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by 

A. Federgruen 

ABSTRACT 

This paper considers undiscounted two person zero-sum sequential 

games with finite state and action spaces. Under conditions th~t guarantee 

the existence of stationary optimal strategies, we present two successive 

approximation methods for finding the optimal gain rate, a solution to the 

optimality equation, and for any£> 0, e-optimal policies for both players. 

KEY WORDS & PHRASES: stochastic games, successive approximation, average 

return per unit time criterion, equilibrium policies. 

This report will be submitted for publication elsewhere 





O. INTRODUCTION AND SUMMARY 

This paper considers two-person zero-sum Stochastic Renewal Games (SRG's) 

with finite state space n = {1, .•• ,N} and in each state i En two finite sets 

K(i) and L(i) of actions available to player 1 and 2 resp. We speak of a 

state as being observed for only an instant. The moment state i is 

observed, the two players choose an action, or. a randomization of actions 

out of K(i) and L(i) resp. When the actions k E K(i), and i E L(i) are 

chosen in state i, then: P~~i ~ 0 denotes the probability that state j is 
iJ N k i k i 

the next state to be observed (r._ 1 P.~ = 1); q.' is the one-step expected 
J- 1J k ii 

reward earned by player 1 from player 2 and T.' denotes the expected holding 
. 1 k i 

time in state 1. Throughout this paper we assume that T.' > 0 (i En; 
1 

k E K(i) ; i E L(i)). 

The discrete time case, where each transition takes exactly one unit 

of time, is known as the stochastic games-model (cf. e.g. [9], [18]) and 

will be denoted as the SDG-case. If the payoffs are discounted at the interest 

rater> O, the SRG-game is called the r-discou:nted game. The existence of 

a value and of stationary optimal policies in the r-discount game goes 

essentially back to SHAPLEY [18]; in addition it is easily verified that 

value-iteration converges to the value of the game, in view of the value­

iteration operator being a contraction mapping on EN, the N-dimensional 

Euclidean space. 

In the undiscou:nted version of the game, i.e. when the long run average 

return per unit time is the criterion to be considered one or both players 

may fail to have optimal policies as follows from an example in GILLETTE 

[9J. Both fort this model and for the case of more general state and action 

spaces, recurrency conditions with respect to the transition probability 

matrices (tpm's) associated with the stationary policies have been obtained 

under which the existence of a stationary pair of equilibrium policies (AEP) 

is guaranteed. (cf. HOFFMANN & KARP [11], SOBEL [19], ROGERS [15], STERN [20] 

and FEDERGRUEN [ 5]) . 

So far, very little attention has been paid to the actual computation 

. 1 * f . * of both the asymptotic average va ue g and o a solution v to the average 

return optimality equation (cf. section I), under conditions that guarantee 

the existence of a stationary AEP. 
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In view of the fact that the value of (both the discounted and undis­

counted version) of the game does not necessarily lie within the same ordered 

field as the parameters of the problem (cf. BEWLEY & KOHLBERG [2]) we can­

not expect to find a finite algorithm in the sense that it involves a finite• 

number of field-operations. 

Two algorithms were given by HOFFMANN & KARP [It] and POLLATSCHEK & 

AVI-ITZHAK [ 14]. It was shown that the first .. algorithm converges to a sta­

tionary AEP, if all tpm's of the pure stationary policies are unichained 

and have no transient states. Although the second algorithm seems to compare 

favorably with the first one, as far as net running time and the required 

number of iterations is concerned, it is still unknown under which conditions 

its convergence is guaranteed. 

In this paper, we provide two successive approximation methods for 

locating optimal policies for both players. In both algorithms, we obtain 

in addition at each step of the iteration procedure, upper and lower bounds 

for the asymptotic average value which converge to the latter as the number 

of iteration steps tends to infinity. 

The first algorithm is an adaptation of a "modified" value-iteration 

method as introduced by BATHER [I] and as· generalized by HORDIJK & TIJMS [12]. 

Its convergence is guaranteed whenever condition HI below is satisfied. 

(HI): (a) a stationary AEP exists 

(b) the asymptotic average value g* is independent of the initial 

state of the system. 

The second algorithm is based upon the more elementary value-iteration 

method, and may successfully be applied whenever condition (HZ) below holds: 

(HZ): each of the tpm's of the pure stationary policy pairs is uni-

chained 

Note that (H2) ~ (HI) (cf. e.g. [5], th.3). Under (HZ) we obtain in 

addition lower and upper bounds for the fixed point v* of the optimality 

equation which in this case is unique up to a multiple of_!_, where is the 

N-vector with all components unity. 

At each step of the procedure, both methods merely require the solution 

of N relatively small Linear Programs (the size of which is determined by 

the number of actions in K(i) and L(i), i E Q). Especially for large scale 
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systems, i.e. when N >> 1, this compares favorably with the techniques used 

in [ 11] and [14] which require at each step of the procedure the solution 

of a system of at least N equations. 

In section I we give the notation and some preliminaries. In section 

2 and 3 we present our two successive approximation methods, analyse their 

convergence and convergence rate, and derive the lower and upper bounds for 

* * g and v. 

1. NOTATION AND PRELIMINARIES 

For any finite set A, let IIAII denote the number of elements it contains. 

If A= [A .. ] is a matrix, let IAI = max .. IA .. j and let val A indicate the 
1J 1,J 1J 

value of the corresponding matrix game. Note that for any pair of matrices 

A,B of equal dimension: 

( I. 1) jval A - val Bj ~ IA - Bj 

A A B B (Let (x ,y) and (x ,y) be equilibrium pairs of actions in the matrix games 
. B A B A B A A and B; then. mm .. (A .. - B .. ) ~ x (A - B)y = x Ay - x By ~ val A-val B 

A B A B 1 'A 1J B1J 
~ x Ay x~ll,y = x (A - B)y ~ max .. (A .. - B .. )). For all i E f:l, and any 

k f i,J i] k IJ 
set of numbers {c.' jk E K(i), l E L(i)}, [c.'] denotes the IIK(i)llxllL(i)II 

1 1 

matrix, the (k,l)-th entry of which is clf,l. 
]. 

For all r > O, let V(r) denote the vector, the i-th component of which 

denotes the yalue of the r-discounted game, with initial state i E f:l. BE'WLEY 

& KOHLBERG [2] recently showed for the discrete time case (SDG's) that V(r) 

may be expressed as a real fractional power or Puiseux series in r, for 

all interest rates r, sufficiently close to 0. More specifically, there 

exists an integer M ~ such that: 

( I. 2) 
M-1 

V(r) = g*/r + l 
k=-oo 

(k) -k/M 
a r 

* We call g the asymptotic average value vector. This result carries 

easily over to the general SRG-case (cf. [ 6], lennna l. 2). 

A player's policy is a rule which prescribes for each stage t = 1,2, ... 



4 

which (randomized) action to choose· independence on the current state 

and the entire history of the game up to that stage. A policy is said to 

be stationary if it prescribes actions which depend merely upon the current 

state of the system, regardless of the stage of the game, and its history 

up to this stage. Note that a stationary strategy f(h) for player1(2) is 

characterized by a tableau [fik] ([hil]) satisfying fik ~ 0 and EkEK(i)fik = 

l(hik ~ 0 and ElEL(i) hil = I), where fik(hil) is the probability that the 

k-th. (l-th) alternative in K(i)(L(i)) is chosen when entering state i En. 

We let~(~) denote the set of all stationary policies for player 1(2). We 

associate with each pair (f,h) E ~ x ~ a N-component reward vector q(f,h), 

the holding rate vector T(f,h). and a stochastic .matrix P(f,h): 

(I. 3) (f h) = t t f k,l . 
q , i lkEK(i) ltEL(i) ik qi hil, 

T(f, h)i = lkEK(i) ltEL(i) fik T~,l hil 

P(f, h)ij = lkEK(i) ltEL(i) fik p~jl hil; 

i E n 

i E n 

i,j E n 

Finally we define for any pair (f,h) E ~ x ~ the stochastic matrix IT(f,h) as 

the Cesaro limit of the sequence {Pn(f,h)}:=I" Since being concerned with 

the long run average return per unit time criterion, we evaluate any pair 

(cj>,:q,) of (possibly non-station_ary) policies for players I and 2, by consider-

ing the gain rate vector g(cj>,~): 

( I • 4) g(¢,~). = lim inf 
l. ~ 

i € n 

where p (L) denotes the payoff to player I (the length of the period) in 
n n 

between of the n - I - st and the n-th observation of state. E indicates 
cj>, 1J 

the expectation given the player's policies cj> and~- A number of equivalent 

criteria have been formulated in [3A]. 

A pair of policies (cj>*,w*) is called an AEP, if and only if for every 

policy pair (cj>, w) 

(I. 5) * * * g(cf>,~ ).~ g(cf> ,w ). 
l. l. 

for all i E n 
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One easily verifies (cf. e.g. [3A] and [6]) that if (f*,h*) is a stationary 

( * *· * AEP , g f , h ) = g • 

In [6J, we showed that a pair of optimality equations arises when 

considering the average return per unit time criterion and we investigated 

the interdependences between the existence of a stationary AEP and a solution 

to this pair of optimality equations. 
* * . . . In the case where gi = <g >, i En, i.e., when the asymptotic average 

value is independent of the initial state (cf. condition (HI)), this pair 

of optimality equations reduces to the single equation: 

(I. 6) 
kl 

v. + g = val[ q. ' 
i i 

i E Q 

and in this case we obtained the following equivalences: 

LEMMA I. (cf. car. 2.5 in [6]): 

Asswne that g~ = <g*>., i En. Then the foUOu)ing statements are equivalent: 
(h) i 

(I) a == O, k = l, ••. ,M-1 (cf.(1.2)) 

(II) there exists a stationary AEP 

(III) (1.6) has a solution pair (g,v) 

In addition, under either one qf (I), (II) or (III), any solution pair 

( ) * . . ( * *) . . g,v has g == g , and any policy pair f ,h E cii x 'JI which satisfies the 

equation (1.6) · i.e. which attains the N equilibria in (1.6) simultaneously 

for some solution pair (g,v) is an AEP. D 

Finally we say that two undiscounted SRG's are equivalent if they have the 

same state and action spaces, and if the gain rate vector of any stationary 

pair-of policies is identical in both SRG's. Now, consider the related SDG 

which has Q as its state space, K(i) and L(i) as the action spaces in i E Q, 

and the following transition probabilities and one-step expected rewards: 

{ P~:t = '/T~',e_ [P~~,e_ 0 .. J + 0 .. ; i,j Erl, k E K(i), f E L(i) 
iJ i iJ iJ 1.J 

( I. 7) 
~k,l = k,l/Tk,l 

E Q, k E K(i), ,e_ E L(i) . qi q. . 1. 
1. 1. 
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where o .• is the Kronecker-delta and where T has to be chosen such that 
1 J. Tk,l/(l Pk,l) 0 < T ~ min. k O • - •• 

1, ,-L 1 1J 

This data-transformation which was first introduced in [16] turns every 

SRG into an equivalent SDG (cf. ibid.). Moreover, let V = {v E ENI v satisfies 

(1.6)} and let V be the corresponding set in the transformed SDG: 

LEMMA 2. 

(I. 8) 

PROOF. We show that the set to the right of (1.8) is included within V, 
the reversed inclusion being analogous. Fix v EV and rewrite (1.6) in a 

homogeneous form: 

0 = val[l'l 
1 

i E Q, 

Let (f*,h*) attain the N equilibria in (1.6) and note that for all f E ~, 

h E '¥: 

(1. 9) * * * * ~ * q(f,h ) . - gT(f,h ) . + P(f ,h )v. ~ 0 ~ q(f ,h).- gT(f ,h). + P(f ,h)v., 
1 1 , 1 1 1 1 

i E Q 

with strict equality for f = f* and h = h*. Next multiply each of the left-
* -1 * -1 hand (right-hand) inequalities in (1.9) by T(f,h )i (T(f ,h)i ) > O, use 

(1. 7) and conclude that: 

~kl ~ ~pk_,_l -1 0 = val[q.' - g + l· (T v).J, 
1 J 1J J 

i E Q 

-1 ~ which proves that T v EV. D 

We conclude from lennna 2 and the fact that the original SRG and the 

transformed SDG are equivalent that: 

(1) any stationary AEP in the original SRG is a stationary AEP in the 

transformed SDG, and vice versa 

(2) the asymptotic average value is identical in both the original and 

the transformed game 



(3) if vis a solution to the optimality equation (1.o) in the original 

SRG, then so is T-lv with respect to the transformed SDG. 

2. A MODIFIED VALUE-ITERATION TECHNIQUE. 

7 

Throughout this section, we assume condition (HI) to hold, which im­

plies in view of lennna I, the existence of a solution pair (g*,v*) to the 

optimality equation (1.6). Fix T0 , such that 

(2.0) . Tk'l/(I k,l) 0 <To~ min. k O • -P .. 
1, ',{_. 1 11 

(cf. ( I • 7)) 

00 

and consider the transformed SDG with T = T0 • Let {r J 1 be a sequence of ~ n n= 
interest rates such that lim r = O, and let V(r) denote the value vector n-+<x> n 
of the r-discounted version of the transformed SDG. In view of condition 

(HI) the equivalence of the original SRG and the transformed SDG, as well 
~ ~ as lennna I, we conclude that V(r) has for some integer M 2c: I, a. Puiseux 

series expansion of the special type: 

(2. I) ~· * V(r) = g /r 
~(k) -k/M 
a r for all r sufficiently close 

to 0. 

Applying the proof of th. 2.3 in [6] to SDG's we conclude that any scheme 

(2.2) k l * I ~kl y(n+I). = val [q.' - g + (I +r )- l- P.~ y(n).J, i E fl 
i l. n J J.J . J 

with y(O) a given N-vector, has lim y(n) = a(O), provided that the 
n+= 

00 

sequence {rn}n=I satisfies the conditions: 

(2.3) as n ➔ 00 

(2.4) 
n 

I 
j=2 

(1 - r ) 
n 

I l /M I /M 
(I - r.) r. - r. 1 I ➔ O, 

J J J-
as n ➔ co 

where a(O) is a solution to the optimality equation associated with the 

transformed SDG. 
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LEMMA 3. Conditions (2.3) and (2.4) ·are satisfied for any choice: 

PROOF. 

r = n 
n 

-b with 0 < b :;; 1 

b b Note using the mean value theorem that n - (n-1) :;; 1 for all 

n = 1,2, ••• and use this inequality in order to verify that: 

b 
((n - 1) - 1) 

(n - 1) 
b 

which proves (2.3). Next we apply the mean value theorem to verify that 

n 
}: 

j=2 
(1-r) ... (1-r.) I 

n J 
r. 

J 

~-1 M ~-1 M 
- r. 1 J-

n 

r 
b 

(n - 1) 
b 

(jb-1)(. l)-bM-1...:1 ~-1-b 
J - - ,,;; bM n .b j=2 n J 

ti. 

f b ( I -M- l ) -1 
x dx = 

bn-b ln(n), if M = 

I 
1 ~-1 

(M - I) - In -bM otherwise 

11 ~-1 
t .b(l-M )-1 
l J < 

j=2 -

which proves (2.4). D 

REMARK I.For the MDP- i.e. one player - case, lermna 3 indicates a larger range 

of permitted values for b, than the one that was obtained in [12] (p.206, 

remark) using a different analysis. 

Observe that the sequence {y(n)}:=l cannot be computed in view of g* 

being unknown. We circmnvent this numerical difficulty as in WHITE [21], i.e. 
~ }00 00 

we define the sequences {y(n) n=l and {G(n)}n=l by: 

(2.5) kl -I \ ~k lA y(n+l). = y(n+I). - y(n+l)N = val[q.' + (I+r) L· P.~ y(n).J 
l. l. l. n J l.J J 

- G (n+ I); i e: Q; n = 0, I , 2, ..• 
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(2.6) 

i E Q; n = 0,1,2, ••• 

where y(0). = y(0). - y(0)N; 
1 1 

i E Q. 

THEOREM 1. For aU n = 1,2,... let: 

L(n+l) = min.{val[q~,l + (1 +r )-1 I- Pk,l ""( ) J -1 
(2. 7) .. y n . (l+r ) y(n).} 

1 1 n J 1] J n 1 

U(n+l) ~kl (l+r )-1 I- Pk,l ""( ) J -1 y(n).} = max.{vaHq.' + •• y n . - (l+r ) 
1 1 n J 1] J n 1 

(a) Let (f*,h*) be a stationary AEP and for any n = 1,2, ••• let 

(£ ,h) E ~ x 1 be any pair of policies which attain the N equilibria to n n 
the right of (2.5) sirrrultaneously. Then 

(1) L(n)::;; G(n) s U(n) n = 1,2, ... 
* * * (2) L(n+l)::;; g(f ,h ). ::;; g ::;; g(f ,h ). ::;; U(n+l); 

n 1 n 1 
00 

(b) If {rn}n=l satisfies (2.3) and (2.4)., then: 

lim L(n) = lim G(n) = lim U(n) n-+oo n-+oo n-+oo 
* = g 

i E Q 

~here_!_ is the vector, the components of which 
PROOF. aPe unity. 

(a) (1) Note from (2.5) that y(n)N = 0 for all n = 0,1,2, ... , hence 

* * (2) The inner equalities are innnediate from the fact that (£ ,h) is a 

stationary AEP. We next prove the most left inequality L(n+l)::;; 

g(f ,h*), the proof of g(f*,h)::;; U(n+l) being analogous. 
n n 

Note that for all i En: 

-1 ~kl -It ~kl L(n+l) + (I+r) y(n). sval[q.' + (l+r) l· P.~ y(n).J s 
n 1 1 n J 1J J 

~ * -I~ * Sq(£ ,h ). + (l+r) P(f ,h )y(n). , 
n 1 n · n 1 
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and multiply both sides of this inequality by IT(f ,h*) :2: O. 

(b) . () ~CO) ~ n Recall that limn+a>y n = a € V. Next we observe that if v EV then 

so is v + cl for all scalars c. Hence, 

lim y(n) = lim y(n) - <y(n) >I= a(O) - <a(O)>l EV 
n+a> n+00 N - N -

This in combination with the fact that the "val"-operator is (Lipschitz) 

continuous (cf. ( 1. 1) and ( I.ff)) imply: 

. * min. g = 
'1 

which together with part (a)(l) completes the proof of (b). D 

-b REMARK 2.When taking r = n for some b, with O < b ~ I, the approach to 
n 

the limits in part (b) of the above theorem, exhibits a convergence rate 

which is of the order 

if M = I 

otherwise 

as follows from the proof of lennna 3 and th.2.3 in [6]. We note that the 

* bounds for g in part (a)(2) generalize the bounds ODONI [10] and HASTINGS 

[I 3 J obtained for the MOP-case. 

We sunnnarize this section by specifying an algoritlnn which approximates 

* g, as well as a solution v EV, and which finds for any s > O, s-optimal 

policies for both players: 

ALGORITHM 1 • 

Step 0: Fix TO satisfying (2.0) and transform the SRG with ( k,l p~~,e.; T~',e.) 
Ck,l p~ !,e.) 

qi ; 
1J 1 

into an equivalent SDG with qi ; using the transformation formulae 
}°" 

1J 
-b (1.7). Fix a s,~quence {r satisfying (2.3) and (2.4); e.g. take r =n n n=l 

EN 
n 

with 0 < b ~ 1.. Set n = O; fix y(O) E ands > 0. 

Step 1: Calculate y(n+l), L(n+I), G(n+I) and U(n+l) from y(n) using (2.5), 

( 2 • 6) and ( 2 • 7) 
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If U(n+l) - L(n+I) < E, determine a stationary policy pair (f ,h) 
n n 

which attains the N equilibria to the right of (2.5) simultaneously, use 

f (h) as an E-optimal policy for player 1(2); G(n+l) as an E-approximation 
n n 

for g* and T0y(n +I) as an approximation for a solution v E V. Otherwise, 

increment n by one and return to step I. 

3. VALUE-ITERATION. A SUFFICIENT CONDITION FOR CONVERGENCE 

Once a.gain, we fix TO satisfying (2.0) and consider the transformed 

SDG. In this section we discuss the asymptotic behaviour of the sequence: 

(3. I) 

where Qx. 
i 

Note that 

(3. 2) 

(3.3) 

v(n+l). = Qv(n)., 
i i 

i E Q 

[~k,l \ ~k,l J . = ·val q. + l . P. . x. , 1. E 
i J i] J 

the Q operator is monotonous, 

Q and v(O) E EN is a given N-vector. 

satisfying the basic properties: 

Q(x+cfl = Qx + c I for all scalars c; 
N 

X E E 

(x-y) . :s; (Qx - Qy) . :s; (Qx - Qy) :s; (x-y) · min min max max' 
N x,y EE 

where (3.3) is easily verified by applying the Q-operator to both sides of 

the inequalities y + (x-y)minl :s; x and x :s; y + (x-y)maxL using its monotonicity 

as well as (3.2). 

Note that v(n). may be interpreted as the value of then-stage game 
i 

in the transformed SDG when starting in state i and given some final 

amount v(O). is earned by player I from player 2, when ending up in state j. 

Where~s we still have lim v(n) = g* (cf. BEWLEY & KOHLBERG [2], 
n+oo n 

th. 3.2) the difference {v(n) - ng*}:=l does not need to be bounded, as is 

known to be the case in the one player - model (cf. BROWN [4], th. 4.3). 

In fact, BEWLEY & KOHLBERG [3] proved the existence of a number B > 0 

and a Puiseux series inn, 

W(n) * = ng 

-M-1 
+ l b (k) 

k=-oo 

k/M 
n 

such that Jv(n) - W(n)I <Blog (n+I), n=l,2, ... 
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* 00 LEMMA 4. {v(n) - ng }n=I is bounded under condition (Hl) 

PROOF. Note from lemma I, that (HI) implies the existence of a solution 

v EV. Next, use (I.I) in order to conclude that: 

jv(n) - ng* - v I~ jval[q~•,e_ +}:. P~~,e_ v(n-1).J 
l. J l.J J 

- val[q~•,e_ + L- P~!,e_ (v+(n-I)g*)Jl ~ I v(n-1) - (n-l)g* - vj 
l. J l.J 

D 

* 00 It is known from Markov Decision Theory that even in case {v(n) -ng }n=I 

is bounded, the sequence may fail to converge if some of the tpm's of the 

pure stationary policy pairs happen to be periodic (in [17], SCHWEITZER & 

FEDERGRUEN obtained for the MDP-case the necessary and sufficient condition 
* oo N for {v(n) - ng }n=I to converge for all v(O) E E ) . 

In this section we analyse the behaviour of (3.1) under condition (H2) 

which 1.s a stronger version of (HI) (cf. section 0). 

First however we need the following-notation: Note that in view of 

(3.2), it is possible to restrict the analysis of the Q-operator on a N-1 

dimensional subspace like EN = {x E EN I xN = O} by considering the following 

reduction Q of the Q-operator: 

A ~N ~N 
Q : E ➔ E : x ➔ Qx - <QxN> l 

Accordingly, define v(n). = v(n). - v(n)N = Q v(n-l), i E Q. (Note the simi-1. l. 
00 00 

larity with the reduction in WHITE [21] and of {y(n)}n=I to {y(n)}n=l in 

(2.5)). 

We call a function L(x) on a vector space X, a Dyapunov function with 
. . * . or>&g&n x EX, 1.f: 

(3.4) (I) L(x) 1.s continuous on X 

(2) L(x) ~ 0 and L(x) = 0 ~ x * = X "' 

We have not been able to obtain a straighforward analysis of the be-
oo 00 

haviour of {v(n)}n=I or {v(n)}n=I· However, the study of difference equations 



of the type (3.1) may be greatly facilitated with the help of Lyapunov 

functions, as is shown by the following lennna. 
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* LEMMA 5. Let L(n) be a Lya:punov function on a vector space X, with origin x • 

For n =2,3, •.. Zet An denote the n-foZd a:ppZication of an operator A:X ➔ X 
. n+l n ~.e. A x = A(A x). Then, 

. n * 11.m Ax= x, 
~ 

for all x EX, if 

(3.5) (1) L(Ax) ~ L(x), for all x E X 

(2) there exists an integer J ~ 

* 
such that 1(AJx) < 1(x), 

for all x f: x 

□ 

Lennna 5 is an innnediate adaptation of th. 10.4 in ZANGWI11 [22]. In the 

context of Markov Decision Theory, the use of 1yapunov functions, and in­

particular of lennna 5, was first pointed out in [7]. 

Now, under (H2), the solution to the optimality equation (1.6) is 
. ~N 

unique up to multiple of_!_, as was shown in [6], th. 3.1, i.e. on E there 

exists a unique solution v* EV. 
~N We next observe that both 1 1(x) and 12 (x) are 1yapunov function on E 

* with v as origin, where 

1 1 (x) = llx-v*lld 

1 2 (x) = II Q x - x II d = II Q x - x II d, 

with II x II d = maxi xi - mini xi (cf. BATHER [I]). 1 1 (x) obviously satisfies 

both conditions in (3.3); 12(x) ~ 0 is innnediate as well, its continuity on 

EN follows from the continuity of the "val"-operator (cf. (I. I)) and 
~ ~N IIQx - xU d = 0 ~ there exists a scalar g, such that Qx - x = <g>l ~ x E VnE ~ 

~ X = v*). 

Note that 1 2 (x) has the advantage of being computable in each point 
~N 

X E E . 

We next recall that under (H2), the tpm's of all stationary policy pairs 

are unichained, and in addition have all diagonal entries strictly positive 
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when choosing • 0 strictly less than'the upperbound on Tin (2.0). In [8], 

th.4 FEDERGRUEN, SCHWEITZER & TIJMS showed that this implies the following 

"scrambling-type" condition for all pairs of N-tuples of pure policy pairs 

{(f 1,h1); ••. ;(fN,hN)} and {(fi,hi); ••• ;(fi,h~)}: 

N 
(3.6) l min[P(fN,~) ••• P(f 1,h1)i 1j;P(f~,hi) ••• P(fj,hi)i2jJ > 0 

j=l 

Observe that for all i 1,i2 E Q the expression to the left of the above 

inequality is a continuous function on [X~=l <P x 1¥] 2 which can be embedded as 

a compact subset of a Euclidean space. Hence there exists a uniform scrambling 

coefficient a> O, such that 

N 
(3. 7) jL min[P(fN,~) ••• P(f 1,h1)i 1j; P(f~,h~) ••• P(fi,hj\2jJ > ll 

This enables us to prove the convergence of {v(n)}:=I under (H2). Let 

l(n+l) = [Q v(n)-v(n)J . and u(n+)) = [Q v(n)-v(n)J for all n = 0,1, •.• min max 
Define g(n+l) = [Q v(n)]N 

THEOREM 2. 

(a) both L1(x) and L2 (x) satisfy (3.4) with J = N; hence 

lim v(n) = v* for all v(O) E EN 
n-+<><> 

(b) l(n) $ l(n+I) $ g(n+l) $ u(n+I) $ w(n) for all n = 1,2, •.• 

* lim l(n) = lim g(n) = lim w(n) = g 
n-+<><> n-+<><> n-+<><> 

* * Let (f ,h) E <P x 1 be an AEP, and for all n = 1,2, ••. let (a) 

(f ,h) E <P x 1 be any pair of policies which attain the 
n n 

N equilibria to the right of (3.1) simultaneously. Then 
* * * l(n+l) $ g(f ,h) $ g $ g(f ,h) $ w(n+I) 

n n 

PROOF. 

(a) We merely show that L1(x) satisfies (3.4), the proof for 1 2(x) being 

analogous. Use (3.3) to verify that L1(Qx) = IIQx-v*lld = IIQx-Qv*lld $ 
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~ llx-v lld = L1(x). Next we obtain part (2) of condition (3.4) by showing 

that: 

(3.8) 
N 

= L1 (Q x) < ( I - a.)L 1 (x), for all x e: X 

where the proof of (3.8) goes along lines with the proof of th.5 in [8], 

using (3. 7) • 

(b) "The proof of l(n+I) ~ m(n+I) ~ w(n+I) is analogous to the proof of part 

(a) ( I) in th.I; next note that l(n+ I) = [Qv(n) - v(n) J . = [Q(Qv(n-1)) -min 
- Qv(n-1)] . ~ [Qv(n-1) -v(n-1)] . = l(n), where the inequality part min min 

00 

follows from (3.3). The monotonicity of {w(n)}n=I is shown in complete 

analogy. 

(c) cf. proof of th. I part (a)(2). D 

Observe that (3.8) is stronger than condition (3.4)(2), since the latter 

does not require the existence of some integer J ~ I, for which 

sup X L(AJx)/L(x) < I. 
XE 

In fact (3.8) shows that the approach to all of the limits in parts 

(a) and (b) of the above theorem exhibits a geometric rate of convergence, 

which is considerably better t~an the rates we obtained in section 2, for 

algorithm I (cf. Remark 2). In this particular case, it is even possible 

to show (along lines with the proof of th. 5 in [8]) that Q is a N-step 

contraction mapping on EN, i.e. II QNx - QNyll d ~ ( I - a.) II x - yll d, for all 

x,y e: EN and the latter leads to the following bounds on v*: 

(3.9) 
-1 N 

v(nN+r\ - a. (I - a.) llv(N) -v(O)II d 

v(nN+r). + a. -I (1-a.)Nllv(N) 
i 

(for a proof cf. [8], th. 6 part(a)). 

* ~ v. ~ 
i 

ie:Q;n=l,2 ••• ; 
r=n.., .•• N-1. 

00 

Finally we conclude that merely replacing {y(n)}n=I' L(n), G(n), U(n) 
00 

by {v(n)}n=I' l(n), g(n) and u(n) resp. and taking • 0 strictly less than the 

upperbound on Tin (2.0), we obtain under (H2) a second algorithm for 
. . * * approximating v, g and for locating £-optimal policies for both players 
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(note that in this case (3.9) may be used as a stopping criterion for getting 

* E-approximations for v ). 
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