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ABSTRACT

For a stochastic game with countable state and action spaces we proof
that solutions in the game where all players are restricted to semi-Markov
strategies are solutions for the unrestricted game. An example shows that
while the unrestricted game is solvable we cannot always find solutions in

the restricted game.
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1. INTRODUCTION

The concept of a stochastic game was introduced by SHAPLEY [6]; his
model belongs to the two person zero sum games. A two person non zero sum
version was treated by ROGERS [5]; SOBEL [7] introduced the N-person stochas-
tic game. Due to different specifications for state- and action spaces there
are many models refered to as a stochastic game.

In this paper a stochastic game will be a discrete time dynamic system
with a countable state space: {1,2,...}. At times 0,1,2,... players
{1,2,...,N} choose simultaniously an action out of a countable action space:
{1,2,...}. If the system is in state s at time t and the players choose

actions ajseeesa there will be a payment ri(s,a,...,aN) to player i and

N
the system has probability q(s'[s,al,...,aN) to be in state s' at time t+1.

Games with finite state space or finite action spaces for some players
in some states can be viewed as a special case of this model, since we can
enlarge the state or action spaces with a sequence of states or actions that
are essentially the same as already existing states or actions.

A strategy for player i is a mechanism for choosing actions in all
circumstances that can occur during the play. At every time t the state st
at time t and the history before time t (the sequence of states and actions
choosen at times 1,...,t-1) is known to the players. So the game is of
perfect recall and by a result of AUMANN [1] for each strategy for a player
we can find an equivalent behavior strategy. Let st be the state at time
t and az the action choosen by player i at time t then a behavior strategy
for player i m. specifies for each t and each history

t o0 * 01 t-1 t . t,. t
h™ = (s L TL IFRERPL N ) a probability distribution ﬂi(h ) on the
action space. ﬂ;(a[ht) is the probability with which player i chooses action
a at time t if history h; occured. More formally ™ is a sequence ﬂ;,ﬂi,...
where nz is a mapping from the product set of tN+N+l times the positive
integers to het set of probability distributions on the positive integers.

A semi-Markov strategy for player i is a behavior strategy for which



ﬂ;(ht) depends only on nt through the's0 and st; S0 ﬂ;(ht) = ﬂz(so,st).
A Markov strategy for player i is a semi-Markov strategy for which
t, 0 t 0 t, 0 t t, t
i(s ,8 ) does not depend on s ; so ni(s ,8 ) = ni(s ).
For each initial state sO and each set of strategies TiseeesTy for the
players the game yields a stochastic process with rewards for the N players.
Because for each player there will be realized a sequence of payments we

have to specify a criterion. In the discounted game the criterion for player

i will be
tl
Vi(so,ﬂl,...,nN) = lim sup Z Btvz(so,wl,...,ﬂN)
t'so  t=0
or
t'
lim inf Z BtVE(so,ﬂl,...,wN)
t'so  t=0

or any convex linear combination of lim sup and lin inf; where
t, 0 . . .
Vi(s ,n],...,wN) is the expected payment to player i at time t and B € [0,1)
the discount factor. In the game with average return criterion:
tl
0 . 1 t, 0
Vi(s ,ﬂl,...,ﬂN) = lim sup s z Vi(s ,ﬂ],...,ﬂN)
t o t=0
or lim inf or any convex linear combination of lim sup and lim inf.
For € 2 0 an e-equilibrium point of strategies given the criterion is

. * *
a set of strategies for the players: MyseeesT such that:

N
0 =x * * *
Vi(s ,ﬂl,...,wi_l,ﬂi,ni+],...,ﬂN) <
V(O* *)+ f 11 strategi
i S ,nl,...,nN € or a strategiles "i

0
for player i, for all players i and for all inital states s .

An O-equilibrium point is called an equilibrium point.

Using the approach of DERMAN and STRAUCH [3] in the Markov decision
process (one person stochastic game), we investigate whether the players

can restrict themselves to semi-Markov strategies.



2., TWO PERSON ZERO SUM STOCHASTIC GAMES

We will call the game a two person zero sum game if N = 2 and

V](so,n],wz) = - Vz(so,w ’"2) for all so,n and w,. If the limit in the

1 1 2
definition of Vi always exists, rl(s,a],az) = - rz(s,al,az) for all 5,8 and
a, is sufficient for the game to be zero sum. In general this is not true.
EXAMPLE 1.

State space: {1,2,..1}; in each state both players have only 1 actionj; if

the state at time t is s then the state at time t+]1 is s+1 with probability 1;
s

r](s,l,]) = - rz(s,l,l) = (=2)".

The game is discounted with B = }, we take the 1lim sup for both players.

t'
. t t+1

Vl(l,ﬂl,nz) = 1lim sup z H -2 =0
. t'so  t=0
7

e N I

V2(1,w1,ﬂ2) = 1lim sup z (1) (-2) = 2

t'so  t=0

EXAMPLE 2.

The game has one state where both players have 2 actions; whatever the actions
chosen the game returns to the state with probability 1. in the next period;
r,(1,1,1) = - r2(1,1,1) =1, r](l,2,2) = - r2(1,2,2) = -1 all other rewards

being zero. In symbolic notation:

r -1+T7

We consider the average return criterion with lim sup for both players. By
cooperation both players can get an average reward 1; for example by playing

. . + . .
nn times action | followed by (n+1)n I times action 2 etc.

LEMMA. If for the two person zero sum game there exists an e—-equilibrium
point "T’“S for each € > 0 then the game is strictly determined and the

V](So’ﬂe €

value of the game is lim 1°M

<40 ) for any criterion.



PROOF. Since 7= n; is an e-equilibrium point. We have:

1’

0 € £ € 0 €
V](s ,nl,nz)- g < Vl(so,nl,nz) < V](s ,ﬂ],wz) + e,

.. be a sequence of non-negative numbers such that 1lim, €. =0

Let .
€128 ido 1

then:

o €; E:° 0o i & o & €
V.(s ,m J,WZJ)-ei—ej < V](s.,n] 2Ty )—ei < V. (s ST 75Ty ) <

v (s° i %3 ®i %j
1 STy ey )+e. < V](g »T ’NZU) +e. +eg.,
0 % & 0 ej ej
= |V1(s ST, )- Vl(s ST 5Ty )| < €; + ej
€. €. 0 0
so the sequence Vl(s ,ﬂll,nzl) converges and V(s ) = lim€+O V](s ,ﬂ?,ﬂ;)

exists.
For each € > 0 there exists a § € (0,ie) such that

|V1(so,n?,ng)- V(so)| < les

0 ¢ 0 6§ § 0
V](s ,ﬂ],ﬂz) > Vl(s ,ﬂl,ﬂz)- le 2 V(s )- ¢

and

0 § 0
V](s ,n],wz) < Vl(s o

J

1’"3) + je < V(so) + €.

So n? and ng are e-optimal strategies for player 1 and player 2 respectively

and V(so) is the value of the game. [J

3. EQUILIBRIUM POINTS OF SEMI-MARKOV STRATEGIES

THEOREM 1. Let MiseeesTy be a set of behavior strategies for the players
l,...,N. If ™ 18 a semi-Markov strategy for all j # i then there exists

a semi-Markov strategy niSM for player i such that:



t, O SM

_t, 0
Vk(s SMpseeesTo_1oTs ,ni+1,f..,wN) = Vk(s ,ﬂl,...,nN)

for all times t, initial states s0 and players k.

1°° N
the random variable whose value is the state at time t and a; the random

"PROOF. Given initial state s0 and behavior strategies w .e,m. let EF be
variable whose value is the action chosen by player i at time t.

For each set of strategies for the players and each initial state we
have a corresponding probability measure on the space of sequences of states
and actions that can be realized. As o-field structure for this space we
take the o-field generated by finite sequences of states and actionms.

Let PSO denote the probability measure corresponding to'n],...,ﬂ as

N
strategies and s as initial state.

t t.,. t t _
Pso(g_j—aj Vj;s =s =
ttt_t...t=t. t=t...t=t
Pso(gi—ailgj—aj Vi#iss =s) Pso(gj aj Vi#ijs =s ).
Since m. for all j # i are semi-Markov strategies the random variables EE

and 35; given so and st with j # 1 are independent, so
t_t) t_t .. ., t_ ty _ t_t) t_t
P Ogii-ailéj a Vi#ijs =s ) =P O(Ei ai|§_ s ).
s s
= P (a?=a? Vﬁ;st=st) =P (aF=aF[st=st)0P (a?=a? Vj#i;st=st) (*)
S0 =3 ] - S0 —1 i'— S0 —j ] -

. M e e el . 0 . . ‘t
Define ni as follows: if initial state is s and the state at time t 1s s

. t . eq e t
then choose action a; with probability P 0(§£=a§|§_=st).
s

* e . .
Let P 0 denote the probability measure on the sequences of states and
. . S . . . M
actions if player i switches his strategy to wi
We will show by induction with respect to t that

* t t.,. t t t t t t
P a.=a. Vj3s =s =P a.=a. Vj3s =s ).
SO(—J j viss=s) SO(—J j viz=s))

This equality is easily checked for t = 0; suppose it holds for t = T then

BIBLIOTHEEK MATHE i
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P 0( ) =
S
T__T,.,. T T+l T T T
) P ,(a.=a. Vi;s =sT) q(s |'s b8y seneray) =
T T T ¢ 31 T T 7
S ,apse. ey
T T.,. T T T+1, T T T
) P ,(a.=a. Viss'=s") q(s |'s s8pseeesay) =
T T T 5= 3 3
s ,al,...,aN _
P 0(ST+1=ST+1).
0

Since the players j # i play semi-Markov strategies we have

* (a?+l=a?+l Vj%i;sT+]=sT+l) =P (arF+1
0= J - 03

+1_  T+1
=5

=y Vitlis' ).

The equality for t = T + 1 then follows from the definition of n?M and

equality (x).

Since
t, O
Vk(s ,nl,...,wN) =
t t t t t,. t ¢t
X rk(s ,a],...,aN)-P 0(g.=a. Viss =s")
t t t s0 31
CRPRRRRL et

this proves the theorem. [

*
N

game where all players are restricted to play semi-Markov strategies then

* *
TiseessTy

THEOREM 2. If for any criterion ﬂT""’“ 18 an e—equilibrium-point in the

18 also an e-equilibrium point for that criterion.

PROOF. Vi(So,ﬂl,...,ﬂN) is some function of the V;(so,n],...,wN), t=1,2,...

By theorem 1 for each behavior strategy Lo there exists a semi-Markov strategy

n?M such that:

0 =« * * *
Vi(s ’"l""’“i—l’“i’ﬂi+l""’nN) =

* M * * 0
’“i—l’"i 3T qreees™ for all s .

0 =
Vi(s LIPPRE N



while

* SM

0 =
V.(s8 ,T,500s,T. .
1( ] s T -1

* *) <
MegoeosT Y
5 1’ 5 N

. 0 x *
Vi(s ,ﬂl,...,ﬂN) + ¢

*

N is an e-equilibrium point. [

for all so. therefore ﬂ?,...,ﬂ

However the existence of an e-equilibrium point does not imply the
existence of an e-equilibrium point in the restricted game. The following
example is a two person zero sum game that is strictly determined and whose

restricted game is not.

EXAMPLE 3. This example is due to GILETTE [4] and BLACKWELL and FERGUSON [2]
showed that starting in state 1 the game is strictly determined with value
3. Blackwell and Ferguson called this game "the big match"; we write it in

symbolic notation:

[

o [ien)

l'l

The stochastic game has state space: {1,2,3}; in state 1 both players have
action space: {1,2}; in state 2 and 3 both players have action space: {1}.
If in state 1 both players choose action 1 then one unit is payed by player 2
to player 1 and the next state is state 1 with probability 1. etc. If the
game is in state 2 or 3 both players have only one action available and the
game stays forever in that same state. We consider the average return cri-
terion with lim sup for player 1 and lim inf for player 2.

In this example the set of semi-Markov strategies is the same as the
set of Markov strategies. Blackwell and Ferguson used non-Markov strategies

for player 1, dependent on the actions taken by player 2 in the past, to



show that the game starting in state 1'is strictly determined. However if

the players stick to (semi-)Markov strategies the game is not strictly de-
termined. Stochastic games where the players are restricted to semi-Markov
strategies can be considered as repeated games with incomplete information.
ZAMIR [8] gives an equivalent example. We show that player 1 has no e-optimal

strategies for € < }.

2

1 . . .
PROOF, Let m = (v ,7 ,...) be a Markov strategy for player 1 that is e-opti-

mal (Wt is the probability of choosing action 1 at time t); pt the probability
that player 1 chooses action 2 for the first time at time t and p = Z:=] pt
the probability that player 1 not always chooses action 1.

t=1 pt = p-6. We construct a
strategy p for player 2 as follows: choose action 1 at time 1,...,tO and

For each § > O there exists a t0 such that : z

action 2 thereafter. If player 1 plays 7 and player 2 plays p the game re-
duces to a stochastic process that realizes exactly one of the following
events:
1. player 1 uses action 2 before time t0+l
2. player 1 uses action 2 for the first time at t0+1 or thereafter
3. player 1 never uses action 2,
The probability that the first event occurs is at least p—§ and the average
return in this case is 0. The second event has probability at most § and
average return 1. The third event has probability l1-p and average return O.
So the overall average return .is at most §.

The value of the restricted game, if it exists, is the same as the
value of "the big match" by theorem 2 and the lemma. If € < } then choose

§ < i-e; this contradicts the fact that 7 is an e-optimal strategy for player

1. O

REFERENCES

(1] AUMANN, R.J., Mixed and behavior strategies in infinite extensive games,
in Advances in game theory, pp 627-650, M. Dresher, L.S. Shapley

and A.W. Tucker eds., Princeton university press (1964).



BLACKWELL, D. & T.S. FERGUSON, The big match, Annals of Math. Stat. 39,
pp 159-163 (1968).

DERMAN, C. & R.E. STRAUCH, 4 note on memoryless rules for controlling
sequential control processes, Annals of Math. Stat. 37,
PP 276-278 (1966).

GILETTE, D., Stochastic games with zero stop probabilities, in Con-
tributions to the theory of games 3, pp 179-187, M. Dresher,

A.W. Tucker and P. Wolfe eds., Princeton university press (1957).

ROGERS, Ph.D., Non zerosum stochastic games, Berckeley ORC 69-8,
april 1969.

SHAPLEY, L.S., Stochastic games, Proc. Nat. Acad. Sci. U.S.A. 39,
pp 327-332 (1958).

SOBEL, M.J., Noncooperative stochastic game, Annals of Math. Stat. 42,
pp 1930-1935 (1971).

ZAMIR, S., On the notion of value for games with infinitely many stages,
The Annals of Statistics 1, pp 791-796 (1973).





