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Semi-Markov strategies in stochastic games 

by 

A. Hordijk*), O.J. Vrieze and G.L. Wanrooij 

ABSTRACT 

For a stochastic game with countable state and action spaces we proof 

that solutions in the game where all players are restricted to semi-Markov 

strategies are solutions for the unrestricted game. An example shows that 

while the unrestricted game is solvable we cannot always find solutions in 

the restricted game. 

KEY WORDS & PHRASES: Stoaha,stia game; discounted model; average return model; 

N-person game; semi-Markov strategies; equilibrium point. 
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1 • INTRODUCTION 

The concept of a stochastic game was introduced by SHAPLEY [6]; his 

model belongs to the two person zero sum games. A two person non zero sum 

version was treated by ROGERS [5]; SOBEL [7] introduced the N-person stochas­

tic game. Due to different specifications for state- and action spaces there 

are many models refered to as a stochastic game. 

In this paper a stochastic game will be a discrete time dynamic system 

with a count~ble state space: {1,2, ••• }. At times 0,1,2, ••• players 

{1,2, ••• ,N} choose simultaniously an action out of a countable action space: 

{1,2, ••• }. If the system is in states at time t and the players choose 

actions a 1, ••• ,aN there will be a payment ri(s,a, ••• ,8N) to player i and 

the system has probability q(s' ls,a1, ••• ,8N) to be in states' at time t+l. 

Games with finite state space or finite action spaces for some players 

in some states can be viewed as a special case of this model, since we can 

enlarge the state or action spaces with a sequence of states or actions that 

are essentially the same as already existing states or actions. 

A strategy for player i is a mechanism for choosing actions in all 
t circumstances that can occur during the play. At every time t the states 

at time t and the history before time t (the sequence of states and actions 

choosen at times I, ... ,t-1) is known to the players. So the game is of 

perfect recall and by a result of AUMANN [1] for each strategy for a player 

we can find an equivalent behavior strategy. Let st be the state at time 

t and a~ the action choosen by player i at time t then a behavior strategy 
l. 

for player i TI. specifies for each t and each history 
t O O 1 0 I t-1 t . . . . . t t 

h = (s ,a1, ••• ,aN,s , ••• ,8N ,s) a probab1.l1.ty d1.str1.but1.on Tii(h) on the 

action space. TI~(alht) is the probability with which player i chooses action 

a at time t if ~istory ht2 occured. More formally TI. is a sequence TI!,TI:, ••• 
l. l. l. 

t where TI. is a mapping from the product set of tN+N+l times the positive 
l. 

integers to het set of probability distributions on the positive integers. 

A semi-Markov strategy for player i is a behavior strategy for which 



2 

t t t O t so 1rt.('ht) t O t 1r.(h) depends only on h through the ·s ands ; = 1r.(s ,s ). 
1 1 1 

A Markov strategy for player i is a semi-Markov strategy for which 
t O t O t O t t t 
.(s ,s) does not depend on s; so 1r.(s ,s) = 1r.(s ). 
1 1 1 

For each initial state s0 and each set of strategies 1r 1, ••• ,1rN for the 

players the game yields a stochastic process with rewards for the N players. 

Because for each player there will be realized a sequence of payments we 

have to specify a criterion. In the discounted game the criterion for player 

i will be 

or 

lim inf 
t I -+ex> 

lim sup 
t '-+<x> 

or any convex linear combination of lim sup and lin inf; where 

V~(s0 ,1r 1, ... ,1rN) is the expected payment to player i at time t and Se: [0,1) 

the discount factor. In the game with average return criterion: 

or lim inf or any convex linear combination of lim sup and lim inf. 

For E ~ 0 an g-equilibrium point of strategies given the criterion is 

* * a set of strategies for the players: 1r 1, ••• ,1rN such that: 

for all strategies 1r. 
1 

0 
for player 1, for all players i and for all inital states s • 

An 0-equilibrium point is called an equilibrium point. 

Using the approach of DERMAN and STRAUCH [3] in the Markov decision 

process (one person stochastic game), we investigate whether the players 

can restrict themselves to semi-Markov strategies. 



2. TWO PERSON ZERO SUM STOCHASTIC GAMES· 

We will 
0 

call the game a two person zero sum game if N = 2 and 

v1(s ,n 1,n2) = - 0 0 v2 (s ,n 1,n2) for alls ,n 1 and n2• If ·the limit in the 
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definition of V. 
1. 

a2 is sufficient 

always exists, r 1(s,a1,a2) = - r 2(s,a1,a2) for all s,a1 and 

for the game to be zero sum. In general this is not true. 

EXAMPLE 1. 

State space: {1,2, •• :}; in each state both players have only 1 action; if 

the state at time tis s then the state at time t+l is s+l with probability l; 
s 

r 1(s,l,1) = - r 2(s,l,l) = (-2) • 

The game is discounted with a=!, we take the lim sup for both players. 

t' 
(½)t(_2) t+l Vl(l,nl,n2) = lim sup I = 0 

t '-+<x> t=O 

t' 
(½)t(-2)t+l V2(1,nl,n2) = lim sup I = 2 

t '-+<x> t=O 

EXAMPLE 2. 

The game has one state where both players have 2 actions; whatever the actions 

chosen the game returns to the state with probability 1. in the next period; 

r,(1,1,1) = - r 2 (1,l,l) = 1, r 1(1,2,2) = - r 2 (1,2,2) = -1 all other rewards 

being zero. In symbolic notation: 

r 
- 1 

We consider the average return criterion with lim sup for both players. By 

cooperation both players can get an average reward l; for example by playing 

nn times action 1 followed by (n+l)n+l times action 2 etc. 

LEMMA. If for the -two pe:r>son zero sum game there exists an e-equiUb:r>ium 

point n~,n; for each£> 0 then the game is strictZy detePm'ined and the 

vaZue of the game is lime+O v1(s0 ,n~,n;) for any c:r>iterion. 
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PROOF. Since n~,n; is an e-equilibrium'point. We have: 

Let.e 1 ,e2 , ••• be a sequence of non-negative numbers such that limi-+co ei = 0 

then: 

+ E, 
J 

Q E, E, 0 0 E E 
so the sequence v1 (s ,n 1

1 ,n2
1 ) converges and V(s) = limeiO v1 (s ,n1 ,n2) 

exists. 

Fo~ each e > 0 there exists a o E (O,!e) such that 

and 

o o So n 1 and n2 are e-optimal strategies for player I and player 2 respectively 

and V(sO) is the value of the game. D 

3. EQUILIBRIUM POINTS OF SEMI-MARKOV STRATEGIES 

THEOREM I. Let n1, ••• ,nN be a set of behavior strategies for the players 

I, ••• ,N. If n. is a semi-Markov strategy for all j; i then there exists 
J 

a semi-Markov strategy n.sM for player i suah that: 
1 



0 for all times t, initial states s and players k. 

PROOF. Given initial state s0 and behavior strategies 1r 1, ••• ,1r~ let st be 

the random variable whose value is the state at time t and a~ the random 
-1 

variable whose value is the action chosen by player i at time t. 
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For each set of strategies for the players and each initial state we 

have a corresponding probability measure on the space of sequences of states 

and actions that can be realized. As a-field structure for this space we 

take the a-field generated by finite sequences of states and actions. 

Let Pso denote the probability measure corresponding to·1r 1, ••• ,1rN as 

strategies and s0 as initial state. 

P ( t t v· t t = 
0 a.=a .. J ;~ =s 

s -J J 

P ( t ti t t v. 4 • t t) P Ct t v. 4 . t t) 
0 a.=a. a.=a. Jri;s =s • 0 a.=a. Jr1;s =s • 

-1 1 -J J - -J J -s s 

for all j 1 i are semi-Markov strategies the random variables a~ 
-1 

Since 1T. 
t J 

and a.~, given 
-J 

s 0 and st with j 1 i are independent, so 

t t . t 't t t t t t t t t 
~ p o(a.=a. VJ;S =s) = p o(a.=a.js =s ) 0 P o(a.=a. Vj,/:i;_s =s) (*) 

S -J J - -1 1 - -J J 

Define ,r~M 
1 

then choose 

s s 

as follows: if initial state is s0 and the state at time t is i/ 
. t . h b b · 1 · p ( t t I t t) action a. wit pro a 1 1ty O a.=a. s =s • 

1 S -1 1 -

* Let P O denote the probability measure on the sequences of states and 
s 

actions if player i . h h. SM sw1tc es is strategy to 1r .• 
1 

We will show by induction with respect tot that 

* t t . t t p o<a.=a. v,;s =s) = 
-J J ~ -

s 

t t· v· t t) P 0 (a.=a. J;_! =s . 
s -J J 

This equality is easily checked fort= O; suppose it holds fort= T then 

BIBLIOTHEEK MJl,THtMATISCH CEMTR' ''. 
--,IDA;::TF,1:)/,~J1--



p O(~T+l=sT+t). 
s 

Since the players j,;. i play semi-Markov strategies we have 

P* ( T+I_ T+I U'4" T+I T+I) 
0 a. -a. vJr1;~ =s = 

s -J J 
P ( T+I_ T U'4]• T+I_ T+I) 

0 a. -a. v Jr , s -s • 
-J J -s 

The equality fort 

equality(*). 

Since 

= T + 1 then follows from the definition of TI~M and 
1 

this proves the theorem. D -

THEOREM 2. If for any criterion TI7, ••• ,TI; is an e-equiZibrium-point·in th~ 

game where aZZ players are restricted to pZay semi-Markov strategies then 

TI7, ••. ,TI; is aZso an e-equiZibrium point for that criterion. 

6 

PROOF. Vi(s0 ,TI 1, ••• ,TIN) is some function of the V~(s0 ,TI 1, ••• ,TIN), t = 1,2, ••• 

By theorem 1 for each behavior strategy TI. there exists a semi-Markov strategy 
SM 1 

TI. such that: 
1 

0 * * SM * * V.(s ,TI 1, ••• ,TI. 1,TI. ,ii', 1, ••• ,TIN 
1 1- 1 1+ 

for all 
0 

s • 
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while 

for all 
0 

s • * * therefore 1T 1,.,.,1TN is an e-equilibrium point. □ 

However the existence of an e-equilibrium point does not imply the 

existence of an e-equilibrium point in the restricted game. The following 

example is a two person zero sum game that is strictly determined and whose 

restricted game is not. 

EXAMPLE 3. This example is due to GILETTE [4] and BLACKWELL and FERGUSON [2] 

showed that starting in state I the game is strictly determined with value 

½. Blackwell and Ferguson called this game "the big match"; we write it in 

symbolic notation: 

The stochastic game has state space: {1,2,3}; in state I both players have 

action space: {1,2}; in state 2 and 3 both players have action space: {I}. 

If in state both players choose action I then one unit is payed by player 2 

to player I and the next state is state I with probability 1. etc. If the 

game is in state 2 or 3 both players have only one action available and the 

game stays forever in that same state. We consider the average return cri­

terion with lim sup for player I and lim inf for player 2. 

In this example the set of semi-Markov strategies is the same as the 

set of Markov strategies. Blackwell and Ferguson used non-Markov strategies 

for player I, dependent on the actions taken by player 2 in the past, to 
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show that the game starting in state I ·is strictly determined. However if 

the players stick to (semi-)Markov strategies the game is not strictly de­

termined. Stochastic games where the players are restricted to semi-Markov 

strategies can be considered as repeated games with incomplete information. 

ZAMIR [8] gives an equivalent example. We show that player I has no e-optimal 

strategies fore<½. 

I 2 · 
PROOF. Let w = (w ,n , ••• ) be a Markov strategy for player I that is e-opti-

mal (wt is the probability of choosing· action I at time t); pt the probability 

that player I chooses action 2 for the first time at time t 

the probability that player not always chooses action 1. 
o t 0 

tco t 
and p = lt=I p 

For each o > 0 there exists a t such that : t lt=l 
strategy p for player 2 as follows: choose action 

t > 1' p - p-u. We construct a 
0 at time 1, ••• ,t and 

action 2 thereafter. If player 1 plays n and player 2 plays p the game re­

duces to a stochastic process that realizes exactly one of the following 

events: 

1 • player uses action 2 before time t 0+1 

2. player uses action 2 for the first time at t 0+1 or thereafter 

3. player never uses action 2. 

The probability that the first event occurs is at least p-o and the average 

return in this case is O. The second event has probability at most o and 

average return 1. The third event has probability 1-p and average return O. 

So the overall average return.is at most o. 

The value of the restricted game, if it exists, is the same as the 

value of "the big match" by theorem 2 and the lemma. If e <½then choose 

o < ½-e; this contradicts the fact that w is an e-optimal strategy for player 

I. D 
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