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. d b" . *) Duopoly models, stochastic games an imatrix games 

by 

O.J. Vrieze 

ABSTRACT 

This paper deals with a multi-period duopoly model under uncertainty. 

When one (or both) of the duopolists has taken an action, there is some kind 

of cooling-period of length T, i.e. a period in which neither of the duo

polists may take any action. Next there is specified a sequence of equidis

tant time-points at which the duopolists may or may not take an action. As 

soon as one (or both) of the duopolists takes an action, there again will be 

a cooling period of length T, etc. 

An action for a duopolist is a combination of setting a price for his products 

and choosing a production rate. 

The state of the system is characterized by the following quantities of 

both duopolists: price, production rate, stock and selling rate. 

An action of one (or both) of the duopolists in a state causes a random 

jump to a new state, where the randomness concerns the selling rate of the 

duopolists. 

In the model production costs, stock costs and switching costs are in

cluded. The infinite horizon problem will be considered and future incomes 

will be discounted. 

It will be shown that this duopoly model can be reformulated as a 

stochastic two-person game model with non-zero sum payoffs and a discount 

factor depending on the state and the actions of the players. It follows from 

the literature on stochastic games that this game possesses an equilibrium 

point. 

Furthermore the one-period model is studied. Under suitable conditions 

(which seem to be quite natural) on the payoff matrices it will be shown that 



the resulting bimatrix game possesses a unique equilibrium point, which con

sists of nearly pure strategies. Extensions of this result to the multi

period case will be discussed. 

Key Word,s & Phrases: du.opoly model, two person nonzero sum stoehastie game, 

equilibrium, bimatrix game, uniqueness of equilibrium 

points. 

This report will be submitted for publication elsewhere. 



1. INTRODUCTION AND MODEL FORMULATION 

Quite a lot of papers are published concerning duopoly models. The 

historical viewed first ones studied the non-cooperative static situation 

in which both duopolists once can take an action. The problem was to find 

an equilibrium situation. See for instance COURNOT [1], MAYBERRY [9], 

HENDERSON [6], SHUBIK [19], SCHNEIDER [16] and RUFFIN [13] • 

. Later on within this field of non-cooperative attack dynamic was 

introduced into two directions. The first direction studied the following 

question: How can an equilibrium situation of a static model be reached? 

i.e. starting in an arbitrary situation is there an appealing path to the 

equilibrium situation, where this path consists of a sequence of points at 

which the duopolists simultaneously take an action. This question is closely 

related to stability questions. Literature on this subject can be found in 

THEOCHARIS [22] and [23], SATO-NAGATANI [14], CYERT & DE GROOT [2], 

VAN DER WHEEL [24]. 

The second direction concerns multi-period models both deterministic 

and stochastic. Their problems are the existence of equilibrium points 

(usually in the sense of NASH [10]) for e:g. the discounted model or the 

average payoff model and finding algorithms to obtain the equilibrium points. 

Some results on these subjects can be found in FRIEDMAN [4] and [5], KIRMAN 

& SOBEL [7] and SOBEL [20]. This last direction is for a great deal inspired 

by the results of the theory on stochastic games (for a survey of this field, 

see PARTHASARATHY [ 11]). 

So far we have only mentioned non-cooperative entries. In the develop

ment of the duopoly theory there also is a stream of papers which attack the 

problem from a cooperative point of view. Contributors to this direction are 

STACKELBERG [21], VON NEUMAN-MORGENSTERN [25], SELTEN [17], SCARF [15] and 

MARS CHAK & SELTEN [ 8] . 

This paper deals with a multi-period duopoly model under uncertainty 

within the non-cooperative setting. In all the above mentioned papers the 

duopolists are assumed to take their actions simultaneously. An essential 

feature of our paper is that this need not be the case. 

We are now going to formulate our model. 

Two duopolists each have the possibility of producing (or buying) and selling 
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a conm1odity. For convenience we confine ourselves to the case with one 

conm1odity. The reader can easily verify that the multi-conm1odity case can 

be attacked along the same lines. 

The state of our system is specified by the following eight quantities: 

(p 1 ,r 1,s 1, v 1 ,p2, r 2,s 2, v2), where pi is player i's price, ri is player i's produc

tion rate, s. is player i's stocks and v. is player i's selling rate, 
1 1 

i=l,2,. 

An action for a duopolist is a combination of fixing a price at which he 

will offer his conm1odity and choosing a production rate. 

The moments upon which the duopolists may take their actions are specified 

as follows: When one (or both) of the duopolists has taken an action (i.e. 

changing his price or production rate) there is a kind of cooling-period of 

length T, i.e. a period in which neither of the duopolists may take any 

action. Next there is specified a sequence of equidistant time-points, at 

which the duopolists may or may not take an action. However as soon as one 

(or both) of the duopolists takes an action there again will be a cooling

period of length T, etc. As unit of time we take the distance between two 

consecutive time points, at which the duo~olists may take an action. As an 

example we may think of a situation where both duopolists may or may not 

once a day take an action; in that case T = 1. 

As long as neither of the duopolists takes an action the selling rates 

v 1 and v 2 are assumed to remain constant. 

An action of one (or both) of the duopolists in a state 

x = (p 1,r 1,s 1,v1,p2,r2 ,s2 ,v2) causes a random jump to a new state. This 

randomness concerns the selling rates and may also depend on the present 

state x. 

Let V be the set of pairs (v 1,v2) which can occur. In our model we 

assume V to be finite. 

Let Ai(x) be the set of actions available to duopolists i in state x, 

i = 1,2. Then for each triplet (x,a 1,a2) with x a state, a 1 E A1(x) and 

a2 E A2 (x) there is specified a set of probabilities 

{p((v1,v2) I x,a 1,a~I (v1,v2) EV}, such that 

(1 • 1) 
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where p(v1,v2) I x,a1,a2) is the probability that the selling rates v 1 and 

v2 will occur if in state x the duopolists take actions a 1 and a 2 respectiv

ely. Note that p((v 1,v2) I x,a1,a2) only depends on both a 1 and a2 , when the 

duopolists take actions at the same time. 

In the following we assume that p. and r., i = 1,2, each can only accept 
l. l. 

a finite number of different values and that Tis a positive integer. Further-

more negative stocks are forbidden and duopolist i has a maximum stock 
.. f m • I 2 capacity o s., 1. = , • 

l. 

From the assumptions above and the assumption that Vis finite we can 

deduce that also the stocks can only take on a finite number of different 

values at those moments upon which the duopolists may take actions. This may 

be seen as follows. 

There a:re only a finite number of different stock changing rates (p.-v.) for 
l. l. 

duopolists i, which we assume to be written in decimalform. Let g. be the 
l. 

greatest common divisor of all those numbers (p.-v.) i.e., the greatest 
l. l. 

rational number, which by division on (p.-v.) has an integral outcome for 
l. l. 0 

all (p.-v.). Now it is easy to see that with a starting stocks. the stock 
l. l. l. 

at those moments upon which the duopolists may take an action, can be express-

ed ass?+ n•g. where n is an integer. When we take into account the bounds 
l. l. 

0 ands~ it follows that only a 
l. 

finite number of different stocks can occur. 

Note that the actual upperbound on the stocks 
0 m < m O ( m ) such that s. + n • g. - s. < s. + n + 1 • g .• 
l. l. l. l. l. 

0 m m equals s. + n •g. where n is 
l. l. 

From the above now we see that the state variable x= (pl'rl'sl'vl, 

p2,r2 ,s 2,v2) can only take on a finite number of different values at those 

moments upon which the duopolists may take actions. Let N be this number 

and number those states 1,2, ••• ,N. 

Although the stocks change continuously during a period between two 

consecutive actions, so the state changes continuously, this period is 

characterized by the state k E {1,2, ••. ,N} at the beginning of such a period. 

We therefore in the following use the somewhat abused identification, that 

during such a period the state is k. 

When at a certain time t 0 the state has become k= (p 1,r 1,sl'vl,p2,r2 , 

s 2,v2), belonging to {1,2, ••• ,N}, two things are possible. First if 

p.-v. = 0, i = 1,2 the stocks remain constant, Secondly if p.-v. # 0, 
l. l. l. l. 

i = I and/or 1 = 2, there will be at least one stock that changes in time. 
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As we have assumed stock bounds O and sr, this gives us a bound on the 

sequence of equidistant points, at which the duopolists may or may not 

take an action. Let for state k K(k) be the integral such that 

t 0 + T + K(k) + 1 would be the first time point at which at least one of the 

duopolists has negative stock or exceeds his maximal stock capacity. So 

the time points at which the duopolists can take an action in state k can 

be numbered as 0,1, ••• ,K(k). For the time being we assume that p.-v. I 0 
1 1 

for every state k E {1,2, .•• ,N}. Later on we shall make clear that this is 

not an essential assumption. 

We are now going to specify the cost aspects of our model. 

Let c.(r.) be the production costs per unit of time, when the production 
1 1 

rate is r 1., i = 1,2. Let b.(s.) be the stock costs per unit of time, when 
1 1 

the stock level is s 1., i = 1,2. We assume that b.(s.) is a continuous func-
1 1 . 

tion in si. 

Then, when at time t 0 the state has become k = (p 1,r1,s 1,v1,p2,r2,s2 ,v2) 

E {1,2, ••• ,N} and if at t > t 0 none of the duopolists has taken an action 

yet, then the profit rate for player i at that time is: 

(I. 2) w. (k,t) = p.v. - c. (r.) - b. (s. + (t-t0 ) (p.-v.)). 
1 1 1 1 1 1 1 1 1 

Furthermore there are switching costs. If in state k player i takes 

action a. E A.(k), then he has an innnediate cost h.(k,a.). We are going to 
1 1 1 1 

consider the discounted model over an infinite time horizon. An income at 
-pt 

time twill be discounted by a factor e , with p > O. 

2. REFORMULATION OF THE MODEL AS A TWO-PERSON NONZERO-SUM STOCHASTIC GAME 

What actually happens in the above duopoly model is that in a state 

k E {1,2, ..• ,N} duopolist i chooses 

an action a. E A.(k) which he wants 
1 1 

a time-point t. E {0,1, •.• ,K(k)} and 
1 

to carry out at t .• 
1 

If t 1 < t 2 , then only action a 1(k) is executed. 

If t 1 > t 2, then only action a 2 (k) is executed. 

If t 1 = t 2 , then both a 1(k) and a2 (k) are executed. 

In the game model the two duopolists are of course the two players. 
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The set of states is S = {1,2, ••• ,N}, where k ES should be associated 

with the state k of the duopoly model. 

The action space in state k for player i is {0,1, .•. ,K(k)} x Ai(h), 

i = 1,2. An element of this action space will be denoted by (t.(k),a.(k)). 
l. l. 

If in the duopoly model at time t 0 the state has become k and if the 

duopolists choose action time points t 1(k) and t 2 (k) and actions a 1(k) and 

a2 (k) then the discounted profit for duopolist i from t 0 until the next 

action time point equals: 

(2. 1) 

where 

h. (k,a. (k)) = 0 
l. l. 

if 

and 

h. (k,a. (k)) = h. (k,a. (k)) 
l. l. l. l. 

if 

If we substitute (1.2) into (2.1) and set T = T+min(t 1(k),t2(k)) this 

yields: 

(2.2) 

--ptof1-e-pTl --pto[JT t' l 
= e L---J(p.v.-c.(r.)) - e e-p •b.(s.+t'(p.-v.))dt'J 

p l. l. l. l. l. l. l. l. 
0 

Now if in the game model in state k the players choose actions 

(t 1(k),a1(k)) and (t2(k),a2 (k)) then from (2.2) it may be easy under

standable that as an immediate payoff to player i we define 
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[ -pT] I-e = --- (p.v.-c.(r.)) 
p l.l. l. l. 

-r 
0 

-pt 1 - -pT 
e •b.(s.+t'(p.-v.))dt' - h.(k,a. (k))•e , 

l. l. l. l. l. l. 

where 

The discount factor that belongs to the actions (t 1(k),a 1(k)) and 

(t2 (k),~2 (k)) in state k equals B(k,(t 1(k),a 1(k)),(t2 (k),a2 (k))) = 
e-p(T+m1.n(t1(k),t2(k)), i.e. an immediate payoff in the next state must be 

multiplied by B(k,(t 1(k),a 1(k)),(t2 (k),a2 (k))) for calculating its value at 

the time point at which the system has entered the present state. 

The transition probabilities belonging to the actions (t 1(k),a 1(k)) and 

(t2 (k),a2 (k)) in state k for the game model, equal the transition probabil

ities as specified under (1.1) in the duopoly model. 

With this the game model is specified. The equivalence with the duo

poly model is easily verified. 

A stationary strategy 1r for player 1 1.n the game model is a vector 

(1r 1 ,1r 2 , ... ,1rN), where 1fk is a probabiiity distribution on the set of pure 

actions for player 1 in state k. For a strategy 1r for player l we denote 

the probability with which he chooses pure action (t 1 (k),a 1 (k)) in state k 

by 1r(t 1(k),a 1 (k)). 

Analogue notations hold for a stationary strategy p for player 2. 

If the players play the stationary strategies 1r and p respectively, 

then the total expected discounted payoff to player i can be found as the 

unique solution of the following set of equations: 

(2.3) 1V • (k , n , p ) = 
l. 

l l 1r k ( t 1 (k) , a 1 (k) ) • 
(t 1 (k),a 1 (k)) (t 2 (k),a2 (k)) 

• pk ( t 2 (k) , a 2 (k)) { gi (k, ( t I (k) , a I (k)) , ( t 2 (k) , a 2 (k))) + 
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N 
+ 8 (k, ( t l (k) , a 1 (k)) , ( tz (k) , a2 (k))) • Q,L p (Q. I k, al (k) , a2 (k)) • 

k = 1,2, ••• ,N. 

Here v.(k,n,p) denotes the total expected discounted payoff to player i, 
1. 

when the game starts in state k, the players use stationary strategies TI 

and~ respectively and the game moves on over an infinite horizon, 

k = 1,2, ••• ,N. 

DEFINITION 2.1. A pair of strategies (n*,p*) is called an equilibrium point 

if and only if 

k = 1,2, .•• ,N, Vp, 

and 

k = 1 , 2, ••• , N, Yn. 

Now we can state our main theorem. 

THEOREM 2.2. The duopoly modBZ as specified in section 1 possesses an equi

librium point of stationapY strategies. 

PROOF. From the above shown similari;y between the duopoly model and the 

game model we see, that it suffices if we proof the theorem for the game 

model. But that is a well-known result in stochastic game theory. ROGERS 

[12] was the first who showed this. He restricts himself to the class of 

stationary strategies. That in these models an equilibrium point within the 

class of stationary strategies is also equilibrium point within the class 

of behaviour strategies can be found in VRIEZE [26]. D 

Ifweallowforacertainstatek thepossibilityp.-v. =O, i= 1,2, so the 
· 1 1 

sequence of points at which the players may take an action is not bounded, 

then in the game model player i has in state k a countable number of pure 

actions. Also in that case the game model and so the duopoly model possess

es an equilibrium point of stationary strategies, but now we must base 

ourself on a heavier theorem as e.g. can be found in VRIEZE [26] or 

FEDE RGRUN [ 3] . 

It is known that in general this game model possesses more than one 
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equilibrium point, so a natural question thrusts upon itself, namely, are 

there conditions under which the above model has a unique equilibrium point 

and furthermore how close stand these conditions to reality. The following 

section let in some light on these questions. 

3. UNIQUE EQUILIBRIUM POINTS 

We first consider the one-period case, then the problem reduces to 

a bimatrix game. 

Let player I have m pure actions and player 2 n. 

Let A be the mxn-matrix of payoffs for player I and B be the mxn

matrix of payoffs for player 2. 

We now state some properties for payoff matrices, which will be very 

useful in formulating conditions under which a bimatrix game has a unique 

equilibrium point. 

P 1: a payoff matrix for player I (player 2) is said to be 

one-peaked in the columns (rows) if for each column j 

(row i) the following hol'ds: 

there exist a unique ,i0 (j 0), 

Vi :f, io (b .. > b .. , Vj :f, jo)· 
l.Jo l.J 

such that a• • ioJ > a •• ' l.J 

In the following for a one-peaked payoff matrix for player I (player 2) 

we denote with i. (j 1.) the row (column) such that a .. >a .. , Vi :f, i., 
J l.jJ l.J J 

j = I, ... ,n (b .. > b .. , Vj :f, j., i = I, ... ,m) 
l.Ji l.J l. 

P2 : a one-peaked payoff matrix for player I (player 2) is said 

to be slow peak decreasing (slow peak increasing) if the 

following holds: or i. = i. 1 or i. = i. 1-I, j = 2, .•• ,n 
J J- J J-

(or j. = j. 1 or j.= j. 1+1, i = 2, ••• ,m). l. 1.- l. 1.-

P3: a payoff matrix for player I (player 2) 1.s said to be con

cave in the columns iff: 

a .. -a. 1. > a. 1.-a .. , i = 2, ... ,m-1; j = I, ... ,n 
l.J l. - J l. + J l.J 

(b .. -b . . I > b . . 1-b .. , j = 2, ... , n-1 ; i = I , ... , m) . l.J l.J- l.J+ l.J 
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THEOREM 3. I • A bimatrix game such that the payoff matrices A and B obey the 

* * properties P 1, P2 and P3 possesses a unique equilibrium point (x ,Y ), where 

* * both x and y are concentrated at at most two pure actions. 

PROOF. As A and B obey the properties P 1 and P2 exactly one of the following 

two possibilities must occur. 

a) There exist a row i O and a column j O such that 

and 

b) There exist a row i O and a column Jo, such that 

> a. . ' 
I.Jo 

In case a) we clearly have an equilibrium point 1.n pure strategies. 

If b) holds, consider the following 2x2-bimatrix game (A0 ,B0 ): 

(""' "iojo•' ) C .. b.. ) Ao l.oJo Bo= l.OJO 1.0Jo+1 

= aiO+l jO a. 
jO+l 

b. . b. 
jo+1 iO+l 1.0+ 1 Jo iO+l 

It is easy to check that this bimatrix game does not possess an equilibrium 

point in pure strategies. Furthermore, as this game is non-degenerate there 

is a unique completely mixed equilibrium point. Let this equilibrium point 

* * . * * * * * * * be (xO,yO), with xO = (xiO,xio+J) and Yo= (Yjo•Yjo+J). Note that xO is the 

unique optimal strategie for player I 1.n the matrix game B0 , where player 

is a minimizing player and that y~ is the unique optimal strategie for 
0 player 2 in the matrix game A, where player 2 is a minimizing player. 

It can now be verified (property P3) that the strategies 

and 
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form an equilibrium point for the game (A,B). 

So both to case a) and to case b) there corresponds an equilibrium point. 

We now claim that in both cases the corresponding equilibrium point is 

the unique equilibrium point for the game (A,B). 

In the following we concentrate upon case b) for in case a) the same reasoning 

can be held with 1 0 substituted for i 0+J and j 0 substituted for j 0+1. 

Assume that (x,y) is an equilibrium point for the game (A,B). 

Let 

and 

We need four steps. 

- * * Step I. Let x = x. From property P3 it can be seen that y is strictly 

better for player 2 against x than every other strategy, so 
* - * - * y = y • In the same way: if y = y, then x = x. 

Step 2. Let x be such that x 1 = 0 and x2 # 0. From property P3 it follows 

that y must be such that y 1 =·o, for if y 1 # 0 then transferring 

this weight to column j 0 would be strictly better for player 2. 

But now it follows that player I yields more if he transfer the 

weight x2 t~ the row i 0+1, so there exists no y such that for 

this X (x,y) is an equilibrium point. 

Step 3. Let x be such that x2 = 0 and x 1 # 0. Then y must be such that 

y2 = 0 (else transferring to j 0+1), from which we see that player 

gets more if he transfers the weight x 1 to the row i 0 , so also 

this (x,y) cannot be an equilibrium point. 

An analogue reasoning as in the steps 2 and 3 shows that y 
can be neither such that y 1 = 0, y 2 # 0, nor such that y 1 # 0, y2 = 0. 

Step 4. Let x be such that x 1 # 0 and x2 # 0. 

Let i 1 be a row with i 1 < i 0 and xi # 0 and let i 2 be a row with 
I 

i 2 > i 0+t and xi2 # 0. In order (x,y) to be an equilibrium point, 

we must have: 

·, ,. 



(3. 1) 
-T -

= X Ay and 

Here A. denotes the i-th row of A. 
]_. 

- -T -A. •y S: x Ay, 
]_ . 

Let j 1 be such that ij 1 = i 1 and ij 1_ 1 = i 1+1. Such a j 1 exists for else 

row it l would be strictly better for player. l than row i 1 . 

Now from (3.1) we derive 

(3.2) 
n 
I 

j:=j 
1 

j -1 
1 

I 
j=l 

Note that each term in the summations of (3.2) is positive. 

Now using several times property P3 we get: 

So 

n 
I <a. 

. . ]_ 1 
J=J 1 

j 1-1 

~ 2 l (a. 1 . -a. . )y. > 
j=I 1 1+ J 1 13 J 

In the same way we can show 

n 
l (a .. -a. l.)y.~ 

j=j ilJ il+ J J 
1 

j 1-1 

I 
j=l 

(3. 3) k = 2, 3, •.• , m-i I • 

As i 2 E {itk I k=2,3, ... ,m-i} we see that (3.3) contradicts (3.1), so 

again (i,y) cannot be an equilibrium point. 

* * Combining these four steps yields the conclusion that (x ,y) is the only 

equilibrium point for the game (A,B). 0 

1 1 

In regarding the properties P 1, P2 and P3 the properties P 1 and P3 seem 

to be quite natural for a duopoly situation. Property P2 is the strongest 

one. A reasoning which makes this property somewhat acceptable is the 

following: the set of pure actions for a player must be seen as the lattice 

b,lbLIV I rjtct:, '' ,. 
/\M:, Y ,J,U,\M 
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points of the original action space, which is assumed to be an interval. As 

it is reasonable to assume the payoff functions to be continuous on these 

original action spaces it is imaginable that the lattice may be chosen in 

such a wat that two consecutive points for a player give only small devia

tions in the payoff values for the other player so that his best replies 

against these two points respectively must be close together. 

We now go back to the stochastic game. We are going to state two 

theorems concerning uniqueness of equilibrium points in two-person non

zero stochastic games. 

A two-person non-zero sum stochastic game will be denoted by a 

fixed-tuple (S,A,B,P,8) where: 

S = {1,2, ••• ,N} is the set of states. 

A= (A1, ••• ,~) with Aic a (~x°k)-matrix, such that aij(k) is the 

payoff to player I in state kif player I chooses row i and 

player 2 chooses column j, i = 1,2, ••• ,~; j = 1,2, ••• ,nk. 

B = (B 1, ••• ,Bn), the same as A but for player 2. 

p = {p(ilk,i,j) I i= I, ... ,~; j = I, ... ,°k; i= l, ... ,N; k= l, ... ,N} 

is the set of transition probabilities, i.e. if in state k the 

joint players action is (i,j) then the probability that the 

system moves to state i is p(ilk,i,j). 

8 = {8 .. (k) I 1= 1, ••• ,m., j = l, ... ,n., k= l, ... ,N} is the set of 
1,J K K 

discount factors, where 8 .. (k) belongs to state k and actions (i,j). 
l.J 

DEFINITION 3.2. For a two-person non-zero sum stochastic game (S,A,B,P,8) 
n - n and for each v I e: lR and v2 e: lR the elements of the following set of N 

bimatrix games are called the dummy bimatrix games with v1 and v2: 

where 

a .. (k) = a .. (k) + 8 .. (k) 
l.J l.J l.J 

and 

y .. (k) = b .. (k) + 8 .. (k) 
l.J l.J l.J 

N 
l p(ilk,i,j)v1(i), 

t=I 

N 
l p(tlk,i,j)v2(t), 

t=l 
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We need the following lennna. 

. . . ( * * . h * <-* -*) LEMMA 3.3. A pa&r of stat&onary strateg&es x ,Y) W&t x = x 1 , ••• ,~ 

and y * = (y~ 1, ••• ,y;) is an equilibrium point for a game (S ,A,B,P, B) if and 

only if (i;,;,;) is an equilibrium point in the associated dwnnry bimatrix 
-* -,< -* . d a· d game Gk(v 1,v,)), k = l, ••. ,N, where V. &S the total expecte &Scounte pay-

,_ 1 

off to playe1" i, i = 1,2, under the strategi~s (x*,y*) in the stochastic 

game .. 

PROOF. The proof of this lellllila can be found in FEDERGRUN [3] (lemma 2.3) 

and also in VRIEZE [ 26] ( the proof of theorem 2. l), al though they both have 

B . . (k) = B, Vi, Vj, Vk. For the proof this is not an essential assumption. D 
1] 

- - 2N 
Let for a stochastic game (S,A,B,P,8) and for a vector (v 1,v2 ) E 1R 

Tk(; 1,;2) denote the set of equilibrium points for dummy bimatrix game 

Gk(; 1,:;2) and let Uk(; 1,;2 ) denote the set of payoff pairs associated with 

these equilibrium points. 

DEFINITION 3.4. A pair of vectors (:; 1,;2) E JR.2N and (w 1 ,w2 ) E JR.2N is 

called contracting with respect to a game ·cs,A,B,P ,B) if and only if for 
-o -o N - - -o -o N 

each (v 1,v2 ) E Xk=l Uk(v 1,v2) and each (w 1 ,w2 ) E Xk=l Uk(w 1 ,w2 ) the follow-

ing holds: 

with O ~a< I and ll•II denoting the sup norm in JR.2N 

THEOREM 3.5. If for a stochastic game (S,A,B,P,B) each pair of vectors 

( - - ) 2N • · h Ji h. h . . v 1,v2 E 1R &S contract&ng, ten or t &S stoc ast&c game every equ&-

librium point yields the same payoffs for both players. 

PROOF. Let (x*,y*) and (;,y) be two equilibrium points for the stochastic 
-* -* ~ ~ 

game and let the associated payoff pairs be (v 1,v2), respectively (w 1,w2). 

From leI!llila 3.3 it follows 

-* -* matrix game Gk(v 1,v2) and 

matrix game Gk(~ 1.~2). 

-* -* that (~,yk) is equilibrium point in the dummy bi-

that C\,yk) is equilibrium point in the dummy bi-

-* -* -* -From equation (2.3) we see that (~,yk) in Gk(v 1 ,v2 ) yields a payoff 

pair (;; (k),;~;(k)) and analogue (ik,:~\) in Gk(~ 1.~2 ) yields a payoff pair 
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~ ~ -k -k N -* -k (w1(k),w2(k)). So it is clear that (v1,v2) € Xk=I Uk(v1,v2) and 
~ ~ N ~ ~ 

(w I'w2) € xk=I uk (w I'w2). 
Using the contracting property with (v;,v;) and (i1,i2) we get 

Note that theorem 3.5 states that in the case where each pair of vectors 

<v1,v2> JR2N and <wl'w2> 
2N contracting the map <vl'v2>+ € € JR are 

n - -
Xk=I Uk(vl,v2) has exactly one fixed point. 

Note also that it is enough if the contracting property holds for 

each pair of vectors (vl'v2) and (wl'w2), such that llv1D s; M1/(I-f3), 

llv2II s; Mz'(I-f3), llw 1U s; M1/(I-f3) and llw2II s; M2/(I-f3), where M1 = .ma.x lai.(k)I, 
1,J,k J 

M2 =.ma.x lbi.(k)I and f3 =}lla.x f3i.(k). 
1,J,k J 1,J,k J 

THEOREM 3.6. Let for a stochastic game (S,A,B,P,f3) the following hold: 

- - 2N - -a) For each (vl'v2) E JR such that llv 1II s; M/(I-f3) and llv2II s; Mz'(I-f3) 

each dummy bimatrix game ~ (v 1 , v 2) , k = I , ••• , N obey the properties P 1 , P 2 

and P3 • 

b) In addition to a): for each k the dummy bimatrix games Gk(v 1,v2) have the 

same structu:r>e for each (v 1, Vz) such that II v 1" s; Ml/ ( 1-13) and ff v} s; 

M2/(l-f3), i.e. or Gk(v1,v2) has a unique pure equilibrium point which is 

the same for each (v 1,v2), or Gk(v1,v2) has a unique equilibrium point 

where player 1 uses two consecutive rows and player 2 uses two consecutive 

columns, such that these two rows and two columns are the same for each 

(v 1,v2) (the weights on them need not be the same). 

If a) and b) hold, then the stochastic game has a unique equilibrium point. 

PROOF. We will show that 

lRZN such that llv111 ,llw1H 

- - 2N each pair of vectors (v1,v2) € JR 

s; M1/(l-f3) and llv2II ,Uw2U s; M2/(J-f3) 

and (w l ,w2) € 

are contracting 

with contraction radius (3. Then theorem 3.5 tells us that the map 

(v1,v2) + x:=I Uk(v1,v2) (Uk(v1,v2) contains but one element, k = l, .•• ,N) 
-* -* has a unique fixed point (v1,v2) and from condition a) in the theorem we 

-* -* see that Gk(v 1,v2) has a unique equilibrium point, k = 1, .•• ,N, which by 



lemma 3.3 constitutes an equilibrium point for the stochastic game which 

therefore must also be unique. 

Fix k E {l, .•• ,N}. We only consider the case where player 1 must use 

in the k-th dummy bimatrix game two rows, say i 1 and i 1+t and player 2 two 

columns, say j 1 and j 1+t. The other case can be treated quite analogue. 

15 

o- - o- o- . . - -Let Gk(v 1,v2) = (~(v1),Bk(v2)) denote the restriction of Gk(v1,v2) to 

the rows i 1 and i 1+1 and the columns j 1 and J1+1, so (~(v1),B~(v2)) is a 

(2x2)°-bimatrix game. From condition a) and the proof of theorem 3.1 we see 

that this (2x2)-bimatrix game has a unique equilibrium point (x~(v1,v2), 
-* - - -* - -y0 (v1,v2)) such that x0 (v 1,v2) is the unique completely mixed optimal 

strategy for player I in the matrix game B~(v2) (player I the minimizing 

player) and y~(v 1,v2) is the unique completely mixed optimal strategy for 
0 -player 2 in the matrix game ~(v1) (player 2 the minimizing player). But 

this means that the payoffs to the players I and 2, which belong to the 
- - 0 - oT -unique equilibrium point of Gk(v 1,v2), equal val{~(v 1)} and val{Bk (v2)} 

oT - o -
respectively, where Bk (v2) denotes the transpose matrix of Bk(v2) and 

val{matrix} denotes the value of a matrix game in the usual sense. 
-* - - -* - -As in the proof of theorem 3.1 the p~ir (x0 (v1,v2),y0 (v1,v2)) can be 

extended to the unique equilibrium pair of Gk(v1,v2) and the payoffs for the 

players I and 2 belonging to this equilibrium pair of Gk(v2,v2) are the 
0 - 0 -same, so val{~(v1)} and val{Bk(v2)} respectively. 

Now let (v 1,v2) and (w 1,w2) as desired and let the corresponding equilibrium 

points be (~(v1,v2),yk(v1,v2)) and (~(w1,w2),yk(w1,w2)) respectively. Then 

(3.4) 

The last inequality follows from the theory of zero sum stochastic games 

(see e.g. SHAPLEY [18]). 

Similarly 

(3.5) 
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As O :5: S < I the contracting property follows from (3 .4) and (3. 5). D 

We conclude with the remark that the two conditions 1.n theorem 3.6 are 

met if the matrices A_ = {a• . (k)} and Bk = {b .. (k)} obey the properties 
-""k l.J l.J 

P1, P2 and P3 , k = l, ... ,N and furthermore if p(tjk,i,j) for all k and£ 

does not depend on i and j. 
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