINS

but for which, in any sphere in A containing §, policies n can Be found
that do not satisfy (4.4) (or (4.5) respectively). (As an example consider
the MDP with S = {1,2,3}, A = {1,2,3}, qll(-) = q22(-) =13 q31(1) = q31(2)=
=13 q32(3) =13 r(l,s) = 1; r(2,+) = 0; r(3,1) = -M; r(3,2) = r(3,3) =
where M >> 0. Let 6 denote the policy that chooses action 1 in state 1 and
2 with probability one, and in state 3 with probability x, whereas in state
3 action 3 is chosen with probability 1-x. Observe that ¢32(6) is discon-

tinuous in 61 )

While under the assumption in SOBEL [22] that P($§) is unichained for
every policy S ¢ Ap’ the proof in [22] can be rectlfled 1n order to show
the existence of an AEP (merely by rectifying @ (§) = bSk sknce in this
case only criterion (2) is needed), we observe that this result follows im—
mediately from theorem 2 and the observation that with S a finite state
space, the simultaneous Doeblin condition, and hence assumption Al.l is
automatically satisfied.

We note thiat in both the counterexamples (to the existence of an AEP)
by BATHER [2], example 2.3 and GILLETTE [10], the matrix P*(é) is discon-
tinuous in § e A.

In this section we show in fact that the existence of an AEP is guar-
anteed, if either P*(g) is a continuous (matrix)-function on A, or if the
Markov Decision Process that results for any player i ¢ {1,...,N} when the
other players have chosen some stationary policy, is a communicating system
(cf. BATHER [2] and condition B.2 below). Moreover we show that the former
property is met under condition B.l below which is an assumption upon the
chain structure of the pure (stationary) policies.

In addition, the approach used in this section has again the advantage
of showing that AEPs appear as limit policies from a sequence of o-DEPs
with discount factor o tending to one.

Let §1,...,§L be an enumeration of ép’ and consider the following
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equivalence relation on (cf. SCHWEITZER & FEDERGRUEN [201, proof of Th.3.2):

C={c"@" | 1srs1;1

IA

m < n(§?)}.

(N

Let C ~ C' if there exists {C = C,C(z),...,C(n) = C'} with C(l)e C,

and C(l) n C(1+]) # @, fori=1,...,n"1.
Let C(l),...,C(n*) be the corresponding equivalence classes on C, and
*
let R*(l),...,R*n be the corresponding partition of R (cf. (4.2)):

¥

- m, .Y
Ut (m, ) |m(sTyec D) © E)-

The following lemma shows that under assumption B.1, all policies in

A have the same number of subchains, i.e. n(§) is constant on A:

)

B.1. Every (pure) policy § « ép has exactly one subchain within each R s
*

£L=1,...,n .
LEMMA 4.1, If B.1 holds, then all the policies in A have the same number

of subchains.

PROOF. Fix ép € A, We prove that P(§P) has exactly one subchain within
each R*(K) L=1,. '
(1) rY < R

«)

(2) any subchain of P(QP) is cdontained within one of the sets R* ;

* (L)

..,0 ) by showing subsequently:

there is exactly one subchain of P(ép).

(1) and (2) follow immediately from parts (a) and (c) of Th. 3.2 in [19],

(3) in every one of the sets R

so that (3) remains to be shown.

Fix £ (ISZSn*) and assume first that R(Qp) n R*(K)

= (. It then fol-
lows from Lemma 2.2 in [20] that there exists a pure policy n e ép’ with
R(n) < R(gp), such that R(n) n R*(K) = @, contradicting B.l. Finally, ob-

serve that for any pair §1,6

€ A , the subchains of §, and §, that are
% () 2 e -1 2
contained within R must intersect, since it would otherwise be possible
* (L)

to construct a §3 € ép with two subchains within R , contradicting B.1,

and verify that this property implies that P(S§) cannot have two or more

*(0)

subchains within R
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REMARK. Assume that every policy in ép is unichained (cf. SOBEL [22],
ROGERS [16]) and observe that this assumption implies for any pair (§1,§2)e
€ ép that their subchains must intersect, so that all the subchains in C

. . *
belong to the same equivalence class, i.e. n = 1,

It hence follows that the assumption in SOBEL [22] and ROGERS [16] is

identical with the special case of B.l where n* = 1.

We next introduce assumption B.2:

B.2. For every i ¢ {1,...,N}; for every pair of states s,t ¢ S, and for
every combination {Sj € A | j# i} of the other players, there is a
policy 6i € A for player i and an integer £ such that P(g)gt > 0,
which can be seen as an extension of the communicatingness-property
(cf. BATHER [2], HORDIJK [12]).

It is easily verified (cf. BATHER [2], part II, p.526) that under assump-

tion B.2 the seemingly stronger condition (4.6) is satisfied.

(4.6) for every i € {1,...,N} and for every combination {Gje Al j# i}
of the other players there is a policy 6i € A for player i,
such that P(§) is an irreducible Markov Chain, where § =
= s, ...,60.

Using the fact that in an irreducible Markov Chain the mean first passage

time from any state s to any state t is finite one concludes that B.2 is in

fact the relaxation of assumption A.2 to the finite state space model.
Theorem 3 below proves, under B.l as well as under B.2 the existence

of an AEP.
THEOREM 3. There exists a stationary AEP, if either B.1 or B.2 holds.

PROOF. Assume first that B.l holds. Fix i = 1,...,N, s ¢ S. It follows
from Lemma 4.1 that n(§) is constant on A, and hence from Th. 5 in
SCHWEITZER [19] that P*(é) is continuous in § € A, which in its turn in-
vokes, by their very definition, the continuity of gi(g(w);s) and wi(§)s
in § € A.

We first fix an o-DEP §a € A, for each o € [0,1).
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Inserting (4.1) into both sides of (1.8) and multiplying both sides
of the resulting inequality by (1-a) we obtain for all n € A

(=)

4.7) g 658 + -0y v+ (-0) ol (azs ) >

i i

v

8 06,5n1 50 + () W s TnD + (- ofasts .

It next follows from the fact that A is a compact metric space that

* ()

one can find a policy § € A, and a sequence {ak};=l’ with a, € [0,1)

and 11mk+m ak = 1, such that 1imk_)oo éa = §f. We further show:
k

(4.8) 1lim (l—ak) oi(ak;Qa )S =0 = 1lim (l—a ) o (ak, ,n])

koo k koo %%

Merely proving the first equality in (4.8) (the proof of the second
one being analogous), we observe that for each o ¢ [0,1), oi(u;g)s is con-
tinuous in & € A, as a result of Lemma (2.2), relation (4.1) and the con-
G ),s) and wi(é)s in 8§ e A, .

(4.8) then follows from the fact that for any n e A, I(]—u) ol(a;l)s|

tunuity of g (6

decreases monotonically to zero, as o - 1, using e.g. Dini's Theorem (cf.
ROYDEN [18], p.162).

Finally, let k tend to infinity on both sides of (4.7) with a = o
and use (4.8) as well as the continuity of g (6( ),s) and w (6) n §
in order to obtain:

* ()

(4.9) g (¥ sy = gt e 0158y, for all i = 1,...,N;

s € S and n € Al.

Consider next the '"decision problem' that arises when all players but
player i tie themselves down to their respective policies in gf, and ob-
serve from (4.8) that in this decision problem, 6*i is a maximal gain pol-
icy to player i within A. It then follows from Theorem 2 in BLACKWELL [4]
that 6 *1 is also optimal within l. This proves the theorem under B.I,
whereas the existence of an AEP under B.2 follows immediately from Theorem

2, B.2 being the relaxation of A.2 to the finite space model., [J
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We finally turn to the question‘under which condition(s) a pure in-—
stead of a randomized AEP exists, for every choice of the one-step expected
rewards ri(s;g).

So far the only stochastic games known to have this property are the
so—called two person-zero sum games with perfect infofmation, in which in
each state of the system one of the two players has not more than one al-
ternative.

The existence of a pure AEP for this class nf stochastic games was
first treated by GILLETITE [10]. Unfortunately an incorrect extension of
the Hardy-Littlewood theorem was used, as has been pointed out by LIGGETT
& LIPPMAN [15].

The existence of a pure AEP, and, as an even stronger result, the
existence of a pure bias—-equilibrium policy may, however be derived from
the fact that a pure stationary o-DEP exists for each a € [0,1), where the
latter has already been proved by SHAPLEY [21].

Since A is a finite set, we can therefore find a policy‘§*= (6*1,6*2)6

€ A and a sequence {an}:=l, with o 4 1, such that §f is an a,~DEP for

n=1,2,... . Let r(s3a) = r (s;a) = —rz(s;g) and V,(n;s) = V;(H;s) =
= —Vi(gﬁs), and observe that Va(gjs) = zt[I—aP(D)];é r(t;n(t)) is a ratio-
nal function in o for all n € ép and s ¢ S.

Since Vu([nl,d*zj;s)-va(éf;s) agd Va([d*l,nzj;s) - Va(gf;s) are also
rational functions in o, for all n ,n” € A and s € S, and hence are either
identically zero or have a finite number of zeros, there exists an

a(nl,nz,s) such that, for ali a > a(nl,nz,s):
1 2 1
(4.9) v (tn', 6" 358) < v_(8%5e) = v_ (06" 07050,

Since S and Ap are finite, we thus obtain an o* such that gf is an o~DEP
for all o > o®. It then follows by comparing the Laurent series expansion
 for Va(g*) and Va([nl,d*zj) as well as the one of Va(gf) and Va([é*l,nzl)
that §f is a bias-equilibrium policy, and more generally an equilibrium
policy under all of the sensitive discount optimality criteria (cf. MILLER
& VEINOTT [15a]).
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REMARK. The proof in LIGGETT & LIPPMAN [15] for the existence of a pure
AEP is more complicated than the one above; moreover, it requires an addi-
tional argument. More specifically, instead of th.5 in BLACKWELL [4] we
need the stronger result that in each Markov Decision Model there exists a
discount factor a  such that any policy that is a-optimal for some o > o
is a-optimal for all o > u*, which is immediate from the proof of th.5.
Relation (5) in [15] should be adapted in this sense.

One might wonder whether the existence of a pure AEP is also guaran-
teed in the case of two-person, nonzero-sum, or even more generally in the
case of N-person games with perfect information. The following two-person
game is, however a counterexample, which is due to VRIEZE & WANROOIJ [28].
Let S = {1,2} and A (1) = A%(2) = (1,2} with A2(1) = A'(2) = {1}. Let
25 ,10)) = £, 1)) = 1 and r2(13(2,1)) = £'(25(1,2)) = -1, the other
rewards being zero, and let

qp,(1,1) = q,,(1,1) = 2/3 and q;,(2,1) = q,,(1,2) = 1/3.
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