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The optimality equation in average cost denumerable state semi-Markov 

decision problems, recurrency conditions and algorithms* 

by 

. . ** A. Federgruen & H.C. T1Jms 

ABSTRACT 

This paper is concerned with the optimality equation for the average 

costs in a denumerable state semi-Markov decision model. It will be shown 

that under each of a number of recurrency conditions on the transition 

probability matrices associated with the stationary policies, the optimality 

equation has a bounded solution. This solution indeed yields a stationary 

policy which is optimal for a strong version of the average cost optimality 

criterion. Besides the existence of a bounded solution to the optimality 

equation, we will show that both the value-iteration method and the policy­

iteration method can be used to determine such a solution. For the latter 

method we will prove that the average costs and the relative cost functions 

of the policies generated converge to a solution of the optimality equation. 
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J. INTRODUCTION 

We consider a semi-Markov decision model specified by five objects 

(I,A(i), p .. (a), c(i,a), T(i,a)). ·The state space I is denumerable and, 
iJ 

for any i EI, the set A(i) denotes the set of possible actions for 

state i. If the system is in state i at a decision epoch and action a 

is chosen, then an immediate (expected) cost of c(i,a) is incurred and 

the (expected) time until the next decision epoch is T(i,a) where the 

next state will be j with probability p .. (a). Throughout this paper we 
iJ 

make the following assumptions. 

Al. There is a finite number M such that jc(i,a)I ~ M for all i EI and 

a E A(i). 

A2. There is finite number E > 0 and a finite number M such that 

E ~ T(i,a) ~ M for all i EI and a E A(i). 

A3. For any i EI, the set A(i) is a compact metric space such that both 

c(i,a), T(i,a) and p .. (a) for any j EI are continuous on A(i). 
iJ 

Denote by F the class of all functions f which add to each state 

i EI a single action f(i) E A(i). Then F =XA(i) is a compact metric 

space in the product topology. For any f E F, 

matrix whose (i,j)th element is p .. (f(i)) and 
iJ 

let P(f) be the stochastic 

let Pn(f) = (p~.(f)) be 
iJ 

then-fold matrix product of P(f) with itself, n ~I.A policy TI for 

controlling the system is any (possibly randomized) rule for choosing 

actions. For any f E F, denote by f(oo) the stationary policy which pres­

cribes to take action f(i) whenever the system is in state i. Denote by 

X and a the state of the action chosen at the nth decision epoch for 
n n 

n = 0,1, ••.• (the 0th decision epoch is epoch O). For n = 1,2, ••.. , let 

T be the time the (n-l)st and the nth decision epoch. Denote by E n TI 

the expectation when policy TI is used. 

In this paper we will be concerned with the optimality equation 

for the average cost case. Therefore we consider the following three 

recurrency conditions. 

CJ. There is a states EI and a finite number B such that Ef(oo){NIX0=i} ~ B 

for all i EI and f E F where N = inf{n~J Ix =s}. 
n 
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C2. There is a finite set Kc I, an integer v ~ 1 and a number p > 0 

such that 
V 

E. KP· .(f) ~ p JE iJ 
for all i EI and f E F. 

Further, for any f E F the stochastic matrix P(f) has no two disjoint 

closed sets. 

C3. There is an integer v ~ 1 and a number p > 0 such that 

for all i 1,i2 EI and f E F. 

It is known that under condition Cl the optimality equation for the 

average cost case has a bounded solution, cf. [4], [5], [11], and [17] 

where in [11] (see chapter 5 and section 12.6) a condition was considered 

which is more general than Cl and even allows for unbounded costs. For 

the case of unbounded costs, conditions under which the optimality equation 

for the average costs applies, were also given in [14]. The conditions 

in [11] and [14] both assume the existence of a fixed regeneration state 

s. It may be interesting to note that a careful examination of the proofs 

in section 6.7 in [17] and in particular the proof of Theorem 6.19 reveals 

that we may somewhat weaken Cl by all~wing that states may depend on 

f E F. 

The condition C2 was first used in [11] where this condition was 

called the simultaneous Doeblin condition. Observe that for each f E F 

the stochastic matrix P(f) satisfies the so-called Doeblin condition for 

Markov chain theory e.g. [6]. Under condition C2 the existence of an 

optimal stationary policy for the limsup average cost criterion was shown 

in [11] where also several other sufficient conditions for the existence 

of an average cost optimal policy were found. 

The condition C3 says that for any f E F the stochastic matrix Pv(f) 

has a positive ergodic coefficient of at least p. Clearly, under C3 we 

have that any P(f) is aperiodic and has no two disjoint closed sets. 

Using a notion introduced in [9], we could call C3 a simultaneous scrambling 

condition, cf. also [20]. 

In this paper we shall give a unified proof that under each of the 

conditions Cl, C2 and C3 the optimality equation for the average costs 

has a bounded solution. This will be done in section 2 and the proof will 

be based both on an analysis of the asymptotic behaviour of then-step 

transition probability matrices Pn(f) and on a simple but very useful 

data-transformation introduced in [19]. Also we give some interdependencies 

between the conditions Cl, C2 and C3. 
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It is important to note that the existence of a bounded solution to the 

optimality equation implies the existence of an optimal stationary policy 

among the class of all policies with respect to a strong version of the 

average cost optimality criterion which implies essentially weaker versions 

usually considered in the literature, cf. [8] and Theorem 2.2 

of the next section. Further we note that after having established the 

optimality equation for the average costs a repeated application of this 

result yields a sequence of optimality equations that are involved when 

considering the more sensitive and selective n-discounted optimality 

criteria, thus showing the existence of stationary n-discounted optimal 

policies, cf. [13]. 

Besides the existence of a bounded solution to the optimality equation 

for the average costs, we will consider the problem of determining such 

a solution which in its turn yields an optimal stationary policy. In 

section 2 we shall show that under each of the conditions Cl, C2 and C3 

the value-iteration method can be used to determine a bounded solution 

to the optimality equation. The policy-iteration method will be considered 

in section 4. Under condition Cl we shall prove that the average costs 

and the relative cost functions of the policies generated by this method 

converge to a solution of the optimality equation. This result considerably 

generalizes a related result in [4], 

2. THE OPTIMALITY EQUATION. 

In this section we shall establish the existence of a bounded 

solution to the optimality equation for the average costs. To do this, 

we first give the following results. 

LEMMA 2.1. Suppose C3 holds. Then for each f E F there is a probability 

distribution {n.(f), j EI} such that 
J 

(2. I) 
n p .. (f) -
1] 

TI. (f) I 
1 

for all iEI, A~I and n~I. 

PROOF. The proof is a minor modification of the proof of Theorem I in [1]. 

In the next lennna we give sufficient conditions for C3. 

LEMMA 2.2. Condition C3 holds under each of the following three conditions. 

C3a. There 

state s (f) 

is an integer v~I, a number p>O and for each fEF there is a 
V 

such that pis(f) ~ p for all i E I. 
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C3b. There is a number p > 0 such that 

for all i 1,i2 EI with i 1 ;t i 2 and all 

C3c. Condition C2 holds and for each f 

is aperiodic. 

r. I min[p .. (a1),p .. (a2)J~p 
JE l.lJ l. J 

a 1 E A(i 1) and a 2 E A(i 2). 

E F the stochastic matrix P(f) 

PROOF. It is obvious that both C3a and C3b imply C3. In fact C3b is 

equivalent to C3 with v=l. Suppose now C3c holds. We shall now prove 

that C3c implies C3a and so C3. We first note that any P(f) is an 

aperiodic stochastic matrix which satisfies the Doeblin condition from 

Markov chain theory and has no two disjoint closed sets. Hence for 

any f E F the stochastic matrix P(f) has a unique .stationary probability 

distribution {n.(f), jEI} (say) such that (e.g. [6]) 
J 

(2.2) lim p~. (f) = TI,(f) for all i,j E I. 
n~ l.J J 

Using 
n+v 

L K p .. (f) 
n 

= IkElpik(f) 
V 

L Kpk.(f) ~ p for all n ~ O, it follows 
J E l.J JE J 

from (2. 2) that L. KTI. (f) ~ p for all f E F. Hence for each f E F there 
JE J 

is a state j EK such that n.(f) ~ p/lKI. For any k EK, define now 
J 

Fk = {fEFlnk(f) ~ p/lKI}, By Theorem 11.4 and Lennna 10.2 in [11], we have 

for any j EI that n.(f) is continuous on F. Using this fact it 
J 

innnediately follows that for any k EK the set Fk is closed and hence 

compact. For fixed k EK and f E Fk, define (cf. the proof of Lemma 11.6 

in [11]), 

for all m ~ n and i EK}. 

Then, by (2.2), ~(f) exists and 1.s finite. Moreover, using the fact that 

Pm(f) is continuous on F for all m ~ I as easily follows by induction 

from assumption A3, it is immediately verified that for each k EK the 

set {fEFki~(f) 2: a} is closed for any real a. Hence for each k E K, the 

function ~ (f) l.S upper semi-continuous on the compact set Fk and so, 

by Proposition 10 on p. 161 in [18] and the finiteness of K, there is 

an integerµ~ such that ~(f) ~µfor all k EK and f E Fk. This shows 

that for any k EK and f E Fk we have p~k(f) > p/2IKI for all i EK and 

so pv1.'k+µ(f) ~ I. K p~.(f) p~k(f) ~ p2 /2IKI for all i EI. This proves that 
J E l.J J 

C3a holds which completes the proof of the lemma. 
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By the lemmas 2.1 and 2.2 we have that each of the conditions 

C3a, C3b and C3c in lemma2.2 implies the condition C2 which in its turn 

implies the condition 

C4. There is an integer v ~ 1, a nhmber p > 0 such that for any P(f) there 

is a probability distribution {w.(f), j EI} satisfying (2.1). 
J 

REMARK 1. Under the assumption that there is some state i 0 (say) which is 

an aperiodic positive recurrent state under any P(f), f E F, we have the 

equi valencies C 1 ~ C2 ~ C3~ C4. Al though we shal 1 not need this result, 

we include its proof. (i) Cl~ C2. This equivalence was established in 

[11] (see section 12.6) and even holds without the assumption that i 0 

is aperiodic. (ii) C2 => C3=> C4. Together C2 and the aperiodicity of state 

i 0 imply condition C3c in Lennna 2.2 and so, by the Lemmas 2.1 and 2.2 

we get the desired result. (iii) C4 ~C2. Using (2.1) and the fact that 

Pm(f) is continuous on F for all m ~ 1, it readily follows that for each 

j EI the function n.(f) is continuous on the compact set F. Hence, since 
J 

n. (f) > 0 for f E F, we have for some number· a> O that n. (f) ~ a/2 for all 
10 i 

f E F. Together this result and (2:t) imply the existence o2 an integerµ~ 1 

such that p~. (f) ~ a/2 for.all i EI and f E F which verifies C2. ii0 

To establish the optimality equation, we shall employ a simple but 

very useful data-transformation introduced in [19]. We associate with 

the semi-Markov model a discrete-time Markov decision model with state 

space I, the set A(i) as set of possible actions for state i, one-step 

costs c(i,a), one step transition times T(i,a) = I and one-step transition 

probabilities p .. (a) where, for all i,j EI and a E A(i) 
1] 

in which the Kronecker function o .. = 1 for j = i and o .. = O for J ~ i 
1] 1] 

and Tis a fixed number such that 

0 < T < o = inf {T(i,a)/(1-p .. (a)) lp .. (a) < 1}. . ii ii i,a 

Observe that o > 0 and the assumptions Al - A3 also apply to the trans­

formed model. Further, letting the finite positive number y be equal to 

sup. T(i,a), it is readily verified that for all iEI and a E A(i) we 
i ,a 

have that {p .. (a), jEI} is a probability distribution with 
1] 
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(2. 3) p .. (a) 2 
1.1. 

-} > 0 and p .. (a) 2 ~ p .. (a) 
u l.J y 1.J 

for j 7 i. 

By the first part of (2.3), we have that for any f e F the stochastic 

matrix P(f) is aperiodic. This ap~riodicity will play a crucial role in 

the analysis lbelow. Also, letting the finite positive number cp be equal 

to min fl-T/o,T/y] and using (2.3), it is immediately verified that for 

any set A~ I and all n 2 I, 

(2.4) n 
p .. (f) 

1.J 
for all 1. e I and f e F. 

This inequality implies that if condition C3 holds, this condition also -applies to the stochastic matrices P(f) of the transformed model. Also, 

it follows from (2.4) and the aperiodicity of the stochastic matrices 
-P(f), f e F that if condition C2 holds, then condition C3c in Lemma 2.2 

applies to the stochastic matrices P(f), f e F. In case condition Cl 

holds, then, lby Theorem 11.3 in [11], condition C2 holds and so condition 
-C3c in Lemma 2.2 applies to the stochastic matrices P(f), f e F. Hence, 

using the Lemmas 2.1 and 2.2 , we have that under each of the conditions 

Cl, C2 and C3 there is an integer v 2 1 and a number p > 0 such that for any 

f e F the stochastic matrix P(f) has a stationary probability distribution 

{n.(f), f e F} for which 
J 

(2.5) I Z: p1:.(f) - Z: n.(f) I~ (1-p)[n/v] for all iEI, LSI and n2J. 
jeA 1.J jeA J 

This result will underly the derivation of the optimality equation for the 

transformed model from which we easily get the optimality equation for the 

semi-Markov decision model considered. Before showing this, we give the 

following lemma. 

LEMMA 2.3. Let {h (.), n 2 I} be a sequence of bounded functions on I such 
n 

that, for some bounded function h(.) on I, lim h (i) = h(i) for all n-,-o:, n 
i e I. Then, for any i e I, 

lim min {c(i,a) + 
n-,-o:, aeA(i) 

z: 
jd 

p .. (a) h (j)} 
1.J n 

min {c(i,a) + 
aeA(i) 

Z: p .. (a)h(j)}. 
. I 1.J JE 

PROOF. Fix i e I. For any n 2 J,letactiona mimimizec(i,a) + Lp .. (a)h (j) 
. n J 1.J n 

for a e A(i). Observe that, by A3, such a minimizing action exists. 
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Now, let {nk, k ~ I} be any infinite sequence of positive integers. Since 

A(i) is a compact metric space, we can choose an action a* E A(i) and a 

* subsequence {tk' k ~ l} of {nk' k ~ I} such that at ➔ a ask ➔ 00 • 

Using the fact that, by A3, E. A p .. (a ) ➔ E. Ap .. ia*) ask ➔ 00 for any 
JE iJ tk JE iJ 

set A c I and using Proposition 18, on p. 232 in [18 J, it follows from 

c(i,a ) + E p .. (a )ht (j) ::; 
tk jEI iJ tk k 

c(i,a) + E p .. (a)ht (j) 
j EI iJ k 

for all a E A(i) and k ~ I, that 

lim min {c(i,a) + 
k➔ro aEA(i) 

which proves the lemma. 

E p .. (a)h (j)} 
jEI iJ tk 

min { c ( i , a) + 
aEA(i} 

We now prove the main result of this section. 

E p .. (a)h(j)} 
. I iJ JE 

THEOREM 2.1. Under each of the conditions Cl, C2 and C3 there exists a 

finite constant g* and a bounded function v*(i), i EI such that 

(2.6) min {c(i,a) - g*T(i,a) + E p .. (a)v*(j)} for all i EI. 
a1cA(i) j El iJ 

The constant g*is uniquely determined and the bounded function v*(i), 

i E I is uniquely determined up to an additive constant. 

PROOF. Consider first the transformed model. As shown above, there is an 

integer v ~ 1 and a number p > 0 such that for any f E F the stochastic 

matrix P(f) has a stationary probability distribution satisfying (2.5). 

To verify the optimality equation for the transformed model, consider first 

the discounted cost criterion. For any O < B < I, define for each policy 

TT (observe that c(i,a) is uniformly bounded in i,a), 

00 

= E [ E Bnc(X ,a) lxo=i] 
TT n=O n n 

for i E I, 

-
and let v6 (i) -= infnVB(i,n), i E I. It is known that for any O < B < I 

the function v6 (i), i EI is the unique bounded solution to (e.g. [151) 

-
(2. 7) = min {c(i,a) +BE p .. (a) V6(j)}, 

aEA(i) jEI iJ 
i EI, 

and, -:noreover, 
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(2.8) for all i E I, 

for any fB E F' such that fB (i) minimizes the right-side of (2. 7) for all 

i E I. For any O < B < and f E F,, we have 

(2.9) 
00 

I: Sn I: 

n=O jEI 
p1: . ( f) 2 ( j, f ( j ) ) 
iJ 

for all i E I 

where p?.(f) = 8 • .• From (2.5), it follows that for any f E F, i, k EI 
iJ iJ 

and n 2 r the total variation of the signed measure µ(A) = I:. Ap1:.(f) 
/ J JE iJ 

-n ( ) · 4 ( ) [ n v · · 1 · d 1 · B - L Apk. f is bounded by J-p - • Using this resu t an etting 
JE J 

any finite nunilier such that \c(i,a) I ~ B for all i,a, it follows from 

(2.9) that, for any O < B < I and all f E F, 

00 

~ 4B I: (I-p)[n/vl ~ 
n=O 

4Bv for all i,k E I. 
p 

Hence, by (2.8), 

4Bv 
~ 

p 
for all i,k EI and all O < B < I. 

Now, by using Lemma 2.3 and by making an obvious modification on the 

proof of Theorem 6.18 in [17], there exists a finite constant g and a 

bounded function v(i), i EI such that 

(2. I 0) v(i) = min {c(i,a) - g + I: p .. (a)v(j)} for all i EI. 
aEA(i) j EI iJ 

We shall now verify that g*= g and v*(i) = ,v(i), i EI satisfy (2.6). 

To do this, observe that (2.10) can be equivalently written as 

v(i) 
c(i,a) , 

2 T ( i , a) - g + T ( i , a) . L Ip i j ( a) V ( j ) + 
JE 

for 

( I -

all i E I and a E A(i), 

where for any i EI the equality holds for at least one a E A(i). 

Multiplying both sides of this inequality with ,(i,a) > 0, we find 

0 2 c(i,a) - g,(i,a) +TI: p .. (a)v(j) - ,v(i), i EI and a E A(i), 
. I iJ JE 

where for any 1. EI the equality s1.gn holds for at least one aEA(i). 
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This proves that g* = g and v*(i) = Tv(i), i EI satisfy the optimality 

* equation (2.6). By Theorem 6.17 in [17],we have that the constant g 

in (2.6) is uniquely determined and, by Lemma 3 in [12], we have that 

the function v*(i), i EI in (2.6) is uniquely determined up to an 

additive constant. 

For any policy TI, define for all i E I and n 2 l, 

n n 

Vn(i,TI) = ETI[k:O c(~,ak) lx0=i] and Tn(i,TI) = ETI[k:OT(~,ak)lx0=i]. 

* Define a policy TI to be average cost optimal in.the strong sense if 

(2.11) 
V (i,TI*) 

n 
lim sup T (i,TI*) 

n~ n 

V (i,TI) 
~ lim inf _n~-­

T (i,TI) n~ n 

for all i E I and any policy TI. 

An examination of the proof Theorem 7.6 in[17] gives the following theorem. 

THEOREM 2.2. Let {g*,v*(i), iEI} be any bounded solution to the optimality 

equation (2.6) and let f 0 E F be such that f 0 (i) minimizes the right 

side of (2.6) for all i EI. Then 

V (i,TI) 
lim inf n 2 g* for all i E I and any policy TI 

T (i,TI) n~ n 

and 

* = g for all i E I, 

so the stationary policy fi 00
) is average cost optimal in the strong sense. 

Observe that (2.11) implies lim sup {V (i,TI*)/T (i,TI*) -
n~ n n 

V (i,TI)/T (i,TI)} ~ 0 for all i E I and any policy TI. This latter average 
n n 

cost optimality criterion was considered in [8] where it was pointed 

out that this criterion is essentially stronger than both the lim sup 

and lim inf average cost criteria, cf. f2] - f4] in [81. We note that 

in the literature the existence of an average cost optimal stationary 

policy is usually established under the lim sup average cost criterion. 

Finally, letting Z(t) be the total costs incurred up to time t and 

using Theorem 7 .5 in [17], we have undecea.cli of~-the "conditions ~ct;· 

CZ and C3 that, for any f E F, 



lim ¼ E (w)[Z(t)!X(O) = i] = 
t-+<x> f 

where g(f) is defined by 

(2. 12) g(f) = I. I c(i,f(i))w.(f)/I. IT(i,f(i))w.(f), 
1€ 1 1€ 1 

f E F, 

with {w.(f), jEI} is the unique stationary probability distribution of 
J 

P(f). 

3. THE VALUE-ITERATION METHOD. 

In this section it is assumed that at least one of the conditions 

Cl, C2 and C3 hold. We shall show that a bounded solution to the 

optimality equation (2.6) may be obtained by using value-iteration. In 

the proof of Theorem 2.1 we have found that any bounded solution 

{g,v(i), iEI} to the optimality equation for the transformed model gives 

a bounded solution {g*=g, v*(i)=Tv(i), iEI} to the optimality equation 

(2.6). Hence, in view of the data-transformation given in section 2, 

it is no restriction to assume that T(i,a) = 1 for all i,a and P(f) 

is aperiodic for all f t F. 

Let {g*, v*(i), iEI} be any bounded set of numbers satisfying 

(3. 1) = min {c(i,a) - g*+ Ip .. (a)v*(j)} 
aEA(i) jEI iJ 

for all i E I. 

For any given bounded function v0 (i), i EI, define for n = 1,2, ..• the 

bounded function v (i), i E I by the value-iteration equations 
n 

(3.2) V (i) 
n 

= min {c(i,a) + 
aEA(i) 

Ip .. (a)v 1(j)} for i 
. I iJ n-JE 

E I. 

Observe that, by A3, the minimum in the right side of (3.2) is attained 

for all i. The asymptotic behaviour of the sequence {v (i)-ng*, n~l} 
n 

for i EI has been studied in [12] where the action sets A(i) were 

taken finite. This finiteness is in fact only used to verify relation 

(18) in [12], however, by invoking Lennna 32 on p. 178 in [18], it follows 

that the results in [12] also apply when for any i EI the set A(i) is 

a compact metric space such that both c(i,a) and p .. (a) for any j EI 
1] 

are continuous on A(i). Since the assumptions 1 - 5 in [12] are satisfied, 

we have for some constant c that 



(3. 3) lim {v (i) - ng*} = v*(i) + c 
n 

11 

for all i E I. 

Hence, by choosing some state i O a~d defining yn=vn(iO)-vn_ 1(iO) and 

w (i) = v (i)-v (i0 ) for i EI and n ~ 1, it follows that the bounded n n n 
numbers {y , w (i), iEI} converge as n-+«> to a bounded solution to 

n n 
(3.1). We further note that, by letting f E F be such that f (i) 

n n 
minimizes the right side of (3.2) for all i and defining the average 

costs g(f) by (2.12), it follows by making minor modifications on standard 

arguments used in [10] and [16] that, for all n ~ 1, 

* inf. I{v (i)-v 1(i)} ~ g ~ g(fn) ~ sup. I{v (i)-v 1(i)}, iE n n- iE n n-

where inf.{v (i)-v 1(i)} and sup.{v (i)-v 1(i)} are non-decreasing 
i n n- i n n-

and non-increasing respectively inn~ 1. 

Finally, consider the special case where condition C3 with v=l holds. Let 

B be the class of all bounded functions on I and define the mapping 

T: B ~ B by 

Tu(i) 

and define 

= min {c(i,a) + 
aEA(i) 

llull = supi u(i) 

E 
jEI 

p .. (a)u(j)} 
iJ 

- inf. u(i) for i 
of the proof of Theorem 5 in ,[7] shows that, 

U E 

for 

II Tu - Tw II ~ (1-p)llu-wll for all u,w EB i.e. T 

B. Then a repetition 

some number p > 0, 

is a contraction mapping. 

Next, using this result and the existence of a bounded solution to (3.1), 

it is readily verified that lvn(i)-ng*-v*(i) I ~ (l-p)nll vO-v*II for all. i E I 

and n ~ I, i.e. in this case the convergence in (3.3) is geometrically fast 

and uniform in i. 

4. THE POLICY ITERATION METHOD. 

Throughout this section it is assumed that condition Cl of section I holds 

and under this condition we shall study the convergence of the policy iteration 

method. Using ideas from a convergence proof given in f3] for a policy iteration 

approach to controlled Markov processes with a general state space, it will 

be shown that the average costs and the relative cost functions of the 

stationary policies generated by the policy iteration method converge to a 

bounded solution to the optimality equation (2.6). 
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As a byproduct we obtain an alternative proof of the existence of such a 

solution. Partial convergence results of this type were obtained in [4] 

under the restrictive additional ass~mption of no transient states under 

any P(f), f E F. 

We first give some preliminary results. Let the states and the random 

variable N be as in condition Cl. For any f E F, the stochastic matrix 

P(f) has a unique stationary probability distribution {TI.(£), jEI} such that 
J 

(4. 1) TI.(£) = L 1p .. (£)TI.(£) 
l. JE Jl. J 

for all i E I. 

Moreover, we have from Markov chain theory 

00 

(4. 2) TI.(£) = L pn.(f)/E () [NIXo=s] for all i E I 
i n=O s si f oo 

0 
where sPij = o •• for all i,j and 

l.J 

(4. 3) 
n 

p .. (f) = 
s l.J P (oo) {Xn =j, ~;ts for 1 

f 

Observe that 

00 

for i,j EI and n ~ 1. 

(4.4) 1 + 
n 

L I p .• (f) for all i E I. 
n=l jEI s l.J . 

Further, for any f E F, define the average costs g(f) by (cf. (2.12)) 

(4. 5) g(f) = I 
iEI 

c(i,f(i)) TI.(f)/ L T(i,f(i)) TI.(£), 
l. . I l. l.E 

and define the relative cost function w.(f) by 
]. 

(4.6) w. (f) = 
]. 

00 

n {c(j,f(j)) - g(f) T(j,f(j))} p .. (f), i EI. 
s l.J 

It is immediately verified from (4.2) and (4.4) - (4.6) that, for any f E F, 

the function w. (£), i EI is bounded and has the property that 
]. 

(4. 7) w (f) = 0. 
s 

Consider now for fixed f E F the following system of linear equations in 

{g, Vi, iEI}, 



(4.8) V. = c(i, f(i)) - gT(i, f(i)) + 
1 

E 
jEI 

p .. (f(i))v. 
1.J J 

We have the following known theorem (see [2] and [5]). 

THEOREM 4.1. For any f E F, 

13 

for 1 E I. 

(a) The set of numbers {g = g(f), 

to (4.8). 

v. = w.(f), iEI} is a bounded solution 
1. 1. 

(b) For any bounded solution { g' vi, iEI} to (4.8) holds g = g(f). 

(c) For any two bounded solutions {g, v.} and {g, u.} to (4. 8) there 1.S 
1. 1 

a constant c such that v. - u. = c for all i E I. 
1. 1 

(d) For any j EI, there is a unique bounded solution {g, v.} to (4.8) 
1. 

such that v. = 0. 
J 

REMARK 4.1. To verify Theorem 4.1, it is not necessary to assume in A2 that 

inf. T(i,a) > 0 but it suffices to require that E. T(i,f(i)) n.(f) > 0 
i,a i i 

for all f E F. 

By the assumptions AI-A2 and definition (4.5), we have 

LEMMA 4.1. 1be set of numbers {g(f), fEF} is bounded. 

Actually we shall only need that the numbers {g(f), fEF} are bounded from 

below. Now, we have established this result we shall make no further use of 

the assumption that inf. T (i ,a) > 0. 
i, a 

For any f E F and any bounded solution {g(f), v. (f), iEI} to (4.8), 
1. 

define 

(4.9) T(i,a, v(f)) = c(i,a) - g(f),(i,a) + E p .. (a)v.(f) 
j El 1.J J 

for i E I and a E A(i). 

Observe that 

(4. 10) T(i, f(i), v(f)) = v. (f) 
1. 

for all 1. EI and f E F. 

The following lennna shows how the stationary policy f(oo) can be improved to 
( 00) 

a stationary policy h whose average costs is less than or equal to that 
of f(oo). 
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LEMMA 4.2. Let f E F and let {g(f), v.(f)} be any bounded solution to (4.8). 
l. 

Suppose h E Fis such that 

(4.11) T(i, h(i), v(f)) 

Then g(h) ~ g(f). 

~ V. (f) 
l. 

for all i E I. 

PROOF. The proof is standard. Multiply both sides of the inequality (4.11) 

with n.(f) and sum over i EI. Next the desired result follows after an 
l. 

interchange of the order of sunnnation which is justified by the boundedness 

of v(f) and using the steady-state equation (4.1) for policy h(oo). 

We now formulate the policy-iteration method. 

Policy Iteration Method 

Step O. Initialize with any f 1 E F. 

Step I. Let f(oo) be the current policy. Determine the unique bounded solution 

{g(f), w.(f)} to the system of linear equations (4.8) in which v = O. 
l. s 

Step 2. Determine f' E F such that T(i, f'(i), w(f)) = minaEA(i) T(i,a,w(f)) 

for all i EI where f'(i) is chosen equal to f(i) when this action 

minimizes T(i,a, w(f)) for a E A(i). Go to step I. 

Let {f(oo), n~I} be the sequence of stationary policies generated by the 
n 

policy iteration method. Observe that, by part (c) of Theorem 4.1, f I is n+ 
independent of the particular choice of the bounded solution to (4.8) with 

f = f . By Lemma 4.2, 
n 

(4. 1 2) g(f I) ~ g(f ) n+ n for all n ~ I. 

We shall prove that the bounded numbers {g(f ), w.(f ), iEI} converge as n ➔ 00 

n 1. n 
to a bounded solution to the optimality equation (2.6). To do this, we shall use 

a modified semi-Markov decision model specified by the five objects 

(I, A(i), p .. (a),c(i,ai ~(i,a)) where, for some artificial state 00 and action 
l.J 

a (say), 
(Y) 

I= I u { 00 }, A(i) = A(i) for i E I, A(oo) = {a}, 
00 
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c(i,a) == c(i,a), ,(i,a} = ,(i,a) for i E I and a E A(i), 

~(oo,a) = ~(oo,a) = 0, - ( ) = 
oo · oo P oos a oo I, p .(a)= 0 for J 

OOJ 00 r .(a) 
for i,j E I, a E A(i), j ;ts 

l.J 
p .. (a) ·-l.J . 

P .(a) for l. E I, a E A(i), J =oo • 
SJ 

In fact this modified model is identical to the semi-Markov decision model 

considered except that before any transition to states there first occurs 

a transition to state 00 after which an instantaneous transition occurs to 

states involving no costs. For the modified model, denote by F the class 

of all functions h which add to each state i EI a single action h(i) E A(i) 

and associate with any h E F the stochastic matrix P(h) = (p .. (h(i)), i,j E I. 
l.J 

Since h( 00 ) = a for all h E F, there is a 
00 

one-to-one correspondence 

between F and F. For any f E F, denote by f the unique element in F such that 

f(i) = f(i) for all i E I. It is immediate that there is a finite number B 

(say) such that under any stochastic matrix P(f), f E F the number of 

transitions it takes before the first return to state 00 is bounded by B for 
-

any starting state i EI. Hence condition Cl with states replaced by state 00 

also applies for the modified model. This result together with the fact that 

A( 00 ) consists of a single action will play a crucial role in the convergence 

proof below. Further, for any f E F, the stochastic matrix P(f) has a unique 

stationary probability distribution 

equation, we have for any f E F that 

for all i E I. Hence, letting 

g(f) = 

it follows that 

(4.13) g(f) = g(f) for all f E F. 

Further, for any f E F define 

00 -

{;_(f), 
- J 
7T (f) = 

s 

jEI}. Using the steady-state 

TT (f) and TT. (f) = 1r. (f)/{l+TT (f)} 
00 ]_ ]_ $ 

for f E F 

Z Z {c(j, f(j)) w. (f) 
l 

- -n -g(f) T(j, f(j))} p .. (f), 
00 l. J 

l E I 
n=O jd 

where the definition of p:1.(f) is analogous to that of p:1.(f) in (4.3). Then 
00 l.J _ $ l.J 

similarly as above, the bounded function ~i(f), i E I has for any f E F the 

property 
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(4.14). w (fl= o 
CIC> 

Since Theorem 4.1 also applies to th~ modified model, we have for any f E F 

that {g = g(f), y. = w.(f}, i EI} is the unique bounded solution to 
l.. ]. 

(4, 15) v. = c(i, f (iD 
]. 

p .. (f(i))v., 
l.J . J 

]. EI, 

having the property that v = O. Further, using (4.13) - (4.15), it is 
00 

immediately verified for any f E F that; (f) =; (f) and that 
00 s 

{g = g(f), v. = w.(f), i EI} is a bounded solution to (4.8) having the 
]. ]. 

property that v = O. By the parts (a} and (d) of Theorem 4.1, it now follows 
s 

that 

(4.16) ;. (f) = w. (f) 
]. - ]. 

for all i E I and f E ·F. 

Using the relations (4.14), it is now straightforward to verify 

sequences {f 
(oo) 

n~l} with f E F and {h ( 00) 

, n~l} with h E F n ' n n n 
the policy-iteration method applied on the semi-Markov decision 

and the modified model respectively,. we have 

(4.17) h = f 
n n 

for all n ~ 1 when h 1 = f 1. 

that for any 

generated by 

model considered 

The above relationships will be used to prove the convergence results for the 

policy-iteration method. Before doing this, we give the following lennna. 

LEMMA 4.3. Let {u , n~J} be a bounded sequence of numbers such that for any 
n 

£ > O there is an integer N(£) for which u ~ u +£for all n,m ~ N(£). n+m n 
Then the sequence {u} is convergent. 

n 

PROOF. Let u = lim inf u and let U = lim sup u. Choose£> O. Then, n-+<x> n n-+<x> n 
U ~ u +£for all n ~ N(£), so, U ~ u +£which proves the lemma since£ was 

n 
arbitrarily chosen. 

We now prove the convergence results for the policy-iteration method. 

THEOREM 4.2. Let {f (oo) n~I} with f E F be any sequence of stationary policies 
n ' n 

generated by the policy-iteration method applied on the semi-Markov decision 

model considered. Then 



(4.18) lim g(f ) 
n 

= inf g(f) 
fEF 

* •' and, for some bounded function wi, 1. E I, 

(4.19) lim w. (f ) 
l. n 

n·-+m 

* = w. 
l. 

for all i E I. 

1 7 

* * * Moreover, letting g = inffEF g(f), the bounded numbers {g, wi, iEI} 

satisfy the optimality equation 

(4.20) * w. 
l. 

= min {c(i,a) - g*T(i,a) + L p .. (a)w*} 
aEA(i) jEI l.J j 

for all i E I. 

PROOF. Suppose that we have already verified (4.18) and (4.19). Using the 

construction off and the relations (4.8) and (4.9), we have for all n 2 2 
n 

(4.21) 

and 

(4.22) 

w.(f) = c(i, f (i))-g(f )T(i,f (i)) + I: p .. (f (i))w.(f ), i EI 
1. n n n n . 1 l.J n J n 

JE 

c(i, f (i))-g(f 1)-r(i, f (i)) + Ip .. (f (i))w.(f 1) 
n n- n 1.J n J n-

= min {c(i,a)-g(f 1)T(i,a) + L p .. (a)w.(f 1)}. 
aEA(i) n- jEI 1.J J n-

l. E I. 

Since I is denumerable and A(i) is a compact metric space for any 1. EI, we 

* can choose a f E F and an infinite sequence {nk, k2J} such that 

1 im f ( i) 
k-+<o Ilk 

for all i E I. 

Now, taking n = nk l.Il (4.21) and (4.22), letting k ➔ 00 and using A3 together 

with the same arguments as in the proof of Lemma 2.3, we easily get the result 

(4.20) where f*(i) minimizes the right-side of (4.20) for all i E I. It remains 

to prove (4.18) and (4.19). We shall first prove these relations under the 

assumption 

(4.23) the action set A(s) consists of a single action. 
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Next, using the modified model, we shall verify that (4.18} and (4.J9) 

also hold without the assumption (4.23}. N'ow suppose that (4.23} holds. 

Fix n ~ I. By (4.23), we have f 1·(s) = f (s) and so, by (4.9) and part n+ n 
(a) of Theorem 4.1, 

T(s,f 1(s),w(f )) n+ n 
= c(s,f (s})-g(f )T(s,f (s))+ r p .(f (s))w.(f) = w (f ). 

n · n n · · jeI SJ n J n s n 

Hence, by ( 4 . 7) , 

(4.24) T(s,f 1(s),w(f )) = 0. n+ n 

Put for abbreviation 

for i E I. 

Then, by (4.9), 

(4.25) T(i,f 1 (i),w(f )) = a (i)+ t p .. (f 1)w.(f) 
n+ n n . I iJ n+ J n 

JE 

By the construction off 1 and (4.10), n+ 

(4.26) w. (f ) ~ T(j ,f l (j) ,w(f )) 
J n n+ n 

for all j e I. 

Using (4.24) - (4.26) and (4.3), we have for any i e I 

for i E I. 

T(i,f 1(i),w(f ))~a (i)+ t p .. (f 1)T(j,f 1(j),w(f )) = n+ n n . ..,.,.. iJ n+ n+ n 
J= 

= a (i) + t p! .(f +l)T(j,f +l(j),w(f )) = n . Is iJ n n n JE 

= a (i) + E p!.(£ 1)a (J.) + L p!.(f ) t p.h(f 1)wh(f) n . Is iJ n+ n . s iJ n+l J n+ n JE JEI heI 

Continuing in this way, we find by induction on m that for any m ~ 

m k 
T(i,f +l(i),w(f )) ~ t t a (J") p .. (f ) + 

n n k=O jel n s iJ n+l 

m 
+ t p .. (f +l) r p.h(f 1)wh(f ), 

j~Is iJ n hel J n+ n 
i E l. 

We now observe that, by condition Cl and relation (4.4), 
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m lim E p .. (f) = 0 
m""?<X) j Els l.J 

for a 11 i E I and f E F • 

Using this result, (4.4) and the boundedness of the functions an(i) and 

w.(f ), i EI, it now follows that 
l. n 

(4.27) for all i E I. 

Putting ~n = g(f0 ) - g(f0 +1), it follows from (4.6) and (4.27) that, for 

any i EI, 

00 

wi(f0 +1)-T(i,f0 +1(i),w(f0 )) ~ ~n E _E T(j,fn+l(j)) sp~j(fn+l), 
k=O JEI 

where the various operations on the sums involved are justified by the absolute 

convergence of these sums. Next, using the boundedness of T(i,a), relation 

(4.4) and condition Cl, there is some finite number B such that 

(4.28) w.(f 1)-T(i,f 1(i),w(f )) ~ ~ B 1. n+ n+ n n for all 1. E I and n ~ 1. 

Hence, by (4.26) and (4.28), w.(f 1)-w.(f) ~ ~ B for all i EI and n ~ 1. n+ 1. n n 
which implies 

(4.29) w. (f )-w. (f ) ~ {g(f )-g(f ) }B 1. n+m 1. n n n+m for all 1. EI and n,m ~ 1. 

Since the sequence {g(f ), n~1} 1.s bounded from below and non-increasing (see 
n 

Lemma 4.1 and (4.12)), it follows that lim g(f) exists and is finite. Next, 
O""?<Xl n 

using (4.29) and Lenuna 4.3, we obtain (4.19) for some bounded function w~, 
l. 

i E I. To prove (4.18), observe that, by (4.26), 

O ~ w. (f )-w. (f 1)+w. (f 1)-T(i,f 1 (i) ,w(f )) 1. n 1. n+ 1. n+ n+ n for all 1. E I and n ~ 1, 

and so, by (4.19) and (4.28), 

(4.30) lim {w. (f )-T(i,f 1(i),w(f ))} = 0 1. n n+ n for all 1. E I. 
O""?<X> 

Choose now f E F. By the definition off 1 and (4.9), we have for all 1. E I n+ 
and n ~ 1, 

c(i,f(i))-g(f )T(i,f(i))+ E p .. (f)w. (f )~T(i,f 1 (i) ,w(f ))-w. (f )+w. (f ) . n . 1 l.J J n n+ n 1. n 1. n 
JE 
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Multiply both sides of this inequality with n.(f) and sum over i EI. After 
1 

an interchange of the order of summation justified by the boundedness of 

the functions involved and using (4.1), we get 

I {c(i,f(i))-g(f ),(i,f(i))}n.(f)~ I {T(i,f 1(i),w(f ))-w.(f )}n.(f). 
• 1 n 1' . 1 n+ n 1 n 1 
1E JE 

Next, letting n ➔ 00 and using the bounded convergence theorem and the 

relations (4.30) and (4.5), we find g(f) ~ lim g(f) which implies (4.18) n~ n 
since f E F was arbitrarily chosen. We now have verified (4.18) and (4.19) 

under the assumption (4.23). Finally, using the modified model for which 

condition Cl with state 00 in stead of states applie~ and A( 00 ) consists 

of a single action, and using the relations (4.13), (4.14), (4.16) and (4.17), 

the above proof shows that (4.18) and (4.19) also hold without the assumption 

(4.23). This completes the proof. 
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