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Inventory control with two switch-over levels for a class of M/G/1 queueing 
. h . bl . 1 d . *) systems wit var1a e arr1va an ~erv1ce rate 

by 

**) 
H.C. Tij.ms and F.A. van der Duyn Schouten 

ABSTRACT 

This paper deals with inventory control in a class of ·M/G/1 queueing 

systems with the inventory being the virtual waiting time. It is assumed 

that at each point of time the system is in one of two possible stages I 

and 2 where at any moment the system can be switched from one stage to 

another. The rate of arrival process and the service rate depend on the 

stage of the system. The cost structure imposed on the model includes both 

a holding cost at a general rate h.{x) when the system is in stage i and 
1 

the inventory is x and fixed switch-over costs. The control rule for the 

inventory is specified by two switch-over levels y 1 and y2 and prescribes 

to switch the system from stage I to stage 2 when the inventory exceeds 

level y 1 and to switch the system from stage 2 to stage I when the invent

ory has been decreased to the level y2• Using an embedding approach, we 

will derive a formula for the long-run average expected costs per unit 

time of this policy. By an appropriate choice of the cost parameters, we 

may obtain various operating characteristics for the system amongst which 

the stationary distribution of the inventory and the average number of 

switch-overs per unit time. The above control problem includes as special 

cases a variety of problems previously studied in the literature and pro

vides thus a unifying treatment of these problems. 

KEY WORDS & PHRASES: M/G/1 queue, variable arrival and service rate, 

inventory control, two switch-over levels, 
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I. INTRODUCTION AND THE MODEL 

This paper deals with inventory control in a class of M/G/1 queueing 

systems which are considered as inventory systems with the inventory at 

time t being the virtual waiting time. The system is supposed to have a 

finite capacity K.It is assumed that at each point of time the system is 

in one of two possible stages and 2 where at any moment the system can 

be switched from one stage to another without loss of time. If the system 

is in stage i, the epochs at which customers arrive are generated by a 

Poisson process with rate~-, i 
i 

= 1,2. Let Y. be a positive random variable 
i 

having probability distribution function F.(x) = Pr{Y. ~ x}, i = 1,2. 
i i 

Any customer arriving while the system is in stage i and the inventory 

of the system is x enlarges the inventory with an amount which is distributed 

as min [K-x,Y.] and causes an overflow which is distrib9ted as 
i 

max[O,Y.-K+x], i=l,2. If the system is in stage i and the inventory is 
i 

positive, then between arrival epochs the inventory decreases linearly at 

rate a. > 0, i = 1,2. 
i 

The following cost structure is imposed on the model. There are holding 

(and service:) costs at rate h. (x) 
i 

when inventory is x and the system is in 

stage i where the functions h 1 (x) and h2 (x) are assumed to be bounded 

functions having only a finite number of discontinuities in 0 ~ X ~ K. An 

overflow cost of p. (y) is incurred when an overflow of an amount y is caused 
i 

by a customer arriving while the system is in stage i where p. (y) is a 
i 

nondecreasing function of y 2: 0 with I; p. (y)dF. (y) < 00 for i = I , 2 . i i 
Finally, a fixed cost of Y is incurred when the system is switched from 

stage 2 to stage I. 

The ruile for controlling the inventory is specified by two switch

y2 ~ y 1 < K. This (y 1,y2) policy prescribes over levels YI and y2 with 0 ~ 

to switch the sys tern from stage I to.stage 2 only when the inventory exceeds the value 

y I and prescribes to switch the system from stage 2 to stage I only when 

the inventory has been decreased to the value y2 . 

Using a powerful and simple approach involving embedded processes, 

we shall derive a formula for the long-run average expected costs per unit 

time of this policy. By an appropriate choice of the cost functions, we 

may obtain from this formula various operating characteristics for the 
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system amongst which the stationary distribution of the inventory and the 

average number of switch-overs and .overflows per unit time. 

The above control problem includes as special cases a variety of 

problems previously studied in the literature and provides thus a unifying 

treatment of these problems. As examples we give the following two cases. 

Case (i) Al = A2 , F1(.) = F2(.). In this case the control of the inventory 

is achieved by controlling the service rate. This problem was studied 

amongst others in [3] and [JO]. In [3] the stationary distribution of the 

inventory was derived for the infinite capacity model with a single switch

over level y 1 = y2 and in [JO] the average cost of the (y 1,y2) policy was 

obtained for the infinite capacity model for the case of linear holding 

costs. 

Case (ii) Al > 0, A2 = 0, F1(.) = F2(.), cr 1 = cr 2 • In this case we have in 

fact a queueing system with restricted accessibility and the control of 

the inventory is achieved by controlling the arrival process. For this 

model with an infinite capacity and a single switch-over level y 1 = y2 
the stationary distribution of the inventory was derived in [I], see also 

[4] for this specific model. Finally, we observe that by letting y 1 = y2 
and y 1 ➔ K the model of case (ii) reduces to the well-known finite dam 

model. 

2. AVERAGE COST ANALYSIS 

In this section we will derive a formula for the average cost of the 

(y 1,y2) policy. This will be done by using a generally applicable approach 

based on a properly chosen embedded process. 

Let us define the state of the system as x(x') when the inventory 

level is x and the system is in stage 1(2). Denote by X(t) and S(t) the 

inventory level and the state of the system at time t respectively where 

we take the processes {X(t), t ~ O} and {S(t), t ~ O} continuous from the 

right. So at time t the state of the system is x(x') when at time t the 

inventory level is equal to x and the system is in stage I (2). To derive 

the formula for the average cost, we will consider an embedded Markov 

chain of the process {S(t)}.Consider now the inventory system controlled 

by a fixed (y 1,y2) policy where for notational convenience we take y2 > 0. 



Unless stated otherwise, we also assume for ease that the system is empty 

at epoch O. Now, let T0 = 0 and, for n ~ 1, let Tn be the nth epoch at 

which either the inventory level exceeds y 1 while the system is in stage 

3 

1 or the inventory level decreases to y2 while the system is in stage 2 or 

or the inventory becomes zero. 

For any n ~ O, define S as the state of the system at epoch T. The 
n n 

embedded discrete-time process {S, n = 0,1, •.• } is a Markov chain with 
n 

state space 

Taking for~ any finite measure on the Borelsets of S such that ~(A)> 0 

if and only if OE A, it innnediately follows that the Markov chain {S} 
n 

is uniformly ~-recurrent, seep. 26 in [7]. Now, by Theorem 7.1 in [7], 

the Markov chain {S} has a unique invariant probability measure TI such 
n 

that, for any Borel subset A of S, 

( 1 ) TI(A) = f P(s,A) TI (ds) 

s 
where P(.,.) denotes the one-step transition probability distribution 

function of {S }. Moreover by Theorem 3.3 in [6], we have 
n 

(2) 
n-1 f 

lim ..!.. l Ef(Sk) = 
n-+<x> n k=O 

f(s)TI(ds) 

s 

for any Baire function f such that Jlf(s)ITI(ds) is finite. 

Define Z(t) as the total costs incurred in (O,t]. For any n ~ O, 

let Z be the total costs incurred in (T ,T 1]. Also let n n n+ 

c(s) = E(Z Is =s) and T(s) = E(T 1-T Is =s) for s ES. n n n+ n n 

Since the process {S(t)} is regenerative with the epochs at which the 

system becomes empty as regeneration epochs, it follows from the proof of 

Theorem 7.5 in [8] that 



4 

lim ..!_ EZ(t) 
t 

t~ 

n-1 n-1 
= lim l E,Zk/ l E(Tk+I-Tk), 

n~ k=0 k=0 

Hence, by (2), the average cost of the (y 1,y2) policy is given by 

(3) lim ½ EZ(t) = I c(s)n(ds)/ f ,(s)TI(ds). 
t~ s s 

We shall next determine the stationary distribution TI and the functions 

c(.) and,(.). To do this, we first introduce the following notation. For 

i = 1,2, let H.(x) = 0 for x < 0 and let 
1 

-- Ai XI H.(x) {1-F.(y)}dy 
1 o. 1 

1 0 

for x 2: 0. 

For i = 1,2, define o. as the unique root to 
1 

(X) 

I -xy 
e dHi(y)-1 = 0 

0 

For 1 = 1,2, define the probability distribution function G. by G.(x) = 0 
1 1 

for x < 0 and 

G. (x) 
1 

X 

= I 
0 

-o.y 
1 

e dH.(y), 
1 

for x 2: 0. 

Finally define for i = 1,2, the renewal function M. by M.(x) = 0 for 
1 1 

x < 0 and 

M. (x) = 
1 

(X) 

I 
n=l 

n G.(x), 
1 

for x 2: 0 
' 

where G~ is then-fold convolution of G. with itself. Fix 
1 1 

w > 0. Consider now the following "renewal-type" equation 

u(x) = a(x) 

w-x 
r 

+ J 
0 

u(x+y)dH. (y) 
1. 

0 :,; X :,; W, 

::; 1::; 2 and 
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where a(x) is a given bounded function. This equation has the unique bounded 

solution (see [2] and [5]), 

w-x 

(4) u(x) = a(x) + I 
0 

0 .y 
i 

e a(x+y)dM. (y) 
i 

for 0 

To determine the stationary distribution n, define for all O :-::; u :-::; y 1 

and y 1 :-::; v :-::; K. 

p(u,v) probability that the first value of the process {X(t),t 2 O} 

taken on in the set {0} u {xiy1 < x :-::; K} belongs to the set 

{xiv:-::; x :-::; K} given that X(O) = u, 

and let p0 (u) 

Also, let FI (y) 

(5) n(v) 

(6) 1To = 

l-p(u,y 1) for O :-::; u :-::; y 1 • For ease of notation, write 

= 

for y 1 :-::; v :-::; K 

I - lim F 1(x) = Pr{Y 1 2 y}. Then, by (I), 
xty 

YJ 

n0{F 1(v) + J p ( y, v) dF I ( y) } + 1T2p(y2,v) 

0 

for y I 

1To r p O ( y) dF 1 ( y) + 1T /0CY2> and 1T 2 1T(y1)· 

0 

:-::; V :-::; K, 

We note that any interval of integration is closed, unless stated otherwise. 

Together (5), (6) and the relation TIO+ TT 2 + TI(y 1) = I determine the 

stationary distribution TI once we have calculated the probabilities p(u,v). 

Using standard arguments, we have for all y 1 ~ v ~ K, 

from which we get 

y -u 
r I 

+ J p(u+y,v)dF 1(y)} + 

0 

for O < u < y , 
I 
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3p(u,v) 
dU 

for O < u < y. 
1 

We now give the following relation, cf.[2]. Fix 1 sis 2 and w > 0. At 

each point x such that F. is continuous at w-x we have for any continuous 
l. 

function a (.){use the fact that F.(O) = O), 
l. 

w-x w-x 

(7) 
3 

3x J 
0 

a(x+y){ 1-F. (y) }dy = -a(x) + 
l. J 

0 

Using this relation and the continuity of p(.,v) 

p(u,v) = ¢(u,v) 

where, for some constant c, 
V 

y -u 
1 ( 

p (u+y, v)dH 1 (y) + J 
0 

Next, by (4), we get for all y 1 s vs K, 

a ( x+y) dF . ( y) . 
l. 

we find for all 

for 0 s u s 

p(u,v) 

.y lru 
¢(u,v) + J 

81 y 
e ¢(u+y,v)dM1(y) for 0 

0 

YI 

YI 

For any v with y 1 s vs K the constant cv follows from the boundary 

condition 

p(O,v) 0. 

s 

This completes the determination of the stationary distribution 11. To 

deLerrnine the functions c(.) and T(.), we define for all Os x s y 1, 

V s K, 



k 1(x) = the expected holding and overflow costs incurred up to the 

first epoch at which the process {S(t),t ~ O} takes on a 

state in the set {O} u {y' ly 1 < y ~ K} given that S(O) = x 

and, for all y 2 ~ x ~ K, 

k 2 (x) = the expected holding and overflow costs incurred up to the 

first epoch at which the process {S(t),t ~ O} takes on the 

state y 2 given that S(O) = x! 

It is now easily seen that the function c(s), s ES is given by 

h 1 (O) yf 00 

c(O) + k 1 (y)dF I (y) + J p I (y-K)dF I (y), 
A I 

0 K 

c(y2) = kl(y2) and c(x') = k 2 (x) + y for y 1 < x ~ K. 

7 

Clearly, for any s ES the formula for T(s) follows from the corresponding 

one for c(s) by putting h.(x) = I for x ~ O, p.(y) = 0 for y ~ 0 (i = 1,2) 
i 1. 

and y 

way as 

0 :::; X 

= 0. The function k 1 (x) and k 2 (x) will be determined in a very 

p(u,v). First observe that these functions are continuous in 

~ K. Then, for any 0 < X < y such that X is a continuity point 
I 

00 

+ J 
K-x 

y -x 

{ 1J k I ( x+y) dF I ( y) + 

0 

p 1(x+y-K)dF 1(y)} + (I-Al lx) k 1(x) + o(lx), 
al 

similar 

of h 1(.), 

from which we get for any O < x < y 1 such that xis a continuity point of h 1, 

h 1 (x) 
k' (x) = 

I a I 

A I 
p 1(x+y-K)dF 1(y) - - k (x) + 

a I I 

In the same way as above we get from this differential equation that, for 

some constant b 1, 
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where 

X I h 1 (u) 

[ (J 

l 
0 

00 

+ ~ I p 1(u+y-K)dF 1(y)Jdu 
crl 

K-u 

for 0 

The constant b 1 is determined by the boundary condition k 1(0) = O. 

Similarly, we find from the corresponding differential equation for k2(x) 

that, for some constant b2, 

K-x 

= d2(x) + b2 + f 
0 

where, for Yz $ X $ K, 

for Yz :=; x :=; K. 

"2 
+ - {I-F 2(K-u)} k2(K)Jdu. 

02 

The constant b2 and the value k2 (K) follow by putting x =Kin the above 

formula for k2 (x) and using the boundary condition k2 (y2) = 0. 

We now have completed the determination of n,c(.) and T(.) and so, 

by (3), we have determined a formula for the average cost of the (y 1,y2) 

policy. From this formula we may obtain various operating characteristics 

for the system. To obtain the stationary distribution of the inventory, 

define for any t ~ 0 the random variable A(t) = i when the system is in 

stage i at tiu1e t, i = I, 2, where we take the process {A(t)} continuous 

from the right. Fix now k and z with k = 1,2 and O 5 z 5 K, take hk(x) = 

for O 5 x 5 z, hk(x) = 0 for x > z and take the other holding cost function, 
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the overflow cost functions and the fixed switch-over cost identical to 

zero. Then, using standard results from the theory of regenerative processes 

(e.g. [9]), we have 

lim Pr{A(t) = k,X(t) 
t-+<x> 

:;; z} = lim EZ(t) 
t 

so the stationary distribution of the inventory is determined by the right

hand side of (3). 

Clearly, the average number of switch-overs per unit time is equal to the 

coefficient of yin the formula for the average cost and is given by 

(1-n0-n2)/ J T(s)n(ds). 

s 

Finally, letting p.(y) = p. for y > 0 and p.(O) = O, we have that the 
1 1 1 

coefficient of p. in the formula for the average cost gives the average 
1 

number of overflows in stage i per unit time, i = 1,2. 

To the end, we consider the special case where 

for x > 0 and i = 1,2. 

We then find cS. = ("). .. /a. )-n. and 
1 1 1 1 

cS. y 
1 

e M.'(y) 
1 

-(n.->../o.)y 
=(/) 111 L cr. e 

1 1 
for y ~ 0 and i = 

In the remainder it is supposed that >../cr. z n. for i = 1,2. Put for 
1 1 1 

abbreviation, 

a.. = 
1 

A. 
1 -;-:, 
1 

S. = n.-a. for i = 
1 1 1 

I , 2. 
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We find after elementary but lengthy calculations 

for y < v < K, 
I 

where the normalizing constant c equals I/{R(y1,y2)+2}. We next find 

¾ I T(s)7T(ds) 

s 

Denote by D(y 1,y 2) the right-hand side of this equation. We then obtain 

lim Pr{A(t) = 
t-+oo 

lim Pr{A(t) = 
t-+oo 

I, X(t) 

I, X(t) I 17 I s z} = ~--~ [-- (y -z) + D(y 1,y2) 0 181 2 

-81(z-yl) 
+ ol812 (al-17le )], 

lim Pr{A(t) = 2, X(t) 
t-+oo 

a2 -82(z-y2) 
+ ~ (e -1)], 

0282 



lim Pr{A(t) = 
t-+oo 

-n (z-y) 
I I J 

e ' YI S z SK. 

Further, the average number of overflows in stage I per unit time equals 

and the average number of overflows in stage 2 per unit time is equal to 

Finally, letting 1t 2 = O, cr 1 = cr 2 = l, y 1 = y2 = N and K -+oo, we find 

lim Pr{X(t) 
t-+oo 

z ~ N. 

2 -BIN 
where c 1 = I/[l-(1t 1/n 1) e ]. This formula corrects a slight error in 

a corresponding formula in [I]. 

BIBUOTHEEK MATHEMATl2<'' 1 ,"'TNiFlUM 
--M,~ST;::RD/.' 

I I 



12 

REFERENCES 

I. COHEN, J.W., Single server queues with restricted accessibility,Journal 

of Engineering Mathematics 3 (1969), 265-284. 

2. -----------, On Regenerative Processes in Queueing Theory,Lecture Notes 

in Economics and Mathematical Systems 121 (Springer-Verlag, 

Berlin, 1976). 

3. ------------, On the optimal switching level for an M/ GI I queueing 

system, Stochastic Processes and their Applications 4 (1976), 

297-316. 

4. DOSHI, B.T., Continuous time control of Markov processes on an arbitrary 

state space, Technical Sunnnary Report no. 1468, University 

of Wisconsin, Wisconsin, 1974. 

5. FELLER, w., An Introduction to Probability Theory and its Applications, 

Vol. II (Wiley, New York, 1966). 

6. JAIN, N.C., Some limit theorems for general Markov processes, Z. 

Wahrscheinlichkeitstheorie verw. Geb. 6 (1966), 206-223. 

7. OREY, S., Limit Theorems for Markov Chain Transition Probabilities 

( Van Nostrand Reinhold Company, London, 1971). 

8. ROSS, S.M., Applied Probability Models with Optimization Applications, 

(Holden-Day, Inc., San Francisco, 1970). 

9. STIDHAM,S., Jr., Regenerative processes in the theory of queues, with 

applications to the alternating-priority queue, Advances in 

Applied probability 4 (1972), 542-557. 

10. TIJMS, H.C., On a switch-over policy for controlling the workload in a 

queueing system with .two constant service rates and fixed 

switch-over costs, to appear in Zeitschrift fiir Operations 

Research, 1976. 


