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ABSTRACT 

The network design problem is the problem of finding a subgraph of a weighted 

undirected graph, subject to a budget constraint on the sum of its edge 

weights, that minimizes the sum of the shortest path lengths between all 

vertex pairs. In this note we establish NP-completeness for the network 

design problem, even for the simple case where all edge weights are equal 

and the budget restricts the.choice to spanning trees. This result justifies 

the development of enumerative optimization methods and of approximation 

algorithms, such as those described in a recent paper by R. Dionne and M. 

Florian. 

KEY WORDS & PHRASES: network design problem, sum of all shortest path lengths, 

NP-completeness, knapsack, exact 3-cover 

NOTE: This report is not for review; it will be submitted for publication in 

a journal. 



The network design problem is the problem of finding a subgraph of a weighted 

undirected graph, subject to a budget constraint on the sum of its edge 

weights, that minimizes the sum of the shortest path lengths between all 

vertex pairs. In this note we establish NP-completeness [6;7] for the network 

design problem. Briefly, this result 'implies that a polynomial-bounded method 

for its solution could be used to construct similar algorithms for a large 

number of combinatorial problems which are notorious for their computational 

intractability, such as the travelling salesman problem and the multicommodity 

network flow problem. Since none of these problems is known to be solvable 

in polynomial time, NP-completeness of the network design problem justifies 

the development of enumerative optimization methods and of approximation 

algorithms, such as those described in [2]. 

For our purposes, we formulate the problem in the following way. 

NETWORK DESIGN PROBLEM (NDP): Given an undirected graph G = (V,E), a 

weight function L: E +JN, a budget Band a criterion threshold C 

(B,C E JN), does there exist a subgraph G' = (V,E') of G with weight 

l{· "} E' L({i,j}) ~Band criterion value F(G') ~ C, where F(G') i,J E 

denotes the sum of the lengths of the shortest paths in G' between all 

vertex pairs? 

By way of introduction to a quite involved NP-completeness proof for a sim­

plified version of NDP, we shall first present a simple proof establishing 

NP-completeness for the general NDP. 

THEOREM 1. NDP is NP-complete. 

FToof. Consider the following problem, 

KNAPSACK: Given positive integers t,a1, .•. ,at,b, does there exist a 

subset Sc T = {1, ... ,t} such that l· Sa. = b? 
iE i 

We will show that KNAPSACK is reducible to NDP, i.e., that for any instance 

of KNAPSACK an instance of NDP can be constructed in polynomial-bounded time 

3uch that solving the instance of IIDP solves tne instance of KNAPSACK as well. 



KNAPSACK: t -· 4, a 1 = 2, a2 = 3, a 3 = 5, a 4 = 6, b = 7. 

NDP: G & L: 

B 39, C = 249. 

Figure 1 Equivalent instances of KNAPSACK and NDP. 

The theorem then follows from the NP-completeness of KNAPSACK [6] and the 

solvability of NDP by polynomial-depth backtrack search. 

Given any instance of KNAPSACK, we write A= l· Ta. and define an 
I lE l 

instance of NDP as follows: 

V = {O} u {i,i': i ET}, 

E = {{O,i},{O,i'},{i,i'}: i .ET}, 

L({O,i}) = L({O,i'}) = L({i,i'}) = a. (i ET), 
l 

B = 2A+b, 

C = 4tA-b. 

2 

Figure 1 illustrates this reduction. We claim that KNAPSACK has a solution if 

and only if G = (V,E) contains a subgraph with weight at most Band criterion 

value at most C. 

It is easily seen that any feasible NDP solution can be assumed to con­

tain a star graph G* = (V,{{O,i},{O,i'}: 1 ET}); G* has weight 2A = B-b and 

criterion value 4tA = C+b. Adding an edge {i,i'} to G* increases the weight 



3 

by ai and decreases the criterion va~ue by ai, since {i,i'} will appear only 

in the shortest path between i and i':. The equivalence now follows in a 

straightforward way. D 

However, since KNAPSACK can be solved in O(tb) time [1], Theorem 1 does not 

exclude the existence of a similar pseudopolynomial algorithm [4] for NDP; 

the above construction crucially depends on allowing arbitrary positive 

integers as edge weights and budget. As a stronger result, we shall now prove 

that NDP is NP-complete even in the simple case where all edge weights are 

equal and the budcet restricT.s the choice to spanning trees. 

SIMPLE NETWORK DESIGN PROBLEM (SNDP): NDP with L({i,j}) = 1 for all 

{i,j} EE and B = 1v1-1. 

THEOREM 2. SNDP is NP-complete. 

Proof. As a starting point we take the following NP-complete problem [3;5]. 

EXACT 3-COVER: Given a family S = (o 1, ... ,os} of 3-element subsets of a 

set T = {, 1, ... ,,3t}' does there exist a subfamily S' c S of pairwise 

disjoint sets such that U S' o = 1T? 
OE 

We will show that EXACT 3-COVER is reducible to SNDP. 

Given any instance of EXACT 3-COVER, we define an instance of SNDP as 

follows. 

where CRR 

18t2-12t. 

V =Ru Su T, 

r = CSS +CST+ CTT' 

E = {{pi,pO}: i = 1, ... ,r} u {{p O,o}: o ES} u {{o,,}:, E o ES}, 

C = CRR + CRS +CRT+ CSS +CST+ CTT' 
2 

= r , CRS = 2rs+s, CRT= 9rt+6t, CSS = 
2 

s -s, 

Figure 2 illustrates this reduction. We will prove that EXACT 3-COVER 
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EXACT 3-COVER: t = 2, s = 4, 

S = {{T 1 ,T2,T3},{T2 ,T3 ,T5},{T~ 1 T4 ,T5},{T4 ,T5 ,T6}}. 

SNDP: G: R • • • 

C = 17656. 

Figure 2 Equivalent instances of EXACT 3-COVER and SNDP. 

has a solution if and only if G = (V,E) contains a spanning tree with crite­

rion value at most C. We assume that G is connected, i.e., U So= T. 
I OE 

Let G' = (V,E') be some spanning tree of G and let FPQ(G') denote the 

sum of the lengths of all shortest paths in G' between vertex sets P and Q 

(P,Q c V). We clearly have {pi,pO} EE' for all i = 1, ... ,r. If {p0 ,o} i E' 

for some o ES, then 

F(G') > FRR(G') + FRS(G') + FRT(G') 

~ CRR + CRS + 2(r+1) + CRT 

> C; 

therefore, we may assume that {p 0 ,o} EE' for all o ES. It follows that in 

G' each vertex in Tis adjacent to exactly one vertex 1n S. Straightforward 

calculations show that we now have 

FPQ(G') = CPQ for P = R,S and Q = R,S,T. 

Denoting the number of vertices in s being adjacent J.n G' to exactly h ver-

tices in T by sh (h = 0,1,2,3), we have 

BIBUOTHEEK MATHEMATISCH CENTRUM 
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FTT(G') = 4(3t(3t-1)/2) 

- 2 j { { T , T ' } : T # 1-r ' , { { o , -r} , { o , T ' } } c E ' for some o E S} I 
2 = (18t -6t) - (2s2+6s3 ) 

= CTT + 6(t-s3 ) - 2s2 . 

It is easily seen that FTT(G') = CTT if and only if s3 = t, s2 = s 1 = O, 

s0 = s-t. The first condition. is now equivalent to F(G') :5; C, the second one 

to the existence of an EXACT 3-COVER SOLUTION. This completes the proof. D 
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