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The Functional Equations of Undiscounted Markov Renewal Programming-*) 

by 

P.J. Schweitzer & A. Federgruen 

ABSTRACT 

This paper investigates the solutions to the functional equations that 

arise inter alia in Undiscounted Markov Renewal Programming. We show that 

the solution set is a connected, though possibly non-convex set whose members 
* . * are unique up ton constants, characterize n and show that some of these 

* n degrees of freedom are locally rather than globally independent. 

Our results generalize those obtained in ROMANOVSKY [20] where another 

approach is followed for a special class of discrete time Markov Decision 

Processes. Basically our methods involve the set of randomized policies. 

We first study the sets of pure and randomized maximal-gain policies, as 

well as the set of states that are recurrent under some maximal-gain policy. 

KEY WORDS & PHRASES: Markov Renewal Programs, average return optimality, 

functional equations, fixed points 
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I. INTRODUCTION 

This paper investigates the solutions (g,v) to the 2N functional equa-

tions: 

( I. I) 
N k 

gi = max I p .. g.' 
kEK(i) j=l 1-J J 

( I. 2) [ q~ -
N 

V. = max I ]_ 
kEL(i) j=l 

where 

( I. 3) L(i) 

k 
N 

p~. V.]' H .. g. + I 1J J j=l 1-J J 

N k l I P .. g.J. 
j=l 1-J J 

i = l, ••• ,N 

i = l, ••• ,N 

( ') . f. . d h k pk k The Ki are given inite sets an t e q., .. ,H .. are 
k k N k i iJN iJ k 

given arrays with 
k 

P .. , H. . :::: 0 for all i, j , k; l · 1 P. . = I and l · 1 H. . = 
1-J 1-J J= 1-J J= 1-J 

T. > 0, for all i,k. 
]_ 

Also we assume property A to be stated below. 

For the special cases H~. = P~ .. T~. with T~. :::: 
1-J 1-J 1-J 1-J 

k 0 and H. . = cS •• , the 
1-J 1-J 

functional equations arise in Markov Decision Theory with Q = {l, ... ,N} as 
k k state space, q. as the one-step expected reward, P .. the transition prob-
1 1-J 

ability to state j and T~ the expected holding time, when alternative k 
]_ 

is chosen in state i (cf. 

DE CANI [6], JEWELL [13], 

BELLMAN [2,3], BLACKWELL [4], HOWARD [11,12], 

DENARDO & FOX [8], DENARDO [7], DERMAN [9], 

SCHWEITZER [21,22,23]). The solution to (I.I) and (1.2) is not unique, 

although g is uniquely determined. The purpose of this paper is to. 

characterize 

V = {v E EN I v satisfies (1.2)}. 

We show that Vis a connected, though possibly non-convex set whose members 

are unique up ton* constants, characterize n*, and show that some of these 

* n degrees of freedom are locally rather than globally independent. 
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Our results generalize those obtained in ROMANOVSKY [20] where another 

approach is followed for a special class of discrete time Markov Decision 

Processes (MDP's). 

Basically our methods involve the set of randomized policies. We first 

study the sets SPMG and SRMG of pure and randomized maximal-gain policies, 

and characterize the set R* of states that are recurrent under some maximal 

gain policy. In section 2 we give the notations and some preliminaries. In 

* section 3 we characterize the sets SRMG and R. The properties of V are 

* studied in section 4, while in section 5 then degrees of freedom are 

characterized. Finally, in section 6 a triangular decomposition of the set 

Vis given. 

II. NOTATIONS AND PRELIMINARIES 

A (stationary} randomized policy f is a tableau [fik]satisfying 

fik ~ 0 and lkEK(i) fik = 1 for·all i ~hn. In the Markov decision model, 

fik denotes the probability that the k alternative is chosen when en

tering state i. 

We let SR denote the set of all randomized policies and Sp the subset 

of all pure (non-randomized) policies, i.e. for f ESP' each fik = 0 or 1 

For f E Sp, we use the notation f# = (8 1, ••• ,SN) where Si E K(i) denotes 

the single alternative used in state i. 

Associated with each f E'SR are N-component "reward" vector q(f) and 

"holding time" vector T(f), and two matrices P(f) and H(f): 

q(f). I k T(f). I k 
= f.kq.; = f.kT. 

1. kEK(i) 1. 1. 1. kEK(i) 1. 1. 

P(f) .. I k H(f) .. I k 
= f "kp .. ; = f.kH ... 

1.J kEK(i) 1. 1.J 1.J kEK(i) 1. 1.J 

Note that P(f) is a stochastic matrix. For any f E SR, define the stochas-
n co 

tic matrix II(f) as the Cesaro limit of the sequence {P (f)_}n=l and define 
·-1 

the fundamental matrix Z(f) as [I - P(f) + TI(f)] • These matrices always 

exist and have the following properties (cf. [4],[14]): 

(2. 1) II(f) = P(f)II(f) = TI(f)P(f) = TI(f) 2 = II(f)Z(f) = Z(f)II(f) 



(2.2) 

(2.3) 

[I - P(f)]Z(f) = Z(f)[I - P(f)] =-I - TI(£) 

00 

Z(f) =I+ lim I an[P(f)n - TI(f)]. 
atl n=I 

3 

Denote by n(f) the number of subchains (closed, irreducible sets of states) 

for P (£). Then: 

(2.4) 
n(f) 

Il(f) .. = I ¢~(£)TI~(£), 
1.J m= I 1. J 

::; i, j ::; N 

where the row vector Tim(f) is the 
th . m m 

them subchain C (£), and¢.(£) 
1. 

starting from state 

Tim(f)P(f) = ,rm(£). 

i (cf. [7] and 

unique equilibrium distribution of P(f) on 

is the probability of absorption in Cm(£), 

[23]). Observe I. TI~(£)= I and 
1. 1. 

Let R(f) = {j j TI(£) .. > O}, i.e. R(f) is the set of recurrent states 
1.J m m 

for P(f). Note that the column vector¢ (£) = P(f)¢ (£) for all m and that 

the {¢m(f) j m = 1, ..• ,n(f)} are linearly independent. Since any solution to 

P(f)x = x satisfies TI(f)x = x and the rank of [I - TI(f)J is N - n(f), it 

easily follows that the solution set of P(f)x = x is given by: 

(2.5) 

with a 1, ••• ,an(f) arbitrary scalars. 

LEMMA 2.1. Fix£ E SR, and let the vector b satify TI(f)b = 0. Then 

[I - P(f)Jx 2:: b, implies x 2:'. Z(f)b + TI(f)x, where in both inequalities the 

equality sign holds for each corrroonrmt i E R(f). 

PROOF. Multiplying [I - P(f)]x - b 2:'. 0 by TI(£) 2:'. 0, yields 

0 = IT(f)([I - P(f)Jx - b), implyinG that the former inequality 1.s a strict 

equality for components i E R(f). Using this and the fact that as a result 

of (2.3), for j i R(f), Z(f) .. 2:'. 0 for all i, with Z(f) .. 
1.J 1.J 

0 when i E R(f), 

we get the desired result by multiplying [I - P(f)]x 2:'. b by Z(f) and 

invoking (2.2). ~ 

LEMMA 2.2. Let£ E SR, and let Cm(£) be any subchain of P(f). Take any 

i E Cm(£) and any k E K(i) with fik > 0. Then there exists a pure policy h 
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with (a) h.k = 1, (b) fo-P eve-Py (j,r), h. = -1 only if f. > 0, such that 
i Jr Jr 

(c) i beZongs to a subchain C of P(h) which is contained within Cm(f) and 

(d) R(h) ~ R(f). 

PROOF. Leth meet conditions (a) and (b). Note that, in view of (b), Cm(f) 

is closed for P(h), since it is closed for P(f). If Cm(f) = {i}, condition 

(c) is satisfied. Otherwise, let 6 initially be equal to {i}. Define 

~ = Cm(f)\6. Next the following step is performed: 

Choose a state j E iJ. and an alternative r such that f. > 0 and 
Jr 

Pr > 0 for some t E 6, transfer j from 6 to 6, and define h. = 1. Clearly, 
jt 

in Cm(f) 
Jr 

such a j and r can be found, since all states communicate under 

P(f). Repeat this step for the new 6 and 6, until 6 is empty. This construc

tion shows that under policy h, state i can be reached from any state in 

Cm(f)\{i}. Together this and the fact that Cm(f) is closed under P(h) im

ply condition (c). Condition (d) trivially holds if Q = R(f). Otherwise, 

let r initially be equal to R(f) and definer=~ - r. Choose a state 

t 0 Er and a path {t0 ,t 1, ... ,tn} such that P(f)tQ,tQ,+l > 0 for Q, = 0, ... 

... ,n - 1 and tn Er. Such a path clearly exists, since t 0 is transient 

under P(f) and r ~ R(f). Transfer {t0 , ••• ,tn_ 1} from r tor and define for 

Q, = O, •.. ,n - 1 htnr = 1 for any r with ft r > 0 and Prt t > O. Repeat 
~ Q, m £ £+1 

this step until r is empty. Finally, for j E R(f) - C (f), define h. = 1 
Jr 

for some r, with f. > 0 and observe that condition (b) holds for all 
Jr 

J E Q. This completes the proof. D 

In the remainder of the paper, we assume that property A holds. 

A: If f is any pure policy and Cm(f) is any subchain of P(f), then 

i E Cm(f) implies H(f) .. = 0 for j i Cm(f). 
iJ 

This property is satisfied for both the 
. k k k d h d' . with H .. = P .. T •• an t e iscrete time 

Markov Renewal 

model with H~. 
iJ iJ iJ 1.J 

previous lemma, one easily verifies that if property A 

policies, it holds for all randomized policies. 

LEMMA 2 • 3. ( Gun and Re.1.a;tiv e. V a.lue. V e.ctolL6 ) • 

Fix f E SR. The general solution to the equations 

Programs (MRP' s) 

= o ... Using the 
iJ 

holds for all pure 
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(2.6) (a) g = P(f)g, (b) · v = q(f) - H(f)g + P(f)v 

is given by 

(2.7) 

with 

and 

(2. 8) 

g. 
l. 

= g(f). = 
l. 

n(f) . 
\ m m 
l cp.(f)g (f), 

m=l 1. 

m m <TI (f),q(f)>/<TI (f),T(f)> 

n(f) 
v. = Z(f)[q(f) - H(f)g]. + l a cp~(f), 

l. l. m=l m l. 

PROOF. Note that multiplication of (2.6)(b) by TI(f) leads to 

(2.9) TI(f)[q(f) - H(f)g] = 0. 

Using property A, it follows from the proof of lemma 1 of [7] that g(f) is 

the unique solution to (2.6)(a) and (2.9). Hence, any solution (g,v) to 

(2.6) has g = g(f). Using (2.2) one next verifies by mere insertion that 

(g=g(f),v=Z(f)[q(f)-H(f)g(f)]) satisfy (2.6). Finally (2.8) follows from 

(2.5), since (2.6)(b) is a linear system of equations with 

Z(f)[q(f) - H(f)g(f)J as a particular solution. 0 

The unique solution g(f) to (2.6) will be called the gain rate vector, 

and gm(f) the gain rate of the subchain Cm(f). A solution v to (2.6) will 

be called a relative-value vector and denoted by v(f). 

In the remainder, we will refer to the following example: 

EXAMPLE 1. N 4, K(l) = K(2) = {l}; K(3) = K(4) = {1,2}; k 
0 •• = H .. = 

l.J l.J 

for all i, j, k. 

i k k k k k k 
p ii pi2 pi3 pi4 q. 

l. 

0 1 0 0 0 

2 0 0 0 0 

3 0 0 0 1 
q3<0 

3 2 0 0 0 0 

4 .4 .4 .2 0 0 

4 2 .8 .2 0 0 0 
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Using (3.1) and theorem 3.1. part (c) one verifies that 

Observe that Vis non-convex. Note furthermore, that for f E SRMG' if f 

makes "unwise" decisions in states in Q - R(f), then there do not necessarily 

exist additive constants such that v(f) EV (cf. theorem 3 of [22],[25] and 

our theorem 4.1 part (b)). Take the above example with pure policy 
# 1 1 f = (1,1,1,1) with P(f) unichained, and v(f) = (0 0 q3 .2q3) + a(l 1 1 1) 

i V for any choice of the additive constant a. 

Finally, reference [25] provides examples where the choice of additive 

constants in v(f) affects the Policy Iteration Algorithm (PIA) 

(cf. [6],[8],[13]). 

III. PROPERTIES OF MAXIMAL GAIN POLICIES 

In this section we give some properties of maximal gain policies; some 

of the notions and properties presented here are related to results in 

[15J,[16],[17],[18]. 

First, define the maximal gain rate 

( 3. 1) sup g(f)., 
l. 

fESR 

For any v EV, k E K(i), and f E 

k k I k * b(v). = q. - H .. g. 
l. l. l.J J 

J 

and 

SR, 

+ I 
j 

i = 1, ••• ,N. 

define 

k P .. v. - vi' 
l.J J 

i = l, ••. ,N 

b(v,f). = l f.kb(v)~ = 
l. kEK(i) 1. l. 

[q(f) - H(f)g*+ P(f)v - v]. i = 
l. 

Since g(f) can be interpreted as the average reward off for a MRP with 

transition probabilities P~., one-step expected rewards q~, and holding 
k l.J i 

times T., we know from DERMAN [9] that there exists a pure policy that 
l. 

attains the N suprema in (3. I) simultaneously. Hence g~ = max g(f) .. 
l. l. 

Accordingly define: fESP 

1 , ••• N. 



and 

SRMG = {f E SR I g(f) * = g }. 

Finally, let: 

* w. = 
l. 

* Z(f)[q(f) - H(f)g ] .. 
l. 

THEOREM 3. I. (PJtopVttiv.i oo Ma.umal.-Ga.in PoUuv.i). 

(a) f E SRMG if and only if g* = P(f)g* and IT(f)[q(f) - H(f)g*J = o • 
. (b) The functional equations (I.I) and (1.2) always have the solution 

(c) 

* * g = g. v = w. Hence 

* f E SPMG such that w 

In any solution (g,v) 

Vis non-empty. Also, there exists a policy 

* = Z(f)[q(f) - H(f)g ]. 

of the functional equations (I.I) and (1.2) 

* g = g, hence g and each L(i) is unique. 

7 

* (d) If f is any policy, and if C is any subchain of P(f) then g. = constant, 
l. 

i EC. 
k 

(e) (cf. [15], p. 16, remark 2). If v EV, then ma~EL(i) b(v)i = O, for 

every i. 

Let f E SR. 

(I) Suppose that k E L(i) for each (i,k) with fik > 0 and that for 
k some v EV, b(v)i = 0 for each (i,k) with i E R(f) and fik > O. 

Then f E SRMG. 

(2) Conversely, if f E SRMG' then for each i = I, ... ,N, fik > 0 implies 
k 

k E L(i), and for i E R(f), fik > 0 implies b(v) i = 0 for aU 

VE V. 

PROOF. 

(a) As noted in the proof of lennna 2.3, g(f) is the unique solution to the 

equations g = P(f)g and (2.9). 

(b) Invoking the above mentioned interpretation of g*, we know from theorem 

. [ J h * ' k * . . I in DENARDO & FOX 8 tat g. = max. l· P .. g •• Consider the discrete 
i. l< J ir J 

· d · · d 1 · h K-c·) - c·) - {k 1 * - , k *} -k - k time ecis1.on mo e wit i - L 1. - g. -- l· P .. g. , P .. - P .. 
_k k k * 1 J 1.J J l.J iJ 

and q . = q . - l · H .. g .. 
1 l. J iJ J 

Note that in this model, each policy has g(f) ~ O. Moreover, it 
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(c) 

(d) 

(e) 

(3. 2) 

follows from part (a) that g(f) = 0 if and only if f E SRMG' Hence the 

discrete time model has g* = 0 and, with SPMG = 
= {f E XN K(i) I g(f) =it= O}, we have: i=I 

max 
f1::SPMG 

* Z(f)[q(f) - H(f)g ]. = 
1 

max * Z(f)[q(f) - g ] .. 
1 

for J_ = 1, ... ,N. 

Use theore~ 4 of [4] in order to prove the existence of a policy 

f E SPMG for which w* = Z(f)[q(f) - H(f)g*J as well as the fact that 

w* satisfies (1.2). 

Fix a solution (g,v) to (I.I) and (1.2). Using property A, a minor 

modification of the proof of lemma 4 of [8], shows that g 2 g(f) for 

all f E Sp with equality for any f 0 , such that f~k = I for some k 

* maximizing (I. I) and (1.2). Hence g = g. 
* * * Since g satisfies (I. I), we have P(f)g ~ g for all f E SR. The as-

sertion then follows from lemma 2-a in [8]. 

The first result follows from the very definition of b(v)~ 
1 

(I) From the definition of b(v)~, we have v. - l· P(f) .. v. = 
1 1 J 1J J 

q(f). - l· H(f) .. g~ for i E R(f). Multiplying this equption with 
}_ J 1J J 

IT(f)ki and summing over i, we obtain IT(f)[q(f) - H(f)g*J = 0. Use 

this and g* = P(f)g* in order to apply part (a). 

* * (2) If f E SRMG' g = P(f)g follows from part (a). Hence fik > 0 im-

plies k E L(i) and b(v)~ ~ O. So b(v,f) ~ 0, for any v EV. Since 
1 

we know from part (a) that IT(f)b(v,f) = 0 for f E SRMG' it follows 

that for J E R(f), b(v,f). = 0, i.e. f.k > 0 implies b(v)~ = O. D 
J J J 

Define next 

R* = {i I i E R(f) for some policy f E: SRMG}. 

The following theorem gives a characterization of this set, which 

plays a basic part in the remainder of this paper. 

* THEOREM 3.2. (ChMaQtvu.,zo.,tion on R ). 

(a) R* = {i ! i E R(f) for some f E SPMG}. 

(b) The set {f E SRMG I R(f) = R*} is not empty. 



(c) Define 

= {f E 

n* = min{n(f) I f E sru1G with R(f)-= R*} and s~G = 

I * * . * * SRMG R(f) = R and n(f) = n }. Fi.x f E SRMG. Any 
f Es is contained within a subchain of P(f*). RMG . . . 

9 

subchain 

of any 
(d) AU f* * E SRMG have the same collection of subchains {R*a. a= I, .•• ,n*}., 

(e) 

(f) 

* * *a · *a For any a, 1 s as n, g. = g (say) for all i ER • 
1. 

L t ( 1 ) (m) b d . . . t t f t h ha e R , ... ,R e i.sJoi.n se so sta es sue t t 

(I) if C is a subchain of some f E SRMG' then C ~ R(k) for some k, 

I s ks m; 

(2) there exists a f* E SRMG with m subchains {R(k)}:=i· 
* (a) *a * Then m = n and after renumbering R = R for a = I , ••• , n • 

PROOF. 

* (a) Fix a state i ER and a f E SR.~G such that 1. E R(f). Consider a policy h 

satisfying the conditions (a), (b), (c) and (d) of lennna 2.2. Then 

i E R(h), whereas h E SPMG is verified with the help of theorem 3. I 

part (e). Thus the right-hand side of (a) includes R* and the reversed 

inclusion is innnediate. 
I M * (b) Fix an enumeration f , •.• ,f of SPMG' For any i ER, let 

(c) 

A.= {r I i E R(fr)}. Consider the following equivalence relation on 
1. 

C-:- {Cm(fr) I Is r sM; I smsn(fr)}: 

Let C ~ C', if there exists {C(I)=c,c<2>, ... ,c<n)=C'} with 

c(i) EC and c(i) n c(i+I! ~ 0 for i = I, ••. ,n - I. 

Let f~ satisfy: (I) {k I f*.k > O} = u A {k I f:k > 0} for i ER*; 
1. rE . 1. 

(2) {k I f:k > 0} = L(i) for i E Q - R*. Usinl theorem 3.1 part (e) 

* one verifies that f E SRMG. 

Clearly, the equivalence classes are the subchains of P(f*) since 

they are closed under P(f*) and since the states belonging to the same 

equivalence class connnunicate with each other. Hence, R* = R(f*). 

Assume P(f), for f E SRMG' has a subchain Cm(f) that intersects say 
· · * I *'> ( * . f** . h the subcha1.ns R and R ~ of Pf ). Then a policy wit 

{k I f:; > 0} = {k I f:k > O} u {k I fik > 0} for all i E Cm(f), 

and {k I f:; > O} = {k I f:k > 0} otherwise, is maximal gain, has 
( **) * . . . * . Rf = R, and its number of subchains is at most n - I, since the 

*I *2 (f**) T .. states of R and R connnunicate with each other under P . nis 

contradicts the minimality of n*. 
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(d) For all f*. f** E S~1G' part (c) implies e-ach Ca (f*) £ -some CS (f**), 
f3 ** a * and each C (f ) c C (f ). 

(e) Combine part (d) with part (d) of theorem 3. J-. 

(f) Apply property (I) to conclude R*a £ R(k(a))_ Apply part (c) and 
(k(a)) *a property (2) to conclude R £ R . D 

COROLLARY 3-3: 

Let policy f* be constructed as in the proof of paPt (b) of the previous 

* * theorem. Then~ f E SRMG. 

PROOF. Let R (I), •.. ,R (m) be the subchains of P(f*). Fix a subchain C of P(:f), 
* .. M (k) 

for some f E SRMG. Recal~ from part (b) of th. 3.2 that Cc R = U-k=IR , 

and let C int~rsect R(I) (say). We prove the corollary by verifying that 

Cs R(i) (cf. part (f) of th.3.2) which in turn follows by showing that for 

any i EC n R(I): 

{j I P(f) .. > o} = u{klf o} {j IP~.> O} cc n R(I)_ Fix 1. E c n R(I) 
l.J .k> l.J 

and k, such that fik > o: Apply lennna 2.2 in combination with th. 3.1. part 

(e) to verify the existence of a pure policy h E SPMG' with i E R(h) and 

hik = I and conclude from the definition of policy f* that 

{ j I P~. > o} c R < 1) n c. o 
l.J 

Note that randomization, by coalescing subchains, is essential for the 

recurrency properties: in general, there may fail to exist a pure maximal 

gain policy f with R(f) = R*, or which achieves the minimal number n* of 

subchains. 

A finite procedure for calculating R* * *a * * n, the R and a f E SRMG is there-
* fore as follows: use the PIA to find g and av EV. Compute Sp(v) = 

N k I = Xi=I {k E L(i) b(v)i = O} = {f ESP f achieves the 2N minima in (I.I) 

and (1.2)} £ SPMG. Parts (a) of th. 3.1 and th. 3.2 together establish 

R* = {i I i E R(f), for some f E Sp(v)} (cf. also [17], algorithm on 

p. 353-4). Determine {R*a} as the equivalence classes of the set of subchains 

of policies belonging to Sp(v) (cf. proof of theorem 3.1. part (b) and 

corollary 3.3). Finally, define f* by {k I f:k > 0} = L(i) for i En, R*, 
]. 



I I 

and {k I f~k > O} = {k E L(i) I b(v)~ = O, f.- R*a P~. = I} for 
*a 1 * 1 JE 1J 

iER (a=l, •.• ,n). 

IV. PROPERTIES OF V 

Some basic properties of V are given by: 

THEOREM 4. I. (BM,i,c. Pltopvz;Uu oo V). 

(a) V is closed and unbounded, as v E V irrrpUes v + a 1.!_ + a2g* E V, for arry 

scalars a 1,a2 (where.!_ is the N-vector with all coordinates unity). 

(b) (Maximality of relative values.) For any v* EV and f E SRMG' it is 

possible to choose the n(f) additive constants in v('f) such that 

* v ~ v(f) with equality for components in R(f). 

(c) (Cf. [3],[15],[16],[21]) v EV, if and only if 

(4. I) * v. = max {Z(f)[q(f) - H(f)g ]. + TI(f)v.} 
1 1 1 

fESPMG 
i = 1, ... ,N. 

In addition, if v EV, then a policy f E SPMG achieves all N maxima in 

(4.1) if and only if it achieves the 2N maxima in (I.I) and (1.2). 

PROOF. 

(a) Immediate to verify. 
m * (b) Choose in (2. 8) a = <1T (f), v >. F-rom part 

m 
(e) of theorem 3.1, it fol-

{k I fik > O} ~ L(i) * * for each i, hence v ~ q(f) - H(f)g + lows that 

* + P(f)v, which implies, using th. 3.1 part (a), lemma 2.1, (2.4) and 

(2.8): 

v* ~ Z(f)[q(f) - H(f)g*J + TI(f)v* = 

n(f) 
= Z(f)[q(f) - H(f)g*J + l a $m(f) = v(f) 

m=I m 

with equality for components in R(f). 

(c) First assume v EV. In part (b) we proved that for any f E SPMG' 

v ~ Z(f)[q(f) - H(f)g*J + TI(f)v, with strict equality for f E Sp(v). 

Hence, v EV implies (4.1) and any policy achieving the 2N maxima in 

(I. I) and (1.2) achieves all N maxima in (4.1). 
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Conversely, if v satisfies (4.1), we define 

(4.2) ~ v. = 
l. 

max 
kEL(i) 

[q~ - l H~.g~ + 
l. j l.J J 

l p~. V. J' 
j l.J J 

i = I , ••• ,N 

and show both v ~ v and v $ v, hence v = v EV. 

For any f E SPMG' fik = implies k E L(i) by theorem 3.1 part (e); 

hence using (4. I), (2.2) and th. 3.1 part (a): 

* q(f) - H(f)g + P(f)v ~ * [I+ P(f)Z(f)][q(f) - H(f)g ]+IT(f)v= 

= Z(f)[q(f) - H(f)g*] + IT(f)v, 

This implies v ~ v. Leth denote a pure policy in X~=IL(i), achieving 

all maxima in (4.2). Then: 

(4. 3) ~ v. $ v. = [q(h) 
l. l. 

* H(h)g + P(h)v].; 
l. 

i = 1, ••• ,N 

* Multiply (4.3) with IT(h) ~ 0 in order to get O $ IT(h)[q(h) - H(h)g J $ O, 

* the latter inequality following from (2.9) and g(h) $ g. Hence h E S~MG' 

by part (a) of th. 3. I. 

Using lemma 2.1, (4.3) implies v $ Z(h)[q(h) - H(h)g*] + IT(h)v. Insert this 

* on the right-hand side of (4.2) and use TI(h)[q(h) - H(h)g J = 0, to 

obtain: 

v $[I+ P(h)Z(h)J[q(h) - H(h)g*J + IT(h)v = 

= Z(h)[q(h) - H(h)g*J + IT(h)v $ 

$ max {Z(f)[q(f) - H(f)g*J + IT(f)v} = v. 

fESPMG 

Finally, if f E SPMG achieves the N maxima in (4.1), multiply the resul

ting equality in (4. I) with Z(f)-I to show that it achieves the N maxima 

in (1.2), as well as the N maxima in (I.I), since fik = I implies 

k E L(i). This completes the proof. D 

Since for f S IT(f) .. = 0 if J. i R*, we have by part (c) of theo-
E RMG' l.J 

rem 4. I that v EV if and only if 
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(4.4) {Z(f)[q(f) - * L II(f) .. v.}, v. = max H(f)g ] . _+ 
1 

fE:SPMG 
1 jErn* i] J 

(4.5) v. = max {Z(f)[q(f) - H(f)g*J. + L II(f) .. v.}, 1 1 . R* 1J J 
* i E r2\R. 

fESPMG JE 

Observe that (4.4) involves_only (v. liER*) and can be studied in isolation. 
1 

The (v. liEn\R*) are uniquely determined via (4.5), for any (v. liER*). De-
1 1 

fine now 

(4.6) 

THEOREM 4.2. 

(a) 

(4. 7) 

{(v.liER*); v. satisfy (4.4) for all 
1 1 

* i E R }. 

v. ~ 
1 

Z (f)[q (f) - H(f)g *]. + L II(£) .. v., for 
1 , Rk 1J J JE 

Hence, "is a closed, convex, unbounded, polyhedral set. 

(b) Vis connected. 

PROOF. 

(a) Clearly, VR is contained within the polyhedron that is defined in the 

right side of (4.7). Conversely fix i ER* and h E SPMG with i E R(h) 

(cf. th. 3.2 part (a)). Then, by multiplying the inequalities in (4.7) 

with IT(h) ~ O, we obtain v. = Z(h)[q(h) - H(h)g*]. + L· R* II(h) .. v.; 
1 1 JE 1J J 

hence (4.4) holds. The unboundedness of Vis proved as in th. 4.1. 

(b) The assertion follows by showing that for any v,v EV, the curve 

{v(A) I A E [O.l]} with parameter representation: v(A). =AV.+ (1-A)v., 
1 1 1 

1 ER* and v(A). = maxf S {Z(f)[q(f) - H(f)g*]. + l· R* II(f) .. v(A).}, 
1 E PMG 1 J E 1J J 

for ii R*, connects v with v, lies within Vas a consequence of (4.5) 

and part (a), and is continuous, since all its components are continuous 

functions of A. 0 

We already saw that V may not be convex. The following theorem gives 

a necessary and sufficient condition for the convexity of V. 

This property is especially important when considering MRPs, where for 
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several quantities of interest (e.g. the optimal bias vector) variational 

characterizations may be obtained of 
k k 

the nature: max V[c + Bv] (where c 
k VE 

and Bare expressions in q_' P .. 
l. l.J 

and H .. ) and the latter is a linear program 
l.J 

if and only if Vis convex. 

THEOREM 4.3. Vis convex if and only if for each i E Q - R* there exists an 

alternative k(i) E L(i), such that for all v EV: 

(4.8) v. 
l. 

k(i) Hk(i) * k(i) 
= qi - I . . g. + I p. . V •• 

J l.J J j l.J J 

Moreover, Vis convex if and only if it is a polyhedron. 

* PROOF. We first observe that for any i ER, there is ah E SPMG' with 

i E R(h), hence by part (e) of theorem 3.1 there exists an alternative 

k(i) E L(i) with b(v)~(i) = 0, for any v EV. Thus (4.8) always holds for 
l. 

i ER*. Suppose it holds for i E Q - R* as well. Then the functional equa-

tions (1.2) are equivalent to the linear (in)equalities b(v)~(i) = 0 for i = 
k i 

l, ... ,N and b(v). $ 0 fork E L(i)\{k(i)} and i = l, •.• ,N. Hence Vis a con-
1. 

vex polyhedron. 

Conversely, suppose Vis convex. Assume to the contrary that there 

exists a state i E Q - R* and a finite set of v(m),s in V, such that no 

k E L(i) achieves the maximum in (1.2) for all v(m)_ However, since Vis 

convex, it is innnediate to verify that a k E L(i) achieving the maximum 

in (1.2) for a positive convex combination v of the v(m)'s, achieves the 

maximum in (1.2) for each v(m)_ D 

REHARK I. Condition (4.8), hence convexity of V, holds trivially if 

* * (I) R = n, or (2) L(i) is a singleton for each i E Q\R, or (3) there 1.s 

only one maximal gain policy or (4) n* = I, since v EV is unique up to a 

multiple of I (cf. remark 2.) 
k For discrete time Markovian decision processes, where H .. = o •. , the 
l.J l.J 

value iteration equations take the form: 

(4.9) v(n+I). = 
l. 

max 
fEK(i) 

{q~ + I P~.v(n) .}, 
l. l.J J 

J 
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with v(O) a given vector. 
{ *}00 It is well known that v(n) -.ng n=I may fail to converge. In a 

forthcoming paper [24] it will be shown that there exists an integer J 

such that 

(r) 
u. = 

l. 
* lim {v(nJ+r). - (nJ+r)g.} 

l. l. 

exists for all i, with u~r+J) 
l. 

both incorrect). 

= u~r) (previous proofs in [5] and [15] are 
l. 

* 00 Accordingly, define v as the Cesaro-limit of the sequence {v(n) - ng }n=l 

Example l with v(O) = [l O l .6] shows that in general vi V (v(2n) 1=l; 

v(2n+l) 1=0; v(2n) 2=0; v(2n+l)i t; v(n) 3=l; v(2n) 4=,6; v(2n+l) 1=.8; 

v=['. 5 . 5 l • 7] i V). 

The relation between; and Vis as follows: 

THEOREM 4.4. 

(a) {;, I i E R*} E VR. 
l. 

(b) There exists a vecrt.ar v E •. , such that v :,; v with equalitu for components 
. * -in R. 

. (r+l) k * \ k (r) 
PROOF. Note that for all l. E Q: ui = ma~EK(i) {qi - gi + lj Pijuj }, 

since for all n sufficiently large the maximizing alternatives in (4.9) be

long to L(i) as observed in [5] and [15]. 

Since v = y l~=~ u(r), w~ obtain by averaging over r = O, •.• ,J - l: 

k * v. <': q. - g. + 
l. l. l. 

\ k -
l P .. v., 

l.J J 
i = l, .•• ,N and k E K(i). 

J 

Take any f E SPMG to obtain: v;,: q(f) - g* + P(f);, and hence, using lenuna 

2.1: v;,: Z(f)[q(f) - g*J + TI(f);, with equality for 1 E R(f). This imnlies: 
-
v;,: maxfESPMG {Z(f)[q(f) - g*J + II(f);} with equality for components in R*. 

Using (4.4) and (4.5) we obtain that the vector v defined by ( l) V. = 
1 

* 1. ER and (2) v. = 
* l. 

i E Q - R, belongs 

* max {Z(f)~q(f) - g 7 
fESPMG -'i 

to V with v $; and equality 

+ l· R* TI(f) .. v.} for J E 1] J . 
. * for components in R. 

-V., 
l. 

□ 
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* V. THE n DEGREES OF FREEDOM INV 

R In this section we show that the convex polyhedral set V has dimen-

sion n* and that its elements, and hence V, are fully determined by n* 

parameters (y 1 , ... , y n* ) . 

ROMANOVSKY [20] obtained the same result for the functional equations 

that arise in discrete time Markov models with :1:..* = <g*>..!_. In addition, as 

our methods involve the chain structure, a fuller characterization of the 

parameter space is possible. 

The key observation is that any two vectors v0 ,v EV have the property: 
0 f *Cl. * . . 0 v. - v. =constant= y or i ER , a= l, ... ,n. By fixing v EV and 

i i Cl. 

picking these n* constants, one thus determines (v.liER*) and hence v by 
i 

(4.5) in terms of v0 . Hence, by fixing v0 , and sweeping out all permitted 

values of y, we sweep out all vectors~ in V. In particular (5.1) below shows 

that vis a convex piecewise linear function in y. 

THEOREM 5.1. Let v EV. The following are equivalent: 

(a) 

(b) 

(c) 

(d) 

V + X E V 

x. = max. L(") [b(v)~ + l· i kE: i i J 
x. = maxf S [Z(f)b(v,f) 

i E PMG 
there are n* constants y = 

(5. 1 ) 

(5.2) 

k 
p .. x. J' 

iJ J 
+ IT(f)x]. 

i 

(yl, ... ,yn*) satisfying 

i 

* n 

I 
s= 1 

(. Ls rrcnij)Ys· 
JER 

i = 1 , ••• , N 

i = l , ••• , N 

*Cl. * E R ' a = 1 , ••• , n 

* *Cl. 
o, = I , ••• , n ; i E R , f E SPMG. 

PROOF. 

(a) = (b): (b) is the requirement that v + x E V. 

(a) 

(a) 

= (c): Cf. (4. I) and the definition of b(v,f). 

* * ~ (d): Take f E SRHG" As v,v + x EV, we have from part 
* * * * rem 3. I: v. = [q(f) - H(f )g + P(f )v]. ond 

i i 
* * * * (v+x). [q(f) - H(f )g + P(f )(v+x)]. for al] 

i i 

(e) of theo-

i i:: R * * R(f ). 



Subtraction yields: x. = [P(f*)x]. = [TI(f*)x]. = <na.(f*),x> 
1 1 1 

for i E R*a., which proves the first part of (5.1). Moreover, 

this implies the remainder of (d), using (4.4) and (4.5) and 

the definition of b(v,f). 

(d) => (a): Use (4.4), (4.5) and the definition of b(v,f). D 

Fix v EV. Define the set of allowed constants 

* 
Y(v) = {y E En I y satisfies (5.2)}. 

Note that, 

(5.3) Z(f)b(v,f) ~ 0 for all f E SPMG" 

I 7 

(5.3) follows from lemma 2.1, with x = 0, using b(v,f) ~ 0 and TI(f)b(v,f) = 

= O (cf. theorem 3.1 part (d) and (e)). 

Clearly, by (5.3), (5.2) is automatically satisfied for (a,i,f) with 

\. *N TI(f) .. =I.We accordingly define: 
lJER u. 1J 

K(a.) = {(i,f) I i E R*a., f E SPMG' I TI(f) .. · < l}, a.= 
. R*a. 1J 

* 1, ••. ,n, 
JE 

and make the partition {1,2, .•. ,n*} =Eu F, where 

E = {a. I K(a.) = 0}, F = {a. I K(a.) 1 0}, 

For~= (i,f) E K(a.), d~fine 

~q~ = [Z(f)b(v,f)]., 
a. 1 

and 

* ~ ~~ Note that qa. ~ 0, Pa.B ~ O, n ~~ ~~ 
le=1Ja.e = 1' Pa.a. < 1 for all a. E F, and~ E K(a.). 

Then Y(v) consists of all y EE satisfying 

(5.4) a. E F, ~ E K(a.). 

In order to show that Y(v) is a n*-dimensional polyhedral set, we need 

the following discrete time Markovian model with state space {1, .•. ,n*}: 

For a. E F, let K(a.) be the set of feasible decisions. For~ F K(a), let q~ 
a 

and P!B denote the associated reward and transition probabilities (we al-
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ready noted that p!s ~ 0, ls p!s = 1). 

For a EE, add a decision ~o .to the empty K(a) 
E.' • _,"'Q 

with q = - 1 and 
a ~~o 

PaS = o as· Let <P 

ci<4>), P(q>), n(q>) 

denote the set of pure policies. For 4> E <P, the quantities 

and Z(q>) are defined analogously to q(f), P(f), TI(f) and 
~* Z(f) for f E Sp. Also let {ga} be the maximal gain vector for the new process. 

Note that q(q>) s O for any 4> E 
_,* _,* 

<P, so g s O for all a. Also g = - 1 for 
a a 

a E E, since each state a EE is a trapping state for P(~), for all 4> E <P. 

The following lemma characterizes the subchains of P(q>) on F: 

LEMMA 5.2. ('!7'operties of subchains of P(q>) on F) 

Fix v Ev. Assume F # 0. Suppose for some policy 4> E <P, P(q>) has a subchain 

C c F. Then 

(a) Chas at least two numbers 

(b) q(q>)a is strictly negative for at least one a EC. 

PROOF. 

(a) Part (a) follows from P~ < I for any a E F and~ E K(a). 
aa 

(b) Let policy$ use action (i(a),f(a)) E K(a) for each a EC. For a EC, 

define S(a) = {j I P(f(a))~( )" > 0, for some n = 0,1,2, ••• }. Note that 
i a J 

i(a) E S(a) and that: 

(5.5) a EC, i E S(a) imply P(f(a)) .. > 0 only if j E S(a). 
, iJ 

Now assume to the contrary that for each a EC, 0 = q($) = 
a 

= Z(f(a))b(v,f(a))i(a)· Since f(a) E SPMG' b(v,f(a)) s O with equality 

for components in R(f(a)). Hence, using (2.3), 0 = q($) = 
a 

= ljiR(f(a)) Z(f(a))i(a)j b(v,f(a))j = 

= l(jiR(f(a))l:=O[P(f(a))J:(a)jb(v,f(a))j where the interchange of 

ln and limatl is justified by the monotone convergence theorem. 

Hence: 

(5.6) b(v,f(a)). = 0 
J 

for j E S(a), a EC. 

We now exhibit 
0 

that R = u C 
UE 

a policy f 0 E SRMG with the contadictory properties 

[R*a u S(a) J is closed under P(f 0 ) while every state rn 

R0 is transif'nt for P(f 0 ). 
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Take f* E S~c· Define f 0 as follows: 
. * {Io } { * } . Initially, for i ER set k fik? 0 = k fik > 0 . Then for i E S(a) 

add {k I f(a). > 0} to {k I f~k > 0}. Finally, for i E Q \ R0 , set 
0 :Lk I k 

{k I fik > 0} = {k E L(i) b(v)i = 0}. 

From (5.6) the definition off* in combination with theorem 3.1 part 

(e), and the definition of f 0 on Q \ R0 it follows that f~k > 0 implies 

b(v)~ = O, for all i, hence f 0 E SRMG" 
0 * * 0 For i ER, (5.5) and the fact that f E SRMG imply that P(f )ij > 0 

only for j E R0 ; hence, R0 is closed under P(f 0 ). 

As Ljt.R·1ca IT(f(a))i(a)j > 0, there exists a j i R*a, and an integer 

n 2 I, with P(f(a))~( )' > 0 and so P(f0 )~( )' > 0. Hence i(a) E R*a is 
i a J i a J 

transient under P(f0 ), since the subchains of a maximal gain policy are all 

. d . h' . 1 *B ( f h 3 2 ( ) ) containe wit in a singe R c . t eorem . part c . 

N b h f h C 11 . *a . . h ow, o serve tat or eac a E , a states in R corrnnunicate wit 

i(a) E R*a for P(f0 ), since they communicate with i(a) for P(f*). However, 

this implies that each state in u C R*a is transient, since a transient aE 
state cannot be reached from a recurrent state. 

It remains to prove that each j E S(a), (aEC), is transient for P(f 0 ). 

*B Fix J E S(a), a EC. Since f(a) is maximal gain, there is a stater ER , 

for some B, such that P(f(a))~ > 0, for some m 2 I. Hence P(f0 )~ > 0. 
n Jr Jr 

Let n be such that P(f(a)).( )' > 0. Finally BE C follows from 
i a J 

2 IT(f(a)).() = [P(f(a))nIT(f(a))J.() 
i a r i a r 

n 
2 P(f(a)).( )' IT(f(a)). > 0 

i a J Jr 

and the fact that C is a subchain of P(~). This implies that r is transient 

for P(t°) and so is J, since a transient state cannot be reached from a 

recurrent state. D 

Together part (b) of lemma 5.2 and the choice of q~o = - I for a EE 
a 

imply: 

(5. 7) for * a=l, ... ,n. 
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THEOREM 5.3. (cf. theorem 3 of [20]). Fix v E _V. Given any {y I CL'E E} 
CL 

there exist {y 
CL 

CLEF} such that the following strict inequalities hold: 

(5.8) for all CL E F, ~ E K(a) 

PROOF. It suffices to show that there exists a solution y 0 to (5.8) for 

some {y 0 I CLE E} since a solution for any {y I CLE E} is then obtained 
CL a 

by first adding a large positive constant to every y, and then reducing 
CL 

{y I CLE E} to the desired magnitudes, thereby strengthening the inequalities 
CL 

(5.8). 

Since 

not altered 

~q~ 0 = -I and p~o = I for a E 
a aa ' 

by adding the inequalities y 
a 

assume to the contrary, that the solution 

the LP-problem: 

min z subject to 

* 
~~ 

n 
~~ 

ya + z ~ qCL + I pa13Y13, 
8=1 

E, the solution set to (5.8) is 

> ~q~O + ,n* p~O a EE. Now 
ct l B= l CLBY B' 

set of (5.8) is empty. Then for 

CL= I, ... ,n*; ~ E K(ct), 

we have min Z ~ O, which according to theorem 2 of [19], implies 
~* max _ 1 * g ~ 0. This contradicts (5.7). D 

a- , ... ,n a 

Since the solution set to (5.8) is open, for any y satisfying (5.8), 

there exists a o > O, so that IY - y'I < o implies y' E Y(v). Hence then* 

parameters (y 1, ... ,yn*) may be chosen independently over some (finite) 

region. V and VR have exactly n* = IE u Fl degrees of freedom of which IEI are 

globally independent and jFj are only locally independent. Examples can be 
( ) . . * constructed where E or F can be empty; e.g. Fis empty if n = I. 

Finally note: 

REMARK 2. * n =I<==> v EV is unique up to a multiple of I. 

VI. PROPERTIES of Y(v): A TRIANGULAR DECOMPOSITION 

The parameter set Y(v), for any v EV, is given by (5.2) (or (5.4)) 

and possesses a canonical representation as in [IO]. 



21 

Here we are able to give a more extensive triangular decomposition of 
~ * Y(v), based upon a classification of the state space Q = {I, .•• ,n } = E u F 

which is related to the one described in BATHER [I]. 

The decomposition employs the following notions: 

State a E Q is said to have access to state 13 E Q if there exists a policy 
~ m 

~ E ~ such that P(~)al3 > 0 for some integer m ~ O. A pair of states a,S 

communicate with each other if a has access to 8 and vice versa. A set of 

states A has direct access to a set of states B if l P~l3 > 0, for some 
13EB a 

a EA and~ E K(a). A set of states A is called communicating if every pair 

of states in A communicate. 

The decomposition described below produces the partition: 

Q = u:=l u;~~) C(m,p) where mis called the level, and p is·called the index 

of class C( )" The classes C( ) are non-empty and form a partition of 
m,p m,p n(m) 

n. The m-th level set denotes the set of n(m) ~ I classes u 1 C( ) p= m,p 
having level m. This decomposition has the following properties 

( 6. I) 

(6.2) 

each class C( ) is a communicating set of states m,p 
form~ 2, each state in each C( ) has access only to C( ) and m,p m,p 
states in level sets 1,2, ••• ,m-1. 

(6.3) If m = I, each class C(I,p) is closed under all policies. If m ~ 2, 

each class C( ) has direct access to at least one class in the m,p 
m-1-th level set 

(6.4) each state in E constitutes a separate class in the first level set 

(6.5) each of the subchains of each of the policies~ E ~ (cf. lemma 5.2) 

is contained within one of the classes C( ·). m,p 
~ The following procedure generates this decomposition of Q: 

- ~ step 0: Initially, set~= n, and define~= Q \ ~- Initially all level 

sets are empty 

step I: Let L = {a E ~I for all 13 E ~,ahas access to S, implies 8 has 

access to a}. Decompose L into various communicating sets of states, 

by using the equivalence classes generated by the relation by commu

nicating on L. Assign these communicating classes to level sets as 

follows: 

if a class has no access to a level set, assign it to level set I 

and increment n(l); otherwise assign it to the m+l-st level set, 

!ilBLIOTHEEK 
-AMSTEHDAM-
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anu increment n(m+l), where them-th level set is the highest one 

this class has direct access to. 
-Transfer all states in L from~ to~; go to step 3 if~ is empty, 

and step 2 otherwise. 

l ~E step 2: For each state a E ~ with - P BE~ aB = 1 for all EE K(a), add a as 

a separate class to the m+l-st level set, and increment n(m+l), 

where them-th level set is the highest one state a has (direct) 

access to. Transfer a from~ to~- Keep repeating step 2 (with the 

new ~ and -~) until no more a' s can be found. Then go to step 3 if 

~ is empty, and go back to step otherwise. 

* * * step 3: Let the r -th level set (1 ~ r ~ n) be the highest level set which 

is non-empty, and stop the procedure. 

The proof that this algorithm is finite uses the bounded number of times step 

2 may be performed in succession, and the .property that set Lis non-empty 

each time step 1 is executed, so that at least one state is transferred from 

~to~ during each execution of step 1. This property can be verified for 

the first execution of step 1, where L consists of the set of subchains of 

the (stochastic) matrix [1/K(a) LEEK(a) P!8J because any finite Markov 

chain has at least one recurrent state. The property holds for subsequent exe

cutions of step I, because termination of step 2 implies that each a E ~ has 

direct access to some state in ti. By treating the states on~ as a Markov · 

Chain with positive transition,probabilites only where direct access exists, 

the proof for the first execution of step 1 remains valid. 

We next prove the properties (6-1), ..• ,(6-5). Observe that 

(6-1), ... ,(6-3) are immediate from the description of the decomposition 

procedure. Since each state in E has only access to itself, it belongs to 

the set L which is generated at the first execution of step 1, and cons

titutes an equivalence class on its own, which proves (6-4). Finally 

under the assumption that there exists some subchain C for some P(~), 

~€~which intersects say C( ) and C( ) with (m,p)#(n,q), the m,p n,q 
classes would have access to each other. thus contradicting (6-2) and 

(6-3). This proves (6-5) by contradiction. 

For eRch class C( ) (I s ms 
m, p 

I(m,p) = {(n,q)#(m,p) I C(m,p) 

Sl(m,p) = U C (n,q), T(rn,p) (n,q)" 

* r ; I s p s n(m)), let 

has direct access to C( )} 
n,q 
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Finally, let Q = Um Un(l) 
m l=l p=l 

sets (I~m~r*), with n0 = 0. 
C(l,p) denote the union of the first m level 

THEOREM 6.1. Fix v EV. 

(a) The inequalities (5.2) which describe the parameter set Y(v) decouple 

as follows: 

(6.6) 

* for all a EC( ); m = 1, .•• ,r; p = 1, .•• ,n(m). m,p 

(b) Fix m = 1, ••• ,r*; let G be any (possibly empty) subcollection of classes 

(c) 

in the m+l-st level set (m~O): 

Let (ya 

(y ci. I a E 

let (ya 

a E GU Q) satisfy the inequalities (6.6). Then 
m 

n - G - Q) may be found such that y E 
m 

a EE) be arbitrary: then (y I a E F) 
a 

y E Y(v). 

( cf. proposition 6.2) Fix y E Y(v), and let 

Y(v). In particular, 

may be found such that 

0. Im= 1, ••• ,r*; p = 1, •.• ,n(m)} be a set of scala1~s such that 
m,p 

(6. 7) * Am,p ~ max(n,q)El(m,p) An,q for all m = 1, ••. ,r; p = 1, .•. ,n(m) 

(e.g. A ~ A 1 for all m = 2, ••• ,r*; p = 1, ••• ,n(m); m,p m- ,q 

q = I , ••• , n (m-1 ) ) • 

Then y E Y(v), where y - y + A for all a EC( ); 
* a a m,p m,p 

m = 1, ••• ,r; p = 1, ••• ,n(m). 

(d) Y(v) is a closed, unbounded, eonvex polyhedral set containing 

y = 0 (i.e. A y E Y(v) for O ~A~ I, if y E Y(v)). 
*a If y E Y(v), then [y0 + c 1 l + c 2 g J E Y(v) for all scalars c 1,c2 • 

(e) There exists a bound M = M(v) such that for all m = I, ••• , r* and 

p = I, ... ,n(m): 

(6.8) M, for any y f Y(v) 
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In particular, let·C be a subchain of some policy~ E ~- Then 

max f3 C I y - yf3 I :o; M, for any y •E Y(v). 
0., E 0. 

PROOF. 
~ (a) (6.6) is immediate from the definition of Q(m,p); note that the ine-

(b) 

qualities are triangularly decomposed since Q(m,p) is contained within 

the first m-1 level sets form~ 2 and is empty form= I (cf. (6.2)). 

Choose ya.= maxf3EGU¼u yf3, for all a. 

qt; :o; 0, for all a. E 'n, t; E K(a.). The 
a. 

by taking G = E and m = 0. 

E Q \ G \ Q and use the fact that 
m 

last assertion follows from (6.4) 

(c) Immediate from (6.6) and the definition of I(m,p). 

(d) The fact that Y(v) is a closed, convex, polyhedral set is immediate 

from (5.2) or (6.6); 0 E Y(v) follows from qt; :o; O, a. E Q, ~ E K(a.). 
- a 

(e) 

* * The last assertion follows from (5.2), the fact that g = IT(f)g for 

all f EX. L(i) and q~ :o; O, for all a E Q, ~ E K(a). This in turn 
i a. 

exhibits the unboundedness of Y(v). 

(6.8) for a fixed class C = C (m = I , ••• , r * l, ... ,n(m)); We prove (m,p) ; p = 

part (e) then follows from the fact that the number of classes C (m,p) 
is finite. First note that either C was generated in step 2 of the 

above decomposition procedure in which case it contains a single element 

and (6.8) is trivially met with M = 0, or C is a closed set of mutually 

communicating states. In the latter case there exists a (possibly 

randomized) policy~ which has C as one of its subchains. 

Next, rewrite (5.4) as follows, by introducing a slack vector t ~ 0: 

(6.9) 

Let {'-rrc(~) I a.EC} denote the unique equilibrium distribution of 
a. 

P(Q) on C. Multiply (6.9) with Z(~). Then, since Z(~)f3y = 0, for 

f3 E C, y i, C (cf. (2.3)): 

all B E C. 
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Part (e) follows with the choice M = 2 maxBEC{IaEC I Z(~)Ba(q(~)a + ta) I} 
provided one~ shows that [ta I a E CJ are bounded uniformly in y. 

However, by multiplying (6.9) with '-rr'C(~) one obtains: 

I ~C 
The boundedness of [t 6 BE CJ follows since n (~)B > 0 for BE C. The last 

assertion follows from (6.4). 0 

A ray for the solution set to a set of linear inequalities is a solu

tion to the corresponding homogeneous set of inequalities (cf. [26]). The 

rays to Y(v) are therefore the solutions u = (u1 , ••• ,u *) to: 
.n 

a E F, ~ E K(a). 

Define U as the set of rays to Y(v) and remark that U 1.s independent of 
~ ~~ v EV, sincE~ F, K(a) and PaB are. Uhas the following important and easily 

verified properties: 

(a) if u, u EU, then c 1 u + c 2 u EU for all c 1, c2 2 0 

(b) if v EV, y E Y(v) and u EU, then y +cu E Y(v), for all c 2 O. 

Observe that th. 6.1 parts (b), (c) and (d) apply to the set U as 

well as to Y(v). Note from the proof of part (d) of th. 6. I that the vectors u 

with *CJ. are members of u, for any scalar Likewise, it follows u = C g c. 
a 

from the proof of part (c) that 

{u I u = ,), for all r:H. C( ); m = l, ... ,r*; p = l, ... ,n(m)}f: U 
a m,p m,p 

provided that the scalars A satisfy (6.7). The following proposition, 
m,p 

finally, gives an additional characterization of the set U and the vector 

* g : 

PROPOSITION 6-2: 

(a) Ir u E u' then u 
a 

p = l, ... ,n(m). 
r* * 

(b) There m•e lm= 1 n (m) ~ n constants 

{x Im= 1, ... ,r*; p = 1, •.. ,n(m)} satisfying 
m,p 

* = 1, ..• ,r; 
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(6. IO) 

(6.11) 

U = X 
a. m,p 

X m,p I 

for all a.EC( ) m,p 

(n,q)El(m,p) 
p ~ 
a.;n,q X n,q 

for all m = * I , ••• , r 

p<; < I where 
a.B 

p = I, ... ,n(m); a.EC( ) and~€ K(a.) with l 
r.i,p BEC(m,p) 

' ~~ -I ' ~p~ 
= [I - loEc p~o] la C D 

.., (m,p) .,..., µE (n,q) a..., 

i.e. U is a closed convex, unbounded, polyhedral set containing u = O wjth 

dimension l:: 1 n(m), which is described by the corrrpletely decoupled set 

of (in)equalitie~ (6.10) and (6.11) 
*a. ~ (c) The component8 of [g I a. E Q] satisfy: 

* = gm,p for all a.EC , where 
·cm,p) 

* for all m = I, ... r 
\ ~~ 

p = l, ... ,n(m); a.EC( ) and~ E K(a.) with 
m,p 

lBcC( ) pa.6 < I. 
m,p 

PROOF. 

(a) Immediate from the proof of part (e) of th. 6. I. 

(b) (6. 10) follows from part (a) and (6.11) follows from (6.10) and (6.6) 

E U for all *a. I ~ (c) part (c) follows from the fact that [cg a. E Q] 

(positive and negative) scalars c, using (6.10) and (6.11). D 

Example 2 * below has N = 7, g. 
1. 

= O, L(i) = K(i) for all i: 

* 7 *i with R*i { i}, * R = Ui=I R = 1.e. n = 7. 

E ={a.= I}; F ={a= 2,3, ..• ,7}; 

{ 2, 3} c( 2 , 1) = {4 }; c( 2 , 2 ) = {5,6}; 

c(2,3) = {7; 



Vis the solution set to the following decoupled set of inequalities: 

Cl. = I : vi arbitrary 

2 ') 
.t.. 

(), = 2,3: q2 ~ v2 - v3 ~ - q3 

4: 
2 

0'. = v4 2: q4 + V I 

5,6: 
2 

Cl = qs ~ vs - v6 ~ 

v6 2: 
3 

q6 + .Sv 1 

2 
Cl = 7: v7 2: q7 + . 5 (v I 

k 
l. k q. 

l. 
-

I I 0 
- - - - - - - - - - -

2 I 0 

2 q~ < 0 

3 I 0 

2 
2 

q3 < 0 
..... - - - - - -- - - - -

4 I 0 

2 
2 q < 0 

4 . - - - -- - - - - - -

5 I 0 

I 2 
2 

q <O 
5 

6 I 0 

2 
2 

q < 0 
6 

3 
~-- -

7 1 0 

2 
2 q <O 

7 

k Absent P .. are zero. 
lJ 

Example 2 

k 
p ii 

k 
pi2 

I 
- - - - - - - -

I 

0 

0 

I 
>-- - - - - - - -

I 
- - - - - - - -

. 5 . 5 
-·-

. 5 . 5 

2 - q6 

+ .sv3 

+ v2). 

k 
pi3 

k 
pi4 

~ - - - - - -
0 

I 

I 

0 

'-- - - - - -
I 

~ - - - ... - -

-----

k 
Pis 

k 
pi6 

----·· - -

- ... - - - - - - - -

- '- - - - - - - - -

- ~ - - - - - _,. - -
I 0 

0 I 

0 1 

1 0 

-- ----- --- --- - ·-· --

27 

k 
pi7 

-

-

- -

·-

1 



28 

VII. ACKNOWLEDGMENT 

We wish to express our sincere thanks to Dr. Henk Tijms, for his 

useful comments and careful reading of this and previous versions of this 

paper. 

REFERENCES 

[ I J BATHER, .J., Optimal decision procedures for finite Markov Chains., 

Part III, Adv. Appl. Prob. 5 (1973), 541-554. 

[2] BELLMAN, R., A Markovian Decision Process., J. Math. Mech. 6 (1957), 

679-684. 

[3] BELLMAN, R., Functional Equations in the Theory of Dynamic Programming., 

V. Positivity and Quasi-Linearity., Proc. Nat. Acad. Sci. U.S.A. 

41 (1955), 743-746. 

[4] BLACKWELL, D., Discrete Dynamic Programming., Ann. Math. Statistics 33 

(1962), 719-726. 

[5] BROWN, B .. , On the iterative method of dynamic programming on a finite 

state space discrete time Markov Process., Ann. Math. Statist. 

36 (1965), 1279-1285. 

[6] DeCANI, J., A Dynamic Programming Algorithm for Embedded Markov Chains 

when the Planning Horizon is at Infinity., Management Sci. 10 

( I 964) , 71 6-7 33. 

[7] DENARDO, E., Markov Renewal Programs with small interest rates., Ann. of 

Math. Statistics 42 (1971), 447-496. 

[8] DENARDO, E. & B. FOX, Multichain Markov Renewal Programs., SIAM, J. Appl. 

Math. 16 (1968), 468-487. 

[9] DERMAN, C:., Finite S.tate Markovian Decision Processes., Academic Press, 

New York ( 1970). 

[IO] GALPERIN, A., The General Solution of a Finite System of Linear 

Inequalities, Hath. of O.R. I (1976), 185-196. 

[I I] HOWARD, R., Dynamic Programming and Markov Processes, John Wiley, New 

York (1960). 

[12] HOWARD, R., Semi Markovian Decision Processes., Bult. Int. Stat. Inst. 

40 (1963), 625-652. 



29 

[13] JEWELL, W., Markov Renewal Programming, Oper. Res. 11 (1963), 938-971. 

[14] KEMENY, J. & J. SNELL, Finite•Markov CJuiins, Van Nostrand, Princeton 

(1961). 

[15] LANERY, E., Etude Asyrrrptotique des Syst~mes Markoviens a Commande, 

R. I. R. 0 . l ( l 96 7 ) , 3-5 6 • 
/ \ I ,; • ._ • 

[16] LANERY, E., Complements a 1 etude Asyrrrptot~que des Systemes Markov~ens 

a Commande, I.R.I.A., Rocquencourt, France (1968). 

[17] LEMBERSKY, M., Preferred Rules in continuous time Markov Decision 

Processes, Man. Sci. 21 (1974), 348-357. 

[18] MILLER, B., Finite state continuous time Markov Decision Processes 

with an infinite planning horizon, J.M.A.A. 22 (1968), 

552-569. 

[19] ROMANOVSKII, I.V., The Turnpike Theorem for Semi-Markov Decision 

Processes, in: LINNIK, Yu.V., Theoretical Problems in 

Math Statistics, American Mathematical Society, Providence 

(1972), 249-267, translated from the Proceedings of the 

Steklov Institute of Mathematics Ill (1970). 

[20] ROMANOVSKY, I., On the solvability of Bellman's functional equation 

for a Markovian Decision Process, J. of Math. Anal. and 

Appl. 42 (1973), 485-498. 

[21] SCHWEITZER, P.J., Perturbation theory and Markovian Decision Processes, 

Ph.D. dissertation, MIT (1965) MIT Operations Research 

Center Report 15. 

[22] SCHWEITZER, P.J., Perturbation theory and ww.iscounted Markov Renewal 

Programming, Oper. Res. 17 (1969), 716-727. 

[23] SCHWEITZER, P.J., Perturbation Theory and Finite Markov Chains, J. 

Applied Probability 5 (1968), 401-413. 

[24] SCHWEITZER, P.J., & A. FEDERGRUEN, Asymptotic Value Iteration for 

Undiscounted Markov Decision Problems, Math. Center 

Report BW 44/76 (1976). 

[25] SCHWEITZER, P.J. & A. FEDERGRUEN, Foolproof Convergence in multicJuiin 

policy iteration, I. B.M. Thomas J. Watson Research Center 

report RC 5894 (1976), (to appear in J.M_.A.A.). 

[ 26 J WILLIAMS, A. , Compl cment:ary Theorems for> linear> pr>ogr>amming, SIAM 

Review 12 (1970), 135-137. 




