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On the functional equations in undiscounted and sensitive discounted

stochastic games
by

A. Federgruen

ABSTRACT

This paper considers two person zero-sum sequential games with
finite state and action spaces. We consider the pair of functional equations
(f.e.) that arises in the undiscounted infinite stage model, and show that
a certain class of successive approximation schemes is guaranteed to con-
verge to a solution pair whenever a stationary equilibrium policy with
respect to the average return per unit time criterion (AEP) exists. Exis—
tence of the latter thus implies the existence of a solution to this pair
of f.e. whereas the converse implication is shown only to hold under special
circumstances.

In addition to this pair of f.e., a cowplete sequence of f.e. has
to be considered when analyziﬁgvmore sensitive optimality criteria that.
make further selections within the class of AEPs. A number of characteri-
zations and interdependences between the existence of solutions to the
f.e. and existence of stationary sensitive optimal equilibrium policies

are obtained.

KEY WORDS & PHRASES: stochastic games; functional equations;
average return per unit time criterion;

sensitive optimality criteria; equilibrium policies






0. INTRODUCTION AND SUMMARY

This paper considers two-person zero-sum Stochastic Renewal Games
(SRG's) with finite state space = {1,...,N} and in each state i € Q, two
finite sets K(i) and L(i) of actions available to player 1 and 2 resp.

We speak of a state as being observed for only an instant. The moment
state i is observed, the two players choose an action, or a randomization
of actions out of K(i) and L(i) resp. When the actions k ¢ K(i), and

£ ¢ L(i) are chosen in state i, then

(1) the probability that state j is the next state to be observed, is
iven by Pk’z 20 (ZN Pk’K = 1)
® S
(2) the period of time until the next observation of time, is a random

variable t, with conditional probability distribution function FF?K(-)

1]
given that j is the next state of the system
(3) for each x = 0, Rk’ﬂ(x) denotes the expected income earned by player 1

P
frow player 2, during the first x units of time, given that state j

is -the next state of the system and t = x.

The discrete time case, where each transition takes exactly one unit of
time, is known as the stochastic games-model (cf. e.g. [14],[18]) and
will be denoted as the SDG-case. When one of the two players has only
one action in each state of the system, the SRG and SDG model reduce to
a Markov Renewal Program, (MFP) and pure Markov Decision Problem (MDP) resp.
If the payoffs are discounted at the interest rate r > 0, the SRG-game
is called the r-discount game. Let V(r) denote the vector the s—th compo-
nent of which indicates the value of the r-discount game with initial
state s € Q. The existence of a value for the r-discount game goes back
to SHAPLEY [18].

In a recent paper, BEWLEY and KOHLBERG [2] gave a description of
the asymptotic behaviour of V(r), as the interest rate r decreases to
zero, by deriving a series expansion of V(r), for all r sufficiently small.
When there is no reason to discount future rewards, or whenever the infi-
nite stage game model serves as an approximation to the model where the

planning horizon is finite though large, the average return per unit time



eriterion, in one of its possible .specifications (cf. BEWLEY and KOHLBERG
[3]) is the first criterion to be considered.

It is known from GILLETTE [8] that one or both players may fail to
have equilibrium policies with respect to the average return per unit
time criterion (AEPs). Recurrency conditions with respect to the transi-
tion probability matrices (tpms) associated with the statiomary policies
have been found under which the existence of an AEP is guaranteed for
each possible combination of rewards. (cf. HOFFMANN and KARP [9],

SOBEL [20], ROGERS [15], STERN [21] and FEDERGRUEN [6].

In this paper we show that in undiscounted SRG's, a pair of functio-
nal vector equations arises which is the natural analogue of the corres-
ponding ones in Markov Decision Theory (cf. [5j,[ll],[17]). We show that,
in complete analogy to the structure of MRP's, the existence of a solution
to this pair of functional equations is a necessary condition for the
existence of a stationary AEP. '

We give a constructive proof, showing that a specific class of
successive approximation schemes converges to a solution of this pair of
functional equations (f.e.)

For the case where the optimal average return per unit time is
independent of the initial state of the system, these successive approxi-
mation schemes provide an algorithm to locate AEPs whenever existing, as
is pointed out in FEDERGRUEN [7]. Conversely and in contrast with what is
known to be the case in ordinary MRP's, it is shown that the existence
of a fixed point of the pair of functional equations only needs to be
suffictent for the existence of an AEP when the asymptotic average value
(cf. section 2) is independent of the initial state of the system.

This is explained by showing that a pair of policies which satisfies
the two optimality equations for some solution pair, is merely guaran-
teed to meet some partial optimality result (cf. prop. 2.4).

The above results are obtained in section 2, after giving the
notation in section 1.

In section 3, we give some properties of the optimality equations,
both for the general multichain and for the unichain-case. Since only

the tails of the streams of rewards matter when considering the average



return per unit time criterion, more sensitive optimality criteria are
needed to make further selections within the class of AEPs. As a conse-
quence, we next consider the extension to the SRG-model of the sensitive
discount and cumulative average optimality criteria that have been
formulated and studied in the literature on MDPs (cf. MILLER and VEINOTT
[13], VEINOTT [22], SLADKY [19], DENARDO [4] e.a.) In section 4, we

show that in addition to the above mentioned pair of f.e. an entire
sequence of coupled f.e. arises when considering these sensitive optima-
lity criteria. We prove that this sequence has a solution when all of the
tpm's associated with the pure stationary policies are unichained.
Moreover, we extend the results obtained for the average return per unit

time criterion to the entire set of sensitive optimality criteria.

1. NOTATION AND. PRELIMINARIES

For each finite set A, let IAl denote the number of elements it
contains. E" denotes the n-dimensional Euclidean space. If A = [Aij]
is a matrix, let [A|= maxi,leijl’ and let val A indicate the value of
the corresponding matrix game. Note that for any pair of matrices A,B of

equal dimension
(1.1) |val A - val B| < |A-B|

(Let (x Y ) and (X Y ) be equ111br1um pairs of actions in the matrix
B A B A

games A and B; then m1n (A, .) < (A B)y < x Ay - x By <
1A 1B <% Ay" ’JA;JB<’JA(AB) (A,.-B,.))
va - va <X = X X - < max. . ..—B.. .
’ ’ I }-ru e Tee!
For each state 1 ¢ Q, let K(i) = {x ¢ E K(i) >0, 2 K(l) x, = 1}

denote the set of all randomized actions avallable to player 1 in state

i. Similarly, L(i) = {y € = 1} indicates the

set of all randomized actions available to player 2 in state 1 € Q.

k,£

For every i € Q, any tableau of numbers [c 1, k= 1,. HK(i)ﬂ
4
and L(1) c L(i), we denote by

l,...,lL(1)I and for each pair of closed convex subsets K(1) c K(1i)



oo e
(1.2) [K(1),L(1)]
the two-person zero-sum game which has E(i) and I(i) as. the action sets
for player 1 and 2 resp. and where the payoff to player 1, is given by
H I el I
RO LD, ey,
i
when the players choose action x € E(i) and y € Z(i) resp. The minimax
value of this game is indicated by val[K( ), L(1)][c ’2] iy
When K(1) = K(i) and L(1) = L(i) we use the abbreviated notation [c’ "]
i
to indicate the game in (1.1). The following lemma is immediate from

KARLIN ([12], pp. 63):

LEMMA 1.1. Fix i € Q. Let k(i) and T(i) be closed convex polyhedral
subsets of K(i) and L(i). Then the sets of optimal actions in any one

of the two-person zero-sum games in (1.1) are again closed convex.poly-
hedral subsets of K(i) and T(i) and thus of K(i) and L(i).

A player's policy is a rule which prescribes for each stage
t =1,2,... which (randomized) action to choose in dependence on the
current state and the entire history of the game up to that stage. A
policy is said to be stationary, if it prescribes actions which depend
merely upon the current state of the system, regardless of the stage of
the game, and its history up to this stage. Note that a stationary stra-
tegy £ (h) for player 1 (2) is characterized by a tableau [fik] ([hiﬁj)
satisfying f., >0 and zkéK(i) £ = 1 (hyy 20 and ZLGL(i) hyp = 1),
where fik(hiﬂ) is the probability that the k-th (£-th) alternative is
chosen when entering state i € Q. We let ®(¥) denote the set of all statio-
nary policies for player 1 (2).

When a positive interest rate r is introduced into the model,
income earned at time t is discounted by the factor e—rt. When in state

i, the players choose action k € K(i) and £ ¢ L(i), the one-step expected

r—discounted reward for player 1 is given by:
© X

(1.3) pli""'(r) - I Pfj’KJ J tq R Loy 4 F Ly
0 0
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and let q?’z = p?’K(O) denote the one-step expected (undiscounted) reward.

Let

oL o J xd ) < o
1] 1]
0
denote the expected conditional holding time in state i, when the players

choose actions k € K(i), £ € L(i) and given that the next state observed

is state j. Likewise, let

denote the expected unconditional holding time in state i, when k ¢ K(i),
and £ ¢ L(i) are the actions chosen, and assume T?’E > 0
(i€ 9, ke K(1), £ € L(1)).

Associated with each pair (f,h) € & x ¥ are N-component reward
vector q(f,h), holding time vector T(f,h), and the matrices P(f,h)

and H(f,h):

K, 2
q(f,h). = f... q.”. h, ;3 1 e Q
1 "per(i) TReni) iR ik
T(f,h), = Y k,L
T ek “reni) fine T v Pie 5 1€
- k,L ..
P(f,h)ij =7 Zz £ PiJf . hyp s i, jen
k
B K, L L
H(E,h); s = Zk Zﬂ Eoer Byl hyp s i, § e Q.

For any pair (f,h) € & x ¥ define the stochastic matrix II(f,h) as the
Cesaro limit of the sequence {Pn(f,h)}:=1. Denote by n(f,h) the number

of subchains (closed, irreducible sets of states) for P(f,h) and let
R(f,h) = {i € Q | H(f,h)ii > 0} i.e. R(f,h) is the set of recurrent states
for P(f,h).

We then have:



(1.5) T(E,h);, = Zz(f’h)

m, m
MR ACRINLACRY

where ﬂm(f h) is the unique equilibrium distribution obe(f h) on the
mth subchain C™ (f,h) and 9, (f h) is the probablllty of absorption in

c™ (f,h), starting from state i € Q. Observe that z ni(f,h) = 1 and

1 (f,h) P(f,h) =7 (f,h). For each (f,h) ¢ & x ¥, we define the gain rate
vector g(f,h) such that g(f,h)i represents the long run average expected
return per unit time when the initial state is i, and policies f,h are

used. We thus have

g™ (£,h) = < (£,h)q(£,h)>/<n (£,h)T(f,h)>, i e C(f,h)

(1.6) g(f,h), =
1 zn(f ,h) e
m=1

97(£,h) g " (£,h) , i € Q\R(f,h)
Next, we recall that V(r), the value vector of the r-discount game, satis-

fies the equation:

(1.7) V(r)i = val[p ( ) + Z m (r) V(r) 1, ieQ, r>0

where ( ) = k L J e_rt d Fgft(t) > 0.
ij 1]
0
BEWLEY and KOHLBERG [2] recently showed for the discrete time case (SDG's)
that V(r) may be expressed as a real fractional power of Puiseux sertes
in r, for all interest rates r that are sufficiently close to 0. More

specifically, there exists an integer M = 1 such that:

(1.8) vV(r) = z:;_m a(k) r_k/M

This result carries easily over to the general SRG-case. We henceforth
assume that pk (r) and mij (r) have a Taylor series expansion

(i€ Q; ke K(1); £ € L(1)):

LEMMA 1.2. V(r) has a Puiseux series expansion as in (1.8).



PROOF The proof goes along lines with section 11 in [2]. Note that
Z m. £(r) < 1 for all r > 0 and all i € 0; k € K(i) and £ ¢ L(i).

Observe next, from a standard contraction mapping argument that

(1.9) the equation X, = val[p (r) +, 2 m (r) x 1, 1e@
has a (unique) solution for all values of the parameters

k z(r) and mk (r) such that m1 (r) > 0 and z m (r) < 1.

Since (1.9) is a sentence in elementary algebra (cf. cor. 9.2 in [2])

it follows from Tarski's principle (cf. section 11 in [2]) that (1.9)

is true over any real closed field, if it is true over the reals.
Finally, the set of all real Puiseux series was shown to be a closed
ordered field (cf. section 10 in [2]) which completes the proof that V(r)
a(k)r_k/M (k) = 0, for

Zk=_m . The fact that a
all k > M finally follows from the proof of th. 7.2 in [2] and the obser-

has an expansion of the type
vation that

K, 2 e . .
(1.10) Zj m () s1-4r T, , ic, keK®d), £eL(i)

- . kf, . _rt -1
where Tmin min ik,L T > 0. To verify (1.10) note that e <1 iTt

for all r suff1c1ent1y close to zero, and use the definition of

z(r). O

We recall from the example in section 14 of [2] that in general V(r)

cannot be expressed as a rational function or Laurent series in r as.is
known to be the case in ordinary MRP's (cf. [4],[13]). The vector a(M)
in (1.8) is called the asymptotic average value vector. Finally it was

(1)

shown in [2] that in the discrete-time case (of SDG's), a' '= 11m v(n)/n
where v(n) is the vector, whose i-th component denotes the value of the

n-step game with initial state 1i.

2. THE AVERAGE RETURN CRITERION; A PAIR OF FUNCTIONAL EQUATIONS

In this section we are concerned with the average return per unit

time criterion, i.e. we evaluate any pair of (possibly non-stationary)



policies for players 1 and 2, by considering for each initial state i e Q:

. . N : .
(2.1) g(@,¥); = 11mlan+“(E¢,¢ zn=1 pn)/(Ew v Z§=l ) ieq.

>
where pn(Tn) denotes the payoff to player ! (the length of the period) in
between of the n—1-st and the n-th observation of state. E indicates
the expectation, given the players' policies m’and Y. A num%er of equiva-
lent criteria have been formulated in [3].

A pair of policies (¢f,¢*) is called an AEP, if and only if for

every policy @ € ¢, and ¢y ¢ ¥:
* * ’ .
(2.2) g0, ), < g(w*,w*)i < glo,¥),, for all i ¢ Q.

It is known from GILLETTE [8] that one or both players may fail to have
gain-optimal policies. For the discrete-time case, the existence of a
stationary AEP was shown to be guaranteed for every possible combination
of one-step expected rewards q?’g if the matrix function II(f,h) is conti-
nuous on & x ¥ (cf. [6], section 4).

Continuity of NM(f,h) on its turn is guaranteed to hold when the
number of subchains n(f,h) is continuous, i.e. constant on & x ¥, and a
(finitely verifiable) sufficient condition for the latter was obtained

in [6], with respect to the chain structure of the set of pure policies.

Lemma 2-1 shows that these results carry over to the general SRG-case:

LEMMA 2.1: Let n(f,h) be constant on & x V. Then there exists a AEP.

PROOF. Consider the SDG which has Q as state space, K(i) and L(i) as the
action spaces in 1 € §, and the following transition probabilities and

one-step expected rewards:

~K, L K, L, kL .. . .

Pij = T/Ti [Pij - Sij] + dij; i,j € 9, k € K(i), £ ¢ L(i).
(2.3)

EE’K - q?’K/Ti’K s ieq, ke KA, £ e L(i)



_JOoif i # ] '
where Gij = {1 otherwise‘ an where. T has to be chosen such that
0 < T < min. /(1 Pk E)

- ik, et

This data—transformatlon which was first introduced in [16], has the
property of leaving for every pair of policies (f,h) € & x ¥, both the chain
structure (e.g. the number of subchains) and the gain-rate vector unaltered.
Hence, n(f,h) is constant on & x ¥, in the transformed SDG as well, which
implies (cf. [6], th. 3) the existence of a policy pair (f* h*) for which
g(f, h') < g(f h ) < g(f ,h) for all £ ¢ &, h ¢ ¥. Finally one easily con-
cludes that (£ »h *y is an AEP, i.e. an equilibrium pair of policies within

the largest possible class of policies (cf. e.g. [6]). 0O

As a special case for the condition in lemma 2-1, we have that

stationary AEP exist, if
(U): every pair of pure stationary policies is unichained.

In this section, we show that the following pair of optimality equations
arises when analyzing the average return criterion:
k £

(2.4) 8; val[Z i gj],' ieQ

(2.5) v

k K k Z k,£
- Z BT gt ] Py

i = Valrkii,e),LG,g) 1M vyl Lef
where for each i € Q, and each solution g* td‘(2.4),.K(i,é*) and L(i,g*)
are the sets of optimal actions in the matrix game in (2.4) with g = g*.
Note from lemma 1-1 that the sets K(i,g) and L(i,g) are in fact the
convex hulls of a finite number of extreme points such that the games to
the right of (2.5) may be interpreted as simple matrix games. Observe
finally that (2.4) and (2.5) are the natural extension of the well-known

optimality equations in undiscounted MRPs (cf. HOWARD [11], DENARDO and
FOX [51).

We say that a pair of policies (f*,h*) satisfies the optimality
equations (2.4) and (2.5), if for some solution (g*,v*), (f*(i), h*(i))
is an equilibrium pair of actions in the matrix games to the right of
(2.4) and (2.5). First we show that a solutien pair to the equations (2.4)

and (2.5) exists whenever a stationary AEP exists. Our proof is a
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constructive one; in fact we show that a certain class of successive
approximation schemes converges to a solution pair of (2.4) and (2.5)
whenever a stationary AEP exists. These schemes are the natural analogue

of a value iteration method which was introduced and studied by HORDIJK

and TIJMS [10] for undiscounted MDPs, and a special case of which was first
used by BATHER [1]. First of all, observe that a(M), the asymptotic average

value vector (cf. (2.1)) is a solution to (2.4):
™ _ s .
(2.6) a; = val[zj P.j a.”’]1, ieQ

as is easily verified by inserting (1.10) into both sides of (1.9), multi-
plying the resulting equality by r > 0, letting r tend to zero, and by
interchanging the limit and value-operation (cf. (1.1)).
We next consider a related SRG, with Q as state space. For each i ¢ Q,
k ¢ K(i), £ € L(i) let,

~k,L k,L k,£ (M)

2. )’ =4q,> - ). H.? D

(2.7) q; q; ZJ i ag s
be the associated one-step expected rewards. Both the transition probabi-
lities and the transition time distribution remain unaltered. Moreover
we restrict in each state i € Q the set of (randomized) actions available

an ),

for player 1 to K(i,a ") and the set of actions for player 2 to L(i,a

V(r), E(k), k = -w,...,ﬁ and for each f € X§=]
the quantities G(f,h) and g(f,h) are defined in complete analogy to V(r),
a(k), k = =o,...,M; q(f,h) and g(f,h). Before introducing the successive

approximation schemes we first need the following theorem:

THEOREM 2.2: Assume there exists a stationary AEP (f*,h*) € & X ¥ in the

original stochastic renewal game (SRG). Then

(@) a™ = g(£*,0%)

®) a® - 0, k= 1,...,M1

(c) every policy £ € ¢ (he¥) which is gain-optimal for player 1 (or 2)
in the original SRG, is. gain—optimal in the transformed SRG

(d) there exists a constant B > 0, and an integer M > 1, such that for all
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r, s > 0 sufficiently small:

(2.8) |V(r) - V(s)| < B [r‘/M e
PROOF .
(a),(b): go along 1ines with lemma 7.11 in [3]:
1 (k) (k) -k . .
Let zk=- [zk——w r ] be the Laurent series expansion .

of W!(r) [w (r)], the total discounted return to player 1 [2] in the
MRP that results when player 2 [1] ties himself down to policy hrE 7.
Since £~ [h ] is gain-optimal in this MRP conclude that A(]) (1) =
= g(f ,h ). Flnally, parts (a) and (b) follow from the inequalities
W (r) < V(r) < W (r).
(c) Fix a stationary AEP (f*,h*) and i € Q; recall (e.g. from th. 1 in [5])
that for any f ¢ & and h ¢ V¥:
P(£,h") g(£",h") < P(£",h™) g(£",0") = g(£",h™) < P(£",h) g(£*,h")
such that:
p(£,0") al < (e, n*) a™® = 2™ L opeetny AW
£ (1) € K (i, a( )) and h tl) € L1(1 a( )) for ail i € Q, or in other

(11)

, thus proving that

words the feasibility of £* and h* in the transformed game. We next
show, that (f£°,h*) is an AEP in the transformed SRG, with B(f*,h") = 0,
by proving:

g(£,0") -2l

(2.9) (a) B(£,0%) ,for all £ ¢ X, K (i,

(M))

(b) E(f*,h) g(f*,h) - a(M),for all h € Xi L (i,a

Confining ourselves to (2.9) (a) (the proof of (b) being analogous)

fix f ¢ Xi K (i,a(M)), and observe by iterating the equality
M
a( ) - P(f,h*) a(M), that:
(@ for all i € C®™(£f,b™); m = 1,...,n(f,h")
a(M) -
Zgif’h ) 8% (£,h") ¢™ | for all i e Q\R(E,BY)

Then,
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m * * Lxy (M)
g™ (£,1%) = SERD,q(EN)HE Y T
< (£,h™),T(£,h™)>

g™ (5,0 - ™ ([ LHGER /™0, T(E, ")

g(m)(f,h*) - c(m); m = 1,...,n(f,h*)

and conclude that g(f, " ) = 22£f ) o

= g(f, h ) (M), for all ie Q.
(d) The proof of part (b) shows that a

oT(e,n") g™ (£,0%) =
(M) = 0 as well as the existence of

a stationary AEP in the transformed model, and the latter implies by

~(k)

applying part (a) to the transformed game, that 3 =0 for k=1,...,41

as well i.e. for all r sufficiently small:
IV(r) - E(O)I 1/M B(r) where B(r) = Izk=0

function which is continuous in r = 0. Hence there exists a scalar

a(-k_l) rk/M]

B > 0 and a number r: > 0 such that for all r < r*:
|V(r) - E(O)l < Br /M i.e. for all r, s < r*: o o o o
V(r) - V(s) < V(x) - a( ) 4 V(s) - 3(0) < BrI/M - Bs]/M < Blrl/M - s]/M[

5

We next introduce the following successive approximation scheme:

~k, Z £
(2.10) y(); = valpes 0Dy a(M))][q Zj (rn)y(n—l)j]
where {r }m is a sequence of interest rates, with lim r = 0.
n no n

Under the ggéumption that a stationary AEP exists, the following theorem
exhibits the existence of a solution pair to the optimality equations (1.4)
and (1.5) by showing in analogy to th. 1 in HORDIJK and TIJMS [10] that

co

(o]
the sequence {y(n) n=] converges under specific conditions on §r
n=1

THEOREM 2.3. Assume the original SRG has a stationary AEP. Then:

(a) (a(M) ~(0)) 8 a solution pair to the f.e. (2.4) and (2.5)
(b) Let r satisfy the conditions:
n=1
(1) (l-r;) . (l—ré) +~ 0, as n > »

(2) ?_ (1-r') ... (]—r!) r!l/M - r!]/M + 0, as n »
j=2 n

3-1
T k K
where rj = 2rJ mln1 K, ¢ T
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Then 11m y(n) = N(O).

PROOF .
(a) part (a) follows immediately from part (b) by letting n tend to infinity

on both sides of (2.10) and by observing that the value of a matrix game
depends continuously upon its entries (cf. (1.1).
(b) Note that

ol 1 ok

(2.11) ?r(rn)i [K( i.a (M)) L ’a(M%] 3 (rn)V(rn)j], ien

and conclude from (1.1) that |y(n+1) - V(r ). l
<Mﬁk£z u>)lﬂm-vug|
(l—r ) |y(n) - V(r )[ for all i € @,

where the second 1nequa11ty was shown in (1.12) to hold for all r,

) ly(n)- V(r )

min

sufficiently close to zero, i.e. for all n 2 n, (say). As a consequence

of theorem 2.2, part (d), we may fix an integer n, 2 n, such that
for all m 2 n : - - N
~ ~ 1/M /M _ l/M ,I/M
IV(rm*]) - V(rm)|s BIrm+1 r | =B"|r’ L) r |
We conclude that for all m = 1,2, ...

. 1/M
, where B (Z/Tmin)

B.

_ v R ' _ L U(t
[y(n1+m) V(rn1+m)| < (1-r n]+m) |y(n1+m 1) V(rn]+mrl)|
1/M 1/M
1 . | 1 PR |
+ B'(I-r n +m) |rn +m n +m—1‘

1 1 1

and by iterating this inequality, we finally obtain:

lyatm) - V(r ] < Q- ) ... (1-r;1+]> ly@)) - %<rn]>|

n]+m n1+m
n. +m ~ ~
1 1/M 1/M
+ B' ), (1-r' ee. (1=r!) |r! - r! .
zJ=n1+1 n]+m) h| I ] j- |

It follows from part (d) of th. 2.2 that lim %(rn) - 3(0
which in view of the above inequality enables us to conclude that

Lim_ y@a0 - lin__ y(@ - ¥(x_) = 0

kot qk’ﬂ - aiM) Tk £ the analysis

i
of th. 2.2 and th. 2.3 leads just as well to the existence of a solution

We note that with a§’£ redefined by q;

to the following pair of f.e., whenever a stationary AEP exists:
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A
3

k .
(2.12) g val[zj Pi gj], 1ie
K2 . ok K, L
valiei,e), L(i,e) 104 ~ 8 Ty * L Pyl vyl

(2.13) v, = s ie Q.
We next observe that conditions (1) and (2) of theorem 2.3, part (b) are

satisfied for any choice:

r =n ,
n

as has been verified in FEDERGRUEN [7].

with 0 < b <1

In addition, we note that when the asymptotic average value is
M) M
i -8

(2.4) and (2.5), as well as (2.12) and (2.13)

independent of the initial state of the system, i.e. when a >

for all i € Q, the f.e.

reduce to the single (vector)-equation:

£ k,£

i

k,£ x .
+ Xj P.? vj], ie@

- <g*> T
1]

* k,
(2.14) v, = val[qi

the discrete-time version of which has been considered in HOFFMAN and

KARP [9]. In this case, the convergence result of part (b) of the previous:
theorem leads to a method for approximating the asymptotic average value by
lower and upper bounds as well as for finding .for both players and any € > 0
stationary policies which are es-optimal with respect to the average return

criterion (cf. FEDERGRUEN [7]).

EXAMPLE | shows that whereas the existence of a solution pair to the f.e.
(2.4) and (2.5) is a necessary condition for the existence of a stationary

AEP, it may fail to be sufficient:

EXAMPLE 1: (all Tgaz =134, € 95 k € K(1), £ € L().
] 0 0
(0,3,3) (1,0,0)| ~(0,0,1) 0 2
0 0 0
€0,1,0) (0,0,1)
(G,p,1-D) (0,0,1) (0,1,0) state 2 state 3

state 1
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The notation means that if the players choose the row and

(a,B,Y)

column corresponding to this box, then player 2 pays player 1 the amount x
and the next state is 1, with probability o, 2 with probability B and 3

M

™ _ 1,0,21.

= 2, and verify that x = 1 is the unique solu-

with probability y = l-a=-B. Take p = ; and verify first that a

o _ M)
2 = 0 and ay
tion to the equation:

Note that a

(2.14) X = val[

by distinguishing between the cases x > 1 and x < 1. Finally recall from
(2.6) that an) is a solution to (2.14). We next verify that a(M) in
*

3

. . . * 3 . . * 1% 1 | s
combination with any vector v. ¢ E° satisfying v, = gV + v, - 5, is a

2
solution pair to (2.4) and (2.5).
Note that K(1 a(M)) = {[1,0]} and L(1 a(M))= {{y,9,,7,1|y, = 0,y +y. =1,y >2}
9 9 ? y1942! 3 3 ’yl 2 3 ]“3 5

such that in this example (2.5) becomes:

1 * * * *
+ ol v, = v vl = v
3'37° 2 73

1 1 1 %
1 2

* ,{]*+_ S B
vy T MGV, T3V T3 T g

P
3°2
We next verify that there is no stationary AEP in this game. Note that a
stationary policy for player 1 is completely specified by the probability
x with which action I in state | is chosen. Likewise, a stationary policy
for player 2, is specified by the probability vector (YI’YZ’YB) with which

the available actions in state 1 are randomized.

If x=1 and v, = 1: g(f,h)1 =0
if x=1 and y, <1: g(f,h), = (y,+2y3)/(y,*y,)
if x <1 : g(£,h)) = (3+ix)y +2y,+2%y5

which shows that no pair of stationary policies is an AEP.

We conclude that in general, and in contrast to what is known to be the

case for ordinary MRPs, a policy pair (£7,0") which satisfies the optimality
equations (2.4) and (2.5) for some solution pair (g*,v*), does not need to
be an AEP.
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Example !, with p = } shows that this may even be the case when stationary
AEPs do exist:
Note that with p = §, g* = [1,0,2] satisfies (2.4), by verifying:

1 1 2]

1 = val[] 9 OJ’

and conclude that K(l,g*) = {[x,l—XJI%SXSI} and L(],g*) = {[1,0,0]}.
The optimality equation (2.5) thus becomes:

*_ 1* ]*.I* l* l.*__*. *_*
v, = max{gv1 EATHE LRI A }s Vo = Vo3 Vq = Vg
* . . . * 3 . . * 1L* 1
such that g 1in combination with any vector v e E~ satisfying v, = §V2+2V3,

is a solution pair to (2.4) and (2.5). Verify that any pair of policies
(f*,h*) with § < le'< 1 and th = 1 is a stationary AEP, whereas the
only pair of policies which satisfies the optimality equations (2.4) and
(2.5) for (g",v") has ffl = 1 and hT] = 1 and is not an AEP.
Observe finally (by considering the gain rate of one of the AEPs) that
o = 2D

We conclude that even when stationary AEPs do exist, such policy pairs
do not necessarily need to be found within the class of (pairs of) policies
that satisfy the optimality equations for some solution pair (the existence

of which follows from th. 2.3).

Whereas the above examples illustrate that no full optimality results may
be obtained for policy pairs that satisfy the optimality equations (2.4)
and (2.5) for some solution pair (g*,v*), in proposition 2.4 below a

restricted optimality result is derived.

PROPOSITION 2.4: Let (£ ,h”) be a policy pair which satisfies the optimality

mm%msQA)mde)ﬁrwwsdmwnWW(;ﬂﬂ.
Then g(f*,h*) < g(f*,h) for all policies h, for which for all i € Q.

(2.15) gz = P(f*,h)gz = h(i) is an optimal action in the matrix game
in (2.4);

with the same restricted optimality result holding for player 1, when

player 2 ties himself down to policy h*.
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PROOF. Fix a policy h which satisfies (2.15). Recall from the proof of

part (a) of th. 2.2 that g* is constant on each of the subchains of P(f*,h)

and conclude that:

(1) g; < P(f*,h)g;, with
(2) \ < q(f*,h)i - gz T(f*,h)i + P(f*,h)v;, for all states i € R(f*,h)

for which (1) holds with strict equality. Apply the proof of lemma 4,
. . * * . . .
part (a) in [5] to verify that g < g(f ,h), with strict equality

holding for h = h*. [

Let in example 1, fk(hk), k = 1,2 be the pure policy for player 1 (2)

which has 1 = f%k = (h?k). Note that both for p = } and p = 3, (f],h])
satisfies the restricted. optimality result of prop. 2.4, but fails to be
an AEP, since 0 = g(f],hz)1 < g(fl,h])]= 1. Observe ‘that h2 satisfies

¥ = P(fl,hz)g* but hz(l) is not an optimal action in the matrix game in

(2.4).

Finally note that, whereas a stationary AEP doesnot need to satisfy
both optimality equations (2.4) and (2.5) for any solution pair (g*,v*)
(cf. example 1 with p = 4), it will certainly have to satisfy the first

f.e. for g* = a(M).

REMARK. In ordinary MRP's, a policy f, in order to be maximal gain, needs
to satisfy the second optimality equation (2.5) only in its recurrent states
(cf. th. 3.1 part (e) of [17]). In the general SDG or SRG model however, we

couldnot weaken the prerequisite in proposition 2.4, to the assumption:

(a) (f*(i), h*(i) is an equilibrium pair of actions in the matrix game in

(2.4) for every i € Q

(b) (f*(i), h*(i)) is an equilibrium pair of actions in the matrix game in

(2.5) for every i ¢ R(f*,h*)

even when confining ourselves to the restricted optimality result in prop.

2.4, as is illustrated by example 2:
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EXAMPLE 2: Consider the SDG-model:

0 a
(0,1) (1,0) ¢
1 b (0,1)
state 2
(1,0) (1,0)
state 1

Let fk(hk); k = 1,2 be defined as above. Take a = 0, b = 2, ¢ = 1. Note
that (fz,hl) is an AEP such that a(M) = [1,1] and verify that in this example
(a(M),[O,IJ) is a solution pair to (2.4) and (2.5). Note that (fl,hl) satis—
fies (2.4) in every i ¢ Q, and (2.5) in every i ¢ R(fl,hl) = {2}; however

0= g(f],hz)I < g(fl,h])] = 1 in spite of h2 satisfying condition (2.15) in
proposition (2.4).

Prop. 2.4 makes clear that a policy pair which satisfies (2.4) and (2.5) may
fail to be an AEP, only when one of the sets K(i,g*) or L(i,g*) (ieQ) 1is a
strict subset of K(i) or L(i). As a consaquence no problems arise when the

asymptotic average value is independent of the initial state of the system:

COROLLARY 2.5. Assume aiM) = <a‘M)> for all i € Q. Then the following state-
ments are equivalent:
@ a® =0, fork=1,...,481

(ITI) there exists a stationary AEP

(I11) the functional equations (2.4) and (2.5) have a solution pair
M) *
(a L,V o).

In addition, under either ome of (I), (II) or (III), any policy pair
which satisfies the funct. eq. (2.4) and (2.5) for some solution pair

(a(M),v*) in an AEP.
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PROOF .
(I) = (11): Consider the SRG, in which merely the one-step expected
rewards are tranformed as in (2.7), i.e. E?’z = q:,ﬂ - T?’Ka(M).
Note that various transformations on pk (r) imply this
gt - k K(O) Choose e.g.

transformatlon on the q:
K(r) -1) (to verify the latter,

~ 2 (MY k
st = ot - i

con31der the first two terms 1n the Taylor series expansion

of kaz(r)) Finally, subtract a™/r from both sides of (2.7)

2™/ = varp o I uHWﬂ~~mn,

i e Q and conclude that V(r) = V(r) - a(M)/rg next apply th.
2.3

(I1) = (I): cf. th. 2.2 part (b)

(I1II) = (I1): follows from prop. 2.4, by taking any pair of policies which
(1)

to obtain: V(r)

satisfies the funct. eq, (2.4) and (2.5) for (a ,v*),thus

proving the last assertion of the corollary, at one blow. 0

REMARK. The implication (III) = (II) even holds for a denumerable state
space (cf. e.g. [6], th. 2). Observe that when the asymptotic average value
does depend upon the initial state of the system, (I) and (II) do not need
to be equivalent, i.e. (I) may fail to imply (II); as an example take the
Big Match (cf. [8]) which has even a Laurent series expansion for V(r),

i.e. which has M = 1 (cf. [3], section 8).

3. SOME PROPERTIES OF THE SOLUTION SPACE OF THE OPTIMALITY EQUATIONS

In this section, we discuss a number of properties of the functional
equations (2.4) and (2.5) which we will need in the following section. We
first observe that in general (2.4) and (2.5) may fail to have a solution
pair, just like there may fail to be (stationary) AEPs. As an example, take
ex.2 with a = 1, b = ¢ = 0, which appeared first in STERN [21] and was used
in BEWLEY and KOHLBERG ([3], sect. 11). Note from [3], that this example
has 0 as its asymptotic average value vector, but has no stationmary AEP
and apply cor. 2.5 (or alternatively note that in this example M = 2, and

(l) = [1,0]; and apply cor. 2.5).
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Next, whenever a solution pair (g*,v*) exists to the optimality
equations (2.4) and (2.5), the v*-part of the solution is obviously not
uniquely determined (note e.g. that if (g*,v*) is a solution pair, then so
is (g*,v*+c1) for any scalar c; cf. also [17], where a complete characte-
rization of the solution space was given, for the case of ordinary MRPs).
In addition, since a pair of policies (f*,h*) which satisfies the optima-
lity equations, does not need to be an AEP, it is still unclear to us
whether the g*—part is always uniquely determined. All of the above diffi-
culties arise, in view of the chain structure being discontinuous on ¢ x V¥
in the general multichain case. Theorem 3.1 below gives a number of charac-
terizations with respect to the optimality equations, under condition (U).
Since in the following section, optimality equations of a slightly more
general structure will appear, we formulate and derive our results with

respect to the f.e.:

-— ~ -~ k,’e k,'e .
(3.1) X, = val[K(i),L(i)][ai + Zj Pij xj], ien

= ~ ~ . k,ﬂ - k"e k,’e .
(3.2) y; = val[K(i,x*),L(i,x*][ci Zj Hij Xj + Zj Pij yj], ie

where for each i € Q, R(i) and E(i) are closed convex polyhedral subsets of
K(i) and L(i), and where for each solution % to (3.1), ?(i,x*) and I(i,x*)
are the sets of optimal actions in the matrix games in (3.1) with x = x*;
a?’ﬂ and c?’z are given quantities (i € Q, k € K(i), £ ¢ L(i)).
THEOREM 3.1.

(a) (3.1) has a solution x*, if and only if

(3.3) the SDG with E?’K = a%’f has a stationary AEP, and
1

0 as its asymptotic average value vector

(b) Assume condition (U) to be satisfied. Then <f (3.3) holds:
(1) The solution x  to (3.1) is unique up to a multiple of 1, such that
the sets K(i) = K(i,x") and L(i) = L(i,x*), i e Q, are uniquely
determined.

(2) A solution (x*,y*) to (3.1) exists, where x is uniquely determined
by:
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<’ (£,h),c(£,h)-H(E,h)r> >

* o ’
(3.4) X. = X, + max ~ ..omin ~ L —
i i feXiK(l) ﬁ heXiL(l) <n2(f,h),T(f,h)>
1 o)
R L R
i i <t (£,h),T(£f,h)>

where x° denotes some solution to (3.1). Moreover, y* 18 unique up to

a multiple of 1.

PROOF .

(a2) immediate form corollary 2.5

(b) (1): Let xo,x] be two solutions to (3.1) and let (fo,ho) and (f],hl) be
two pairs of policies which satisfy (3.1) for % and x1 resp. Note that:
(s} o 1 o .1 o 1 . o 1. o 1 1

x <a(f ,h) +P(f ,h) x and x 2 a(f ,h ) + P(f£ ,h’) x and sub-

tract the second inequality from the first ome, in order to obtain:

1 . .
x° - x1 < P(£f°%,h ) [xo—xl], and by iterating the latter:

(3.5) [xo—xlji ce =My, L -xl, iea.

1

Similarly, we obtain

o o ' (o]
<ﬂ(1)(f]’h )’ X - X]> = C2 < [x -lei, ie Q.

We finally show ¢, = ¢,, which proves part (a). Multiply both sides of

1 2
o o
(3.5) by ﬂ(])(f ,h]) in order to conclude that X, - x; =cps for all
for all i € R(fl,ho)
21 o o 1
|=¢,=C, as a consequence of R(f ,h ) N R(f ,h') # @,

in view of assumption (U).

ie R(fo,h]). Similarly we obtain xz - xl = c

which implies c

(2): Fix a solution xo to (3.1), and consider the SRG, which has Q

as its state space, i(i) and i(i) as the sets of (randomized) alterna-
tives available to player | and 2 and with one-step expected rewards
E?’K = c?’z - Xj H?fz x? and unaltered transition probabilities and
transition time distributions. Note from lemma 1.1 that each of the
sets E(i) and E(i) may be considered as the set of randomizations of a
finite number of (pure) alternatives. This, in combination with condi-

tion (U), implies as a result of lemma 2.1, and cor. 2.5 the existence

of a solution to the f.e.:

BIBLIOTHEEK MATHEMATISCH CENTRUM
e S FASTERD AN
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y; = Val[E(i),I(i)][cg,ﬂ._ Zj H?}ng'—gz‘rﬁ’e+zj P?izy;], ieq
where go is the asymptotic average value vector in this stochastic game
with gg = <go>, i € © in view of our unichainedness—assumption. This
implies that X = xo+go is a solution to (3.2), thus showing the exis-
tence of a solution pair to (3.1) and (3.2). We next show that the
x*-part is uniquely determined, and derive its explicit expression.

The fact that the y*—part is unique up to a multiple of 1 follows as in
part (b) (1). Let (x*,y*) be a solution to (3.1) and (3.2), and let
(f*,h*) be a policy pair which satisfies (3.1) and (3.2) for (x*,y*).
Let g° = x —x°, Then for each h ¢ X, I(i):

* *

o) )
v* 2 e(£%,h) - H(f",h) x - <g > T(£*,h) + P(£,h)y .
Multiply this inequality by H(f*,h) and conclude that:

1, % * * o
(3.6) go > =T (£ ;h);c(f ,h);H(f ,h)x >
<m (f ’h),T(f ,h)>

with strict equality holding for h = h". Likewise, one can show that:

e < <n ' (£,0%), c(£,b%) - H(E,h")x° >/< ) (£,0%) T(£,n"s

for all f ¢ X. K(i), with strict equality for f = f*, thus completing
i

the proof of part (b). a-

4, SENSITIVE DISCOUNT AND CUMULATIVE AVERAGE OPTIMALITY.

In this section, we consider a sequence of increasingly selective
optimality criteria, which appears as the natural extension to the SRG-model
of the sensitive discount (or cumulative average) optimality criteria, as
formulated and studied in Markov Decision Theory (cf. e.g. [4]1,[1331,[22]).

We call a policy pair (w*,w*) a n-discount equilibrium pair of poli-

cies (n-EP) (n = -1,0,...), if:

4.1) Limsup r PV L) (1) - V@ L) (r)] £ 0 <
r

Lininf r IV, (x) - Ve, ()]
r



23

where V(@,¥)(r) denotes the total discounted return to player 1, when the
players use policies @,y and when the rewards are discounted at rate r.

We restrict our analysis to the sensitive discount criteria for the
discrete-time case of SDGs, in order to avoid too burdensome a notation.
The extension of our results to the general SRG-case, is immediate and the
analysis of the cumulative average optimality criteria is analogous to the
one given below, with the same sequence of f.e. associated (note that for
n = -1, equivalence of the two criteria was proven in BEWLEY and KOHLBERG

[3]). E.g. whereas in the general SRG-model the expressions in the various

f.e., to be considered below, become more complicated functions of the terms
in the expansions of p?’ﬂ(r).and m?iz(r) (cf. DENARDO [4]), the structure
of eaeh consecutive pair of f.e. is exactly identical to the one of (3.1)

and (3.2). Consider the following sequence of optimality equations:

_ k,2 .
(4.2) g; = va1[2j P gj], ie
_ Kk, _ Kk, L :
(4.3) x(O)i = Val[K(i,g),L(i,g)][qi g; * Zj Pij x(O)j], ieq

_ ol k,£
(4.4) x(m)i = Val[K(m)(i,X(m—l)LL(m)(i,X(mr])ﬂ[ x (m 1)i+ Zj Pij x(m)j],

m=1,2,..., i e @

where X(m) denotes the m+2-tuple of vectors (g,x(0),...,x(m)), m = 0,1,... .
In addition for all m = 1,2,... and i € Q and any solution X(m-1) to the
first m+l f.e. in (4.2)-(4.4), K(m)(i,X(m—l)) and L(m)(i,(m—l)) denote the
sets of optimal actions in the m+l-st f.e.

For each stationary pair of policies (f,h) let:
0 k k
4.5) V(e (@ = g(e,m)/ + Ir_ o = e

represent the Laurent series expansion of the total discounted return asso-
ciated with (f,h). Finally, if x is a vector, we say x is lexicographically
non-negative written x:> 0, if the first nonvanishing element of x is posi-
tive. Similarly, x is called lexicographically positive, written X > 0 if
x}O and x # 0. We write xb(?)y or y{&{)x if x—y>(>) 0
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THEOREM 4.1.
(a) Let (£°,h") be a stationary n-EP (n = -1,0,...). Then
(1) There exists a n+3-tuple (g*,v ,...,x(n+])) which satisfies (4.2),
(4.3) and the first n+l f.e. of (4.4).
(2) In the Puiseux series expgnsion of V(r), we have:

g(£°,0"), for £ = -1
(4.6)  aCHD
jx(z)(f*,h*), for £ = 0, ,n
L-4M-p) - 0, for £ = -1,...,n; p=1,...,M"1

(b) Let (f*,hé) be a stationary N-EP. Then
(1) (f*,h*) 25 a n-EP for all n = N

(2) V(r) has a Laurent series expansion.

PROOF.
(a) (1) For n = -1 the th. holds as a consequence of th. 2.3; hence we assume

n > 0. Note that h*(f*) is a n-optimal policy in the MDP which .results
for player 2 (1) when player 1 (2) ties himself down to policy f*(h*).
Use th. 4 of [22] to conclude that for all i e @, f ¢ ¢, h e ¥:

), >  *

- * * ok * * * *
. P(E,h ), .g(f, .35q(f,h ). = > . . P(f, . £, :
(4.7) (L BCERT) g (£ ,h7) 5a(E,h0) = g (£ ,h 7)) + L B(E, ) ox (£ 00

R GRS D JC S TR IR TR I
x oky o (0), x ok (), x %
(g (£, 0" ) 5 %0 (E5 1) 5o sx ™ (6,0 1 ¢
* * ok * _ * K * ), x _x
([ B(E 0, e(E ,h) 5a(E ,h), =~ g(F , b))+ ] B(E sh);x T (E R,
sy = xR I, pCe,m x(n)(f*,h*)j]

with strict equality holding for h = h*, and £ = £°. One easily concludes
that X(n) = [g(£*,0%) ;... 5x™ (£*,0")7 satisfy (4.2), (4.3) and the

first n f.e. in (4.4). .To prove that there exists a solution to the
n+l-st f.e. in (4.4) as well, note that (f*,h*) is an AEP in the sto-
chastic game, which has Q as its state space, K(n+])(i,X(n)) and

n+l) . . . . .
L( )(1,X(n)) as the action spaces in state i ¢ , and with one-step



25

expected rewards ﬁ%’z = - x(n)(f*,h*)i, and transition probabilities
iggz = P?iz. (cf. e.g. DENARDO [4], p. 491). Finally note that this

stochastic game has 0 as its asymptotic average value vector, and

apply th. 2.3.

(2) We prove part (a) (2) by complete induction with respect to £.
-an g(f*,h*) and a(_ZMrp) =0

for p=1,...,M-1 follow from the fact that (f*,h*) is a stationary

Note that for £ = -1, the equalities a

AEP, using lemma 2.2. Assume that (4.6) holds for all £ = —1,...,£*<IL
Let

3 a®kpl 500k

===00

be the Laurent series expansion of Wl(r)[w(z)(r)], the total discounted
return to player 1 [2] in the MDP that results when player 2 [1] ties

himself down to policy h*[f*] and note that

.8) A 2 8 (8% 0%y ana AT o g7 o ) (% g%y

for all k = 0,...,07+1

in view of £ [h™] being 25 +1- optimal in this MDP. Observe that,

Wz(r) < V(r) < Wl(r), and conclude from (4.8) and the induction assump-

tion that the coefficients of the terms with power strictly less than

Z*+1, in W](r), V(r) and wz(r) coincide. Since A(-K*—l) = B(—K*_l)
we conclude that (4.6) holds for £ = £7+1 as well.

(b) (1): It follows from VEINOTT ([23], p. 1646) that f*[h*], since being
N-optimal, i$ n-optimal for all n > N in the MDP that results when
player 2 [1] ties himself down to policy h*[f*].

(b) (2): Immediate from (a) (2) and (b) (1). 0O

We observe that part (b) of th. 4.1 may not be extended to the general
SRG-model, since it does not even hold in the general MRP-case (cf. [4],
p. 489). However, part (b) generalizes proportion 6.4 in [3], where it was
shown that V(r) has a Laurent series expansion, if there exists a uniformly
discount optimal pair of policies, i.e. a pair (f*,h*) which is optimal in
the r-discount game for all r > O sufficiently small. We next observe, that

whereas the existence of a solution to the first n+l f.e. in (4.1) is a



26

necessary condition for the existence of a stationary n-EP, it certainly
may fail to be sufficient, as was pointed out for the case n = -1, in
section 2.

In analogy to prop. 2.4, the following partial-optimality result:
may be obtained for any policy pair which satisfies (4.2),(4.3) and the

first n+l f.e. in (4.4) for some solution (g*,x*(O),...,x*(n+l)):

PROPOSITION 4.2. Fizx n = =1,0,... . Let (g ,x (0),...,x (n+1)) be a solution
to (4.2),(4.3) and the first n*l f.e. of (4.3), and let (£°,h") € & x ¥ be
a policy pair which satisfies these optimality equations for this solution.
Then

e, 0%) . 5 x O 055 sx ™ (0%, 14 Te(E*,h) L 50 0 - 5x ™ (£%,h).. ]
1 1 1 1 1
holds in every i e Q, for those policies h for which:
* * * . . *
(4.9) ZJ. P(£7,h);; &, = g; = h(i) e Li,g")
. . % * :* , % *(0) . (1),. %
th(i)e L(i,g ) and q(f ’h)i_gi+ sz(f ’h)ij}% }=h(i)e L (i,X°(0))

(i) L™ Klum1)) and x4 ] JGARVN x’g(“‘)}shm e LD (5 x* m)),
1 <m < n+l

with the same restricted optimality result holding for policy £, O

We finally turn to the case where condition (U) is satisfied:

THEOREM 4.3. Assume condition (U) holds. Then

(a) there exists a solution to the entire sequence of f.e. (4.2),(4.3) and
(4.4).

(b) Fix n = 0,1,... . In the solution (g ,x (0),...x (n)) to (4.2),(4.3)
and the first n f.e. of (4.4), we have (g ,x 0),...,x (n-1)) uniquely
determined (explicit expressions of which may be obtained by a repeated

application of th. 3.1), whereas x"(n) is unique up to a multiple of 1.

PROOF. Part (a) follows from part (b), and part (b) is proven by complete

induction with respect to n. Note that for n = 0, the assertion follows as
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a special case of th. 3.1. Assume, it holds for some n = 0,1,... , We
then have in particular that x*(n-l) (or g* when n = 0) is uniquely deter-

mined and that the f.e.:

- —_ —_ k"e
(4.10)  x(n), = val[K(n)(i’X(n_]));L(n)(i,x(n_])]t %(n-1) .+ zj P} x(n)j],
ie

(or (4.3) in case n = 0) has a solution. Apply th. 3.1 to the combination
of (4.10) (or (4.3) in case n = 0) and the n+l-st f.e. in (4.4), to verify

that the assertion holds for n+l as well. |

In SOBEL ([20], th. 2), it was asserted that a stationary 1-EP always
exists under condition (U). In [6] we pointed out that the proof of this
theorem is incorrect, and the next example shows that the asserted result

itself éﬁy fail to hold:

EXAMPLE 3:

2 1
0,1 (1,0) 0
-1 3 (1,0)
(1,0) ,1) state 2
state 1

Note that g(f,h) = (5xy-2x-4y+3)/(2+2xy-x-y) where x = f11 and y = hll'
Conclude that {f*]fT1 = 1} and {h*lth 2‘%} are the sets of optimal
(stationary) polices for players 1 and 2, with respect to the average
return per unit time criterion. Note however that nome of these policy
pairs is 1-EP since x(o)(f*,h) = 0 when hll = 0, whereas x(o)(f*,h*)] > L

for all policies h" which are gain optimal for player 2.



28

REFERENCES

(1] BATHER, J., Optimal decision procedures for finite Markov Chains,
Part II, Adv. Appl. Prob. 5 (1973), 521-540.

(2] BEWLEY, T. and E. KOHLBERG, The asymptotic theory of Stochastic Games,
to appear in Math. of O0.R. (1976).

[3] BEWLEY, T. and E. KOHLBERG, On Stochastic Games with stationary opti-
mal strategies, Tech. Report no. 23 Harvard Institute of Econo-
mic Research, Harvard University (1976).

(4] DENARDO, E., Markov Renwal Programs with small interest rates, Ann. of
Math. Stat. 42 (1971), 477-496.

[5] DENARDO, E. and B. FOX, Multichain Markov Renewal Programs, SIAM, J.
Appl. 16 (1968), 468-487.

[6] FEDERGRUEN, A., On N-person Stochastic Games with denumerable state
space, Math. Center Report BW 67/76, (1976).

(7] FEDERGRUEN, A., Successive approximation methods in undiscounted
sequential games, forthcoming (1977).

[8] GILLETTE, D., Stochastic Games with zero stop probabilities in M.
Dresher et al. (eds.) Contributions to the theory of games,
Vol. III (Princeton Univ. Press), Princeton, New Jersey (1957),
179-188.

[9] HOFFMAN, A. and R. KARP, On non-terminating Stochastic Games, Man. Sci.
12 (1966), 359-370.

[10] HORDIJK, A. and H. TIJMS, A modified form of the iterative method of
Dynamic Programming, Ann. of Stat. 3 (1975), 203-208.

[11] HOWARD, R., Dynamic Programming and Markov Processes, Technology Press
and Wiley, New York (1960).

[12] KARLIN, S., Mathematical Methods and the Theory of Games, Vol. I,
Addison Wesley, London (1959).

[13] MILLER, B. & A. VEINOTT, Jr., Discrete Dynamic Programming with a small

interest rate, Ann. Math. Stat. 40, 366-370.



[14]

[15]

[16]

[17]

(18]

[191]

£20]

[21]

[22]

29

PARTHASARATHY, T. & M. STERN, Markov Games a survey, University of
Illinois, Chicago (1976).

ROGERS, P., Nonzero—sum Stochastic Games, Report ORC 69-8, Op. Res.
Center, Univ. of California, Berkeley (1969).

SCHWEITZER, P., Iterative Solution of the Functional Equations of
undiscounted Markov Renewal Programming, J.M.A.A. 34 (1971),
495-501.

SCHWEITZER, P. and A. FEDERGRUEN, Functional Equations of Undiscounted
Markov Renewal Programming, Math. Center Report BW 70/77, (1976)
(to appear in Math. O.R.)

SHAPLEY, L., Stochastic Games, Proc. Nat. Acad. Sci. U.S.A. 39 (1953),
1095-1100.

SLADKY, K., On the set of optimal controls for Markov Chains with
rewards, Kybernetika 10, 350-367.

SOBEL, M., Noncooperative Stochastic Games, Ann. of Math. Stat. 42
(1971), 1930-1935.

STERN, M., On Stochastic Games with limiting average payoff, Ph.D.
dissertion, Dept. of Math., Univ. of Illinois, Chicago Circle

Campus (1975).

VEINOTT, A. Jr., Discrete Dynamic Programming with sensitive discount
optimality criteria, Ann. Stat. 40 (1969), 1635-1660.






