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ABSTRACT 

Recent developments in the theory of computational complexity as applied to 

combinatorial problems have revealed the existence of a large class of so­

called NP-complete problems, either all or none of which are solvable in 

polynomial time. Since many infamous combinatorial problems have been proved 

to be NP-complete, the latter alternative seems far more likely. In that 

sense, NP-completeness of a problem justifies the use of enumerative opti­

mization methods and of approximation algorithms. In this paper we give an 

informal introduction to the theory of NP-completeness and derive some 

fundamental results, in the hope of stimulating further use of this valuable 

analytical tool. 

KEY WORDS & PHRASES: good algorithm, reducibility, NP-completeness, satis­

fiability, clique, set partition, integer programming, hamiltonian circuit, 

machine scheduling 

NOTE: This report is not for review; it will be submitted for publication 

in a journal. 
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1. INTRODUCTION 

After a wave of initial optimism, integer programming soon proved to be 

much harder than linear programming. As integer programming formulations 

were found for more and more discrete optimization problems, it also became 

obvious that such formulations yielded little computational benefit. To this 

day, integer programming problems of more than miniature size remain compu­

tatio~ally intractable. 

For some specially structured problems, however, highly efficient algo­

rithms have been developed. Network flow and matching provide well-known 

examples of problems that are easy in the sense that they are solvable by 

a good algorithm - a term coined by J. Edmonds [Edmonds 1965A] to indicate 

an algorithm whose running time is bounded by a polynomial function of prob­

lem size. Thus, in a network on v vertices a maximum flow can be determined 

in O(v3) time [Dinic 1970; Karzanov 1974; Even 1976] and a maximum weight 

matching can be found in O(v3) time [Gabow 1976; Lawler 1976]. 

It is commonly conjectured that no good algorithm exists for the gener­

al integer programming problem. A similar conjecture holds with respect to 

many other combinatorial problems that are-notorious for their computational 

intractability [Johnson 1973], such as graph colouring, set covering, travel­

ling salesman and job-shop scheduling problems. Typically, all optimization 

methods that have been proposed so far for these problems are of an enumera­

tive nature. They involve some type of backtrack search in a tree whose 

depth is bounded by a polynomial function of problem size. In the worst 

case, those algorithms require superpolynomial (e.g., exponential) time. 

We shall denote the class of all problems solvable in polynomial time 

by P and the class of all problems solvable by polynomial-depth backtrack 

search by NP. It is obvious that Pc NP. 
The battle against hard combinatorial problems dragged on until S. Cook 

[Cook 1971] and R.M. Karp [Karp 1972] showed the way to peace with honour 

[Fisher 1976]. They exhibited the existence within NP of a large class of 

so-called NP-complete problems [Knuth 1974] that are equivalent in the 

following sense: 

none of them is known to belong to P; 

if one of them belongs to P, then all problems in NP belong to P, 

which would imply that P = NP. 
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NP-completeness of a problem is generally accepted as strong evidence against 

the existence of a good algorithm and consequently as a justification for 

the use of enumerative optimization methods such as branch-and-bound or of 

approximation algorithms. By way of examples, all the hard problems mentioned 

above are NP-complete. 

NP-completeness has proved to be an extremely fruitful research area. 

The computational complexity of many types of combinatorial problems has 
', 

been ~alyzed in detail. Under the assumption that P # NP, this analysis 

often reveals the existence of a sharp borderline between P and the class 

of NP-complete problems that is expressible in terms of natural problem 

parameters. Moreover, establishing NP-completeness of a problem provides 

important information on the quality of the algorithm that one can hope to 

find, which makes it easier to accept the computational burden of enumera­

tive methods or to face the inevitability of a heuristic approach. 

In this paper we shall not attempt to present an exhaustive survey of 

all NP-completeness results (see [Karp 1972; Karp 1975; Garey & Johnson 

1978]). Instead, we shall examine some typical NP-complete problems, demon­

strate some typical proof techniques an~ discuss some typical open problems 

(cf. [Aho et al. 1974; Savage 1976; Reingoid et al. 1977]). We hope that as 

a result the reader will be stimulated to consider the computational complex­

ity of his or her favourite combinatorial problem and to draw the algorithmic 

implications. 

2. CONCEPTS OF COMPLEXITY THEORY 

A formal theory of NP-completeness would require the introduction of Turing 

machines as theoretical computing devices [Aho et al. 1974]. Turing machines 

can be designed to recognize languages; the input to the machine consists of 

a string, which is accepted if and only if it belongs to the language.Pis 

then defined as the class of languages recognizable in polynomial time by 

a deterministic Turing machine, a suitable model for an ordinary computer. 

NP is similarly defined as the class of languages recognizable in polyno­

mial time by a nondeterministic Turing machine, which can be thought of as 

a deterministic one that can duplicate its current state in zero time when-



ever convenient. For our purposes, however, we may identify languages and 

strings with problem types and problem instances respectively, and retain 

the informal definitions of P and NP given in the introduction. 

Problem P' is said to be reducible to problem P (notation: P' a: P) if 

for any instance of P' an instance of P can be constructed in polynomial 

time such that solving the instance of P will solve the instance of P' as 

well. Informally, the reducibility of P' to P implies that P' can be con­

sider~d as a special case of P, so that Pis as least as hard as P'. 

Pis called NP-hard if P' ~ P for every P' E NP. In that case, Pis at 

least as hard as any problem in NP.Pis called NP-complete if Pis NP-hard 

and PE NP. Thus, the NP-complete problems are the most difficult problems 

in NP. 
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A good algorithm for an NP-complete problem P could be used to solve 

all problems in NP in polynomial time, since for any instance of such a 

problem the construction of the corresponding instance of P and its solution 

can both be effected in polynomial time. Note the following two important 

observations. 

It is very unlikely that P = NP, since NP contains many notorious com­

binatorial problems, for which in spite of a considerable research 

effort no good algorithms have been found so far. 

It is very unlikely that PEP for any NP-complete P, since this would 

imply that P = NP by the earlier argument. 

The first NP-completeness result is due to Cook [Cook 1971]. He designed a 

"master reduction" to prove that every problem in NP is reducible to the 

SATISFIABILITY problem of determining whether a boolean expression in con­

junctive normal form can assume the value true. Given this result, one can 

establish NP-completeness of some PE NP by specifying a reduction P' a: P 

with P' already known to be NP-complete: for every P" E NP, P" a: P' and 

P' a: P then imply that P" a: Pas well. 

In the following section we shall present several such proofs. In order 

to ensure compatibility between recognition problems which require a yes/no 

answer and optimization problems, we shall reformulate a minimization 

(maximization) problem by asking for the existence of a feasible solution 

with value at most (at least) equal to a given threshold. NP-completeness 

will always be proved with respect to recognition problems. The correspon-
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ding optimization problem can often not formally be shown to belong to NP, 
but it might be called NP-hard in the sense that the existence of a good 

algorithm for its solution would imply that P = NP. 

3. NP-COMPLETENESS RESULTS 

' 
In this section we shall establish some basic NP-completeness results 

according to the scheme given in Figure 1, and we shall mention similar 

results for related problems. our proofs will be sketchy; for instance, it 

will be left to the reader to verify the membership of NP for the problems 

considered and the polynomial-boundedness of the reductions presented. 

SATISFIABILITY 

CLIQUE 0-1 PROGRAMMING 

SET PACKING VERTEX COVER SET PARTITION 

SET COVER DIRECTED HAMILTONIAN CIRCUIT KNAPSACK 

UNDIRECTED HAMILTONIAN CIRCUIT 3-PARTITION 

3-MACHINE UNIT-TIME JOB-SHOP 

Figure 1 Scheme of reductions. 



3.1. SATISFIABILITY 

SATISFIABILITY: Given a conjunctive normal form expression, i.e. a conjunc­

tion of clauses c 1, ••• ,cs, each of which is a disjunction of literals 

x 1,x1, ••• ,xt,xt where x1 , ••• ,xt are boolean variables and x1 , ••• ,xt 

denote their complements, is there a truth assignment to the variables 

such that the expression assumes the value true? 

NP-completeness 

It has already been mentioned that SATISFIABILITY was the first problem 

shown to be NP-complete. The proof of this key result is quite technical 
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and beyond the scope of this paper; we refer to [Cook 1971; Aho et al.. 1974]. 

We shall take the instance of SATISFIABILITY given in Figure 2 as an 

example to illustrate subsequent reductions. Clearly, the expression is 

satisfied if x 1 = x 2 = x 3 = true. 

Figure 2 Instance of SATISFIABILITY for the example. 

Related results 

Even the 3-SATISFIABILITY problem, i.e. SATISFIABILITY with at most three 

literals per clause, is NP-complete [Cook 1971]. The 2-SATISFIABILITY prob­

lem, however, belongs to P. Often, the borderline between easy and hard 

problems is crossed when a problem parameter increases from two to three. 

This phenomenon will be encountered on various occasions below, and is 

held by some to explain the division of mankind in two and not three sexes. 

3.2. CLIQUE, VERTEX PACKING & VERTEX COVER 

CLIQUE: Given an undirected graph G = (V,E) and an integer k, does G 

contain a set of at least k pairwise adjacent vertices? 
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VERTEX PACKING (INDEPENDENT SET): Given an undirected graph G' = (V' ,E') 

and an integer k', does G' contain a set of at least k' pairwise 

nonadjacent vertices? 

VERTEX COVER: Given an undirected graph G = (V,E) and an integer k, does G 

contain a set of at most k vertices such that every edge is incident 

with at least one of them? 

NP-c(?mpleteness 

SATISFIABILI'TY ex: CLIQUE: 

V = {(x,i) Ix is a literal in clause c,}; 
l. 

E = {{(x,i),(y,j)}lx ! y, i # j}; 

k = s. 

Cf. Figure 3. We have created a vertex for each occurence of a literal in a 

clause and an edge for each pair of literals that can be assigned the value 

true independently of each other. A clique of size k corresponds to s liter­

als (one in each clause) that satisfy the expression and vice versa [Cook 

1971]. The NP-completeness of CLIQUE now follows from (i) its membership 

of NP, (ii) the polynomial-boundedness of·the reduction, and (iii) the 

NP-completeness of SATISFIABILITY. 

Figure 3 Instance of CLIQUE for the example. 

CLIQUE ex: VERTEX PACKING: 

V' = V; 

E' = {{i,j}ji # j, {i,j} £ E}; 

k' = k. 

Cf. Figure 4. A set of vertices is independent in G' if and only if it is a 



clique in the complementary graph G.· This relation between the two problems 

belongs to folklore. 

Figure 4 Instance of VERTEX PACKING for the example. 

VERTEX PACKING a: VERTEX COVER: 

V = V'; 

E = E'; 

k = IV' 1-k'. 
Cf. Figure 5. It is easily seen that a set of vertices covers all edges if 

and only if its complement is independent [Karp 1972]. 

Figure 5 Instance of VERTEX COVER for the example. 

Related results 
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Given the above results, it is not surprising (though less easy to prove) 

that the problems of determining whether the vertex set of a graph can be 

covered by at most k cliques or, after complementation, by at most k inde­

pendent sets are NP-complete [Karp 1972]. These problems are known as CLIQUE 

COVER and GRAPH COLOURABILITY respectively. In fact, it is already an NP­

complete problem to determine if a planar graph with vertex degree at most 

4 is 3-colourable [Garey et al. 1976C], whereas 2-colourability is equiva­

lent to bipartiteness and can be checked in polynomial time. 
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3.3. SET PACKING, SET COVER & SET PARTITION 

SET PACKING: Given a finite set S, a finite family S of subsets of Sand an 

integer R., does S contain a subfamily S 1 .of at least R, pairwise dis­

joint sets? 

SET COVER: Given a finite set S, a finite family S of subsets of Sand an 

integer R., does S contain a subfamily S• of at most R, sets such that 

Ys•ES' s• = s? 
SET PARTITION (EXACT COVER): Given a finite set Sand a finite family S of 

subsets of s, does S contain a subfamily S 1 of pairwise disjoint sets 

such that US'ES' S' = S? 

NP-completeness 

VERTEX PACKING tt SET PACKING: 

S = E'; 

s = {{{i,j}l{i,j} E E'}li EV'}; 

i=k'. 

VERTEX COVER tt SET COVER: 

delete the primes in the above reduction. 

VERTEX PACKING and VERTEX COVER are easily recognized as special cases of 

SET PACKING and SET COVER respectively, and these reductions require no 

further comment. 

VERTEX PACKING tt SET PARTITION: 

S = E' U {1, ..• ,k'}; 

S = { S ih I i E V' , h = 1 , ••• , k ' } u { S { i , j } I { i , j } E E ' } , where 

sih = {{i,j}l{i,j} EE'} u {h}, 

s{. ·} = {{i,j}}. ]. , J 
Cf. Figure 6. Suppose that G' contains an independent set U' c V' of size 

k', say, U' = {v1 , ••• ,vk 1 }. Then the sets Sv 1 , ••• ,svk,k' are pairwise 

disjoint, and the elements of Snot contained in any of them belong to E'. 

It follows that a partition of Sis given by 



Conversely, suppose that there exists a partition S 1 of s. Then S• contains 

k' pairwise disjoint sets S 1, ••• ,S k'' and the vertices v 1 , ••• ,vk, 
vl . . vk, 

clearly constitute an independent set of size k' in G'. 

9 

This reduction simplifies the NP-completeness proof given in [Karp 1972]. 

F, "' 
,, r , 

5{4,5} s s11 521 531 541 5s1 512 522 532 542 552 513 523 533 543 553 s{1,2} 5{2,3} ~{2,, 5{3,4} 
\ ) \. ) \. .J 

{1,2} @ • • • • • • 
{2 ,3} . • • • @ • • • 
{2,4} • • • • • • @ 

{3,4} • • @ • • • • 
{4,5} • • • • • @ • 

1 @ • • • • 
2 • • @ • • 
3 • • • • @ 

Figure 6 Instance of SET PARTITION for the example. 

Related results 

Even the EXACT 3-COVER problem, where all subsets in Sare constrained to be 

of size 3, is NP-complete, since it is an obvious generalization of the 

3-DIMENSIONAL MATCHING problem, proved NP-complete in [Karp 1972]. An EXACT 

2-COVER corresponds to a perfect matching in a graph, which can be found 

in polynomial time. Generally, the existence of good matching algorithms 

proves that EDGE PACKING and EDGE COVER problems are members of P. 

3.4. DIRECTED & UNDIRECTED HAMILTONIAN CIRCUIT 

DIRECTED HAMILTONIAN CIRCUIT: Given a directed graph H = (W,A), does H 

contain a directed cycle passing through each vertex exactly once? 

UNDIRECTED HAMILTONIAN CIRCUIT: Given an undirected graph G = (V,E), does G 

contain a cycle passing through each vertex exactly once? 
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NP-completeness 

VERTEX COVER~ DIRECTED HAMILTONIAN CIRCUIT: 

w = { ( i , j ) , { i , j } , ( j , i ) I { i , j } e: E} u { 1 , ••• , k }°; 

A= {((i,j),{i,j}),({i,j},(i,j)),((j,i),{i,j}),({i,j},(j,i)) l{i,j} € E} 

u {((h,i),(i,j))l{h,i},{i,j} € E, hf: j} 

u { ( ( i , j ) , h) , (h , ( i , j )) , (( j , i) , h) , (h, ( j , i)) j { i , j } e: E, h = 1 , •••• , k}. 
', 

Cf. ~igure 7. For each edge {i,j} in G we have created· a configuration in 

H consisting of three vertices (i,j),{i,j},(j,i) and four arcs, as shown 

in the figure. These configurations are linked by arcs from (h,i) to (i,j) 

for hf: j. Further, we have added k vertices 1, ••• ,k and all arcs between 

them and the vertices of type (i,j). 

' ' 

Figure 7 Instance of DIRECTED HAMILTONIAN CIRCUIT for the example. 

Not all arcs incident with vertices 1, ... ,k have been drawn. 



Suppose that G contains a vertex cover Uc V of size k, say, 

U = {v1 , ••• ,vk}. The edge set E can then be written as 

E = {{vh,wh1}, ••• ,{vh,whi }lh = 1, ••• ,k} 
h 

and it is easily checked that a hamiltonian circuit in His given by 

Conversely, suppose that H contains a hamiltonian circuit. By deletion of 

all arcs incident with vertices 1, .•. ,k, the circuit is decomposed into k 

paths. A path starting at (i,j) for {i,j} EE has to go on to visit {i,j} 

and (j,i); then it ends or goes on to visit (i,j'),{i,j'},(j',i) for some 

{i,j'} EE, etc. Thus, this path corresponds to a specific vertex i EV, 

covering edges {i,j},{i,j'}, etc. Since the circuit passes through each 

{i,j} exactly once, each edge {i,j} EE is covered by one of k specific 

vertices, which therefore constitute a vertex cover of size kin G. 
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The above reduction is a modification of the original construction 

due to E.L. Lawler [Karp 1972], based on ideas of M. Ftirer [Schuster 1976] 

and P. van Emde Boas. 

DIRECTED HAMILTONIAN CIRCUIT~ UNDIRECTED HAMILTONIAN CIRCUIT: 

V = {(i,in),(i,mid),(i,out) Ii E W}; 

E = {{(i,in),(i,mid)},{(i·,mid),(i,out)}li E w} 

u {{(i,out),(j,in)}l(i,j) EA}. 

The one-one correspondence between undirected hamiltonian circuits in G 

and directed hamiltonian circuits in His evident. This reduction is due to 

R.E. Tarjan [Karp 1972]. 

Related results 

The above results have been strengthened in various ways. For instance, 

the UNDIRECTED HAMILTONIAN CIRCUIT problem remains NP-complete if G has 

vertex degree at most 3 [Garey et al. 1976C] or if G is bipartite 

~!P.LIOTHEEK IN, TH,' 'f1ri',C,H c.EN ffl\.k'\11 
t1,\1~~ ff.HL1,\M 
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[Krishnamoorthy 1975]. The latter result is a simple extension of the last 

reduction given above and we recommend it as an exercise. 

NP-completeness of the (general) TRAVELLING SALESMAN problem is another 

obvious consequence. Intricate NP-completeness proofs for the EUCLIDEAN 

TRAVELLING SALESMAN problem can be found in [Papadimitriou 1975; Garey 

et al. 1976A]. It is well known that TRAVELLING SALESMAN is a special case 

of the problem of finding a maximum weight independent set in the inter­

secti9n of three matroids. Thus, the 3-MATROID INTERSECTION problem is NP­

complete, whereas 2-MATROID INTERSECTION problems, such as finding an opti­

mal linear assignment or spanning arborescence, belong to P [Lawler 1976]. 

The TRAVELLING SALESMAN problem serves as a prototype for a whole 

class of routing problems where, given a mixed graph consisting of a set 

V of vertices, a set E of (undirected) edges and a set A of (directed) arcs, 

a salesman has to find a minimum-weight tour passing through subsets 

V' c v, E' c E and A' c A. If V' = 0, E' = E and A'= A, we have the CHINESE 

POSTMAN problem, which.can be solved .in polynomial time in the undirected 

or directed case (A= 0 or E = !O) [Edmonds 1965B; Edmonds & Johnson 1973], 

but is NP-complete in the mixed case [Papadimitriou 1976]. For the case that 

only V' = 0, NP-completeness has be.en e.sta:blished for the UNDIRECTED and 

DIRECTED RURAL .POSTMAN problems (A= 0 and E = 0 respectively) [Lenstra & 

Rinnooy Kan 1976] and for the STACKER~CRANE problem (E' = 0, A'= A) 

[Frederickson et al. 1976]. 

3.5. 0-1 PROGRAMMING, KNAPSACK & 3-PARTITION 

0-1 PROGRAMMING: Given an integer matrix A and an integer vector b, does 

· there exist a 0-1 vector x such that Ax~ b? 

KNAPSACK: Given positive integers a 1 , .•. ,at,b' does there exist a subset 

Sc {1, .•• ,t} such that I.Sa.= b? 
]€ J 

3-PARTITION: Given positive integers a 1 , .•• ,a3t,b, do there exist t pair-

wise disjoint 3-element subsets S. c {1, •. ,3t} such that 2- S a.= b 
1 ]€ i J 

(i = 1, ... ,t)? 
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NP-completeness 

SATISFIABILITY a: 0-1 PROGRAMMING: 

if X, is a literal in clause 
J 

= Vi ci,l 
a .. if x. is a literal in clause 

ci'J 
(i = 1, .•. ,s, j = 1, .•• ,t); 

l.J J 
otherwise 

b. = 1 - l{jlx. is a literal in clause c.}I 
l. J l. 

(i = 1, ... ,s). 

Cf. F~gure 8 and [Karp 1972]. 

1 

Figure 8 Instance of 0-1 PROGRAMMING for the example. 

SET PARTITION a: KNAPSACK: 

Given S = {e1 , ... ,es} and S = {s 1 , ... ,st}, we define 

f 1 if e. < sj} l. (i E .. = 

la l.J 
if i S. e. 

l. J 

1, ... ,s, j = 1, ... ,t), 

u = t+l, 

and specify the reduction by 

,s i-1 
a. = l· 1 E .. u 

J 1.=. l.J 
(j = 1, ... ,t); 

s 
b = (u -1)/t. 

Cf. Figure 9. The one-one correspondence between solutions to KNAPSACK and 

SET PARTITION is easily verified [Karp 1972]. 

Given this result, the reader should have little difficulty in 

establishing NP-completeness for the PARTITION problem, i.e. KNAPSACK with 

'i'~ l a. = 2b. lJ= J 

3-PARTITION has been proved NP-complete through a complicated sequence of 

reductions, which can be found in [Garey & Johnson 1975A]. 
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t,, 
,<_j Q) 2 3 4 5 6 7 ® 9 10 11 12 13 14@ 16 17@ 19 20 a., 

j 

++ 
1 Q) 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 tl ,•u. + 

2 0 1 1 0 0 0 1 Q) 0 0 0 1 1 0 0 0 1 0 0 0 
j 1 

t2 ·•U. + 
3 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 Q) 0 0 

j 2 
t3fu.3+ 

4 0 0 1 1 0 0 0 Q) 1 0 0 0 1 1 0 0 0 0 1 0 t4 ,•U. + 

5 0 0 0 1 1 0 0 0 1 1 0 0 0 1 Q) 0 0 0 0 1 
j 4 

t5 ,•U. + 

6 (D 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
j 5 

t6 ,•U. + 

7 0 0 0 .0 0 1 1 Q) 1 1 0 0 0 0 0 ·o 0 0 0 0 
j 6 

t7 . •U. + 

8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 CD 0 0 0 0 0 
j 7 

taj•u. 

Figure 9 Instance of KNAPSACK for the example, wheres= 8, t = 20, u = 21. 

Binary vs. unary encoding 

KNAPSACK was the first example of an NP-complete problem involving numeri­

cal data. The size of a problem instance is O(t log b) in the standard 

binary encoding and O(tb) if a unary encoding is allowed. Readers will have 

noticed that the reduction SET PARTITION oc. KNAPSACK is polynomial-bounded 

only with respect to a binary encoding. Indeed, KNAPSACK can be solved by 

dynamic programming in O(tb) time [Bellmore & Dreyfus 1962], which might be 

called a pseudopolynomial algorithm in the sense that it is polynomial­

bounded only with respect to a unary encoding. Thus, the binary NP­

completeness of KNAPSACK and its unary membership of Pare perfectly compa­

tible results, although it tends to make us think of KNAPSACK as less hard 

than other NP-complete problems. 

3-PARTITION was the first example of a problem involving numerical 

data that remains NP-complete even if we measure the problem size by using 

the actual numbers involved instead of their logarithms. This strong or 

unary NP-completeness of 3-PARTITION indicates that already the existence 

of a pseudopolynomial algorithm for its solution would imply that P = NP 

[Garey & Johnson 1976C]. 

Quite often, a binary NP-completeness proof involving KNAPSACK or 

PARTITION can be converted to a unary NP-completeness proof involving 3-

b 

u.o+ 
·1 u. + 

u.2+ 
u.3+ 
u.4+ 

u.5+ 

u.6+ 
u.7 



PARTITION in a straightforward manner. Occasionally, however, the polyno­

mial-boundedness of a reduction depends essentially on the allowability 
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of a unary encoding for 3-PARTITION. An example of such a reduction is given 

in the next section. 

3.6. 3-MACHINE UNIT-TIME JOB-SHOP 

3-MACHINE UNIT-TIME JOB-SHOP: Given 3-machines M1,M2,M3 each of which can 

process at most one job at a time, 'n jobs J 1 , ••. ,J where J. (j = 1, ••• n) 
n J 

consists of a chain of unit-time operations, the h-th of which has to 

be processed on machine µjh with µjh I µj,h-l for h > 1, and an integer 

k, does there exist a schedule with length at most k? 

NP-completeness 

3-PARTITION ~ 3-MACHINE UNIT-TIME JOB-SHOP: 

n = 3t+2; 
a. 

µ. = (Ml ,M3 ,[M1 ,M2J J ,M3) (j = 1, .•• ·,3t); 
J b t 

µn-1 = ([M2,M3,M2,M1,M2,M1,[M2,M3] ,M1,M2,M1] ); 

µn = ([M3,M2,M3,M2~M1,M2,[M3,M1]b,M2,M1,M2]t); 

k = (2b+9)t; 
h h-1 1 

where [ s J = s, [ s] for h > L and [ s] = s • 

Note that both Jn-l and Jn consist of a chain of operations of length 

equal to the threshold k. We may assume the h-th operations of these chains 

to be completed at time h, since otherwise the schedule length would exceed 

k. This leaves a pattern of idle machines for the other jobs that can be 

described as 

(cf. Figure 10). We will show that this pattern can be filled properly if 

and only if 3-PARTITION has a solution. 

Suppose that 3.-PARTITION has a solution cs 1 , ••. ,St). In this case, 

processing J. with j ES. entirely within the interval [(2b+9) (i-1), (2b+9)i] 
J 1 

(j = 1, •.. ,3t, i = 1, ... ,t) yields a schedule with length k. 
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0 3 6 2b+6 2b+9 

i opera ti on of J. (1 < j < 3.t) 
j - -

opera ti on of Jn-1 
operation of J n 

Figure 10 First part of 3-MACHINE UNIT-TIME JOB-SHOP schedule corresponding 

to an instance of 3-PARTITION with b = 7. 

Conversely, suppose that there exists a schedule with length k. We 

will prove that in such a schedule exactly three jobs are started in 

[0,2b+9] and that they are completed in this interval as well; clearly, 

these jobs indicate a 3-element subset s 1 with I. S a.= b. One easily 
JE 1 J 

proves by induction that S. is similarly defined by the jobs started and 
J. 

completed in [ (2b+9) (i-1), (2b+9)i] (1 < i ~ t). 

If J starts in [0,2b+9], its subchain of operations completed in that 

interval is of one of four types: 

type 1: (M1) ; 
h 

type 2: (M1,M3,[M1,M2]) (0 :;; h :;; a.) ; 
h J 

type 3: (M1,M3,[M1,M2] ,M1) (0 :;; h < a.) ; 
a, J 

type 4: (M1,M3,[M1,M2] J,M3). 

Let x. denote the number of subchains of type i and y. the number of opera-
J. J. 

tions on M2 in subchains of type i. We have to prove that x 1 = x 2 = x 3 = 0, 

x 4 = 3. Observing that a schedule of length k contains no idle unit-time 

periods, we have 

+ Y4 = b+3; 

+ Y4 b; 

(3) x 2 + x 3 + 2x4 = 6. 

Subtracting (1) from the sum of (2) and (3), we obtain -x1-x3+x4 = 3 and 

therefore x 4 ~ 3. Also, (3) implies that x4 :;; 3. It follows that x 4 = 3, 

and x 1 = x 2 = x 3 = 0. 
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Related results 

The complexity of the 2-MACHINE UNIT-TIME JOB-SHOP problem is unknown; to 

introduce a competitive element we shall be happy to award a chocolate 

windmill to the first person establishing membership of P or NP-completeness 

for this problem. If the processing times of the operations are allowed to 

be equal to 1 or 2, the 2-machine problem can be proved NP-complete by a 

reduqtion similar to (but simpler than) the above one; this improves upon 

related results given in [Garey et al. 1976B; Lenstra et al. 1977]. If 

each job has at most two operations, the 2-machine problem belongs to P 

even for arbitrary processing times [Jackson 1956]. 

These results form but a small fraction of the extensive complexity 

analysis carried out for scheduling problems. We refer to [Ullman 1975; 

Garey & Johnson 1975A; Coffman 1976; Garey et al. 1976B; Lenstra et al. 

1977; Lenstra & Rinnooy Kan 1977] for further details and to [Graham et al. 

1977] for a concise survey of the field. 

4. CONCLUDING REMARKS 

We hope that the preceding section has conve¥ed some of the flavour and 

elegance of NP-completeness results. In only a few years an impressive 

amount of results has been obtained. Nevertheless, there are still plenty 

of open problems, for which neither a polynomial algorithm nor an NP­

completeness proof is available. We shall mention three famous ones, on 

whose complexity status little or no progress has been made so far. 

(a) GRAPH ISOMORPHISM 

This is the problem of determining whether there exists a one-one mapping 

between the vertex sets of two graphs which preserves the adjacency relation. 

The essential nature of the problem does not change if we restrict our atten­

tion to graphs of certain types such as bipartite, regular or series-parallel 

ones; all these problems are polynomially equivalent to the general case 

[Booth 1976]. The status of the problem is totally unknown and we do not 

dare to guess the final outcome. 



18 

(b) 3-MACHINE UNIT-TIME PARALLEL-SHOP 

This problem involves the scheduling.of unit-time jobs on three identical 

parallel machines subject to precedence constraints between the jobs, so as 

to minimize the length of the schedule. For a variable number of machines, 

the problem is NP-complete [Ullman 1975; Lenstra & Rinnooy Kan 1977]; the 

special case, of tree-type precedence constraints can be solved in polynomial 

time [Hu 1961]. The 2-machine problem belongs to P [Coffman & Graham 1972], 

even if for each job a time-interval is specified in which it has to be 

processed [Garey & Johnson 1975B]. The 3-machine problem has remained open 

in spite of vigorous attacks. In this case we would be willing to extra­

polate on the magic quality of three-ness and conjecture NP-completeness. 

(c) LINEAR PROGRAMMING 

This is perhaps the most vexing open problem. The simplex method performs 

very well in practice and usually requires time linear in the number of 

constraints. On certain weird polytopes, however, it takes exponential time 

[Klee & Minty 1972]. Fortunately, in this case there is circumstantial 

evidence aga.ints NP-completeness. Thanks to duality theory, determining the 

existence or nonexistence of a feasible solution are equally hard problems, 

and NP-completeness of LINEAR PROGRAMMING would therefore imply NP­

completeness for the complements of ail other NP-complete problems as well. 

However, it is not even known whether the complement of any NP-complete 

problem belongs to NP. There is no obvious way, for instance, to check the 

nonexistence: of a hamiltonian circuit in nondeterministic polynomial time. 

In addition to the above rather technical argument, it seems highly unlikely 

that all NP-·complete problems would allow a polynomial-bounded linear pro­

gramming formulation. 

Interpretation of NP-completeness results as more or less definite proofs 

of computational intractability has stimulated the design and analysis of 

fast approximation algorithms. 

With respect to the worst-case analysis of such algorithms, a wide 

variety of outcomes is possible. We give the following examples. 

(1) For the optimization version of the KNAPSACK problem, a solution with-
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in an arbitrary percentage£ from the optimum can be found in time poly­

nomial int and£ [Ibarra & Kim1975]. 

(2) For the EUCLIDEAN TRAVELLING SALESMAN problem, a solution within 50% 

from the optimum can be found in polynomial time [Christofides 1976]. 

(3) For the GRAPH COLOURABILITY proDlem~ a solution within 100% from the 

optimum cannot be found in polynomial time unless P = NP [Garey & 

Johnson 1976A]. 

(4) For the general TRAVELLING SALESMAN problem, a solution within any 

fixed percentage from the optimum cannot be found in polynomial time 

unless P = NP [Sahni & Gonzalez 1976]. 

We refer to [Garey & Johnson 1976B] for a survey of this area. Impressive 

advances have been made and more can be expected in the near future. 

The above approach to performance guarantees may be accused of being 

overly pessimistic - cf. the simplex method with its exponential worst-case 

behaviour! The probabilistic analysis of average or "almost everywhere" 

behaviour, however, requires the specification of a probability distribution 

over the set of all problem instances. For some problems, a natural distri­

bution function is available and some intriguing results have been derived 

[Karp 1976], although technically this approach seems to be very demanding. 

The worst-case analysis of approximation algorithms shows that there 

are significant differences in complexity within the class of NP-complete 

problems. These problems might be classifiable according to the best 

possible polynomial-time performance guarantee that one can get. Another 

refinement of the complexity measure may be based on the way in which numer­

ical problem data are encoded, i.e. on the distinction between binary and 

unary encoding mentioned in Section 3.5. Several other ways of measuring 

problem size could be devised and each of them could be subjected to a 

complexity analysis, producing new information on the best type of algorithm 

that is likely to exist. 

The concluding remarks above were intended to confirm to the reader 

that the field of computational complexity is still very much alive. In the 

first place, however, the theory of NP-completeness has yielded highly use­

ful tools for the analysis of combinatorial problems that deserve to find 

acceptance in a wide circle of researchers and practitioners. 



20 

REFERENCES 

A.V. AHO, J.E. HOPCROFT, J.D. ULLMAN (1974) The Design and Analysis of 

Computer Algorithms. Addison-Wesley, Reading, Mass. 

R.E. BELLMAN, S.E. DREYFUS (1962) Applied Dynamic Programming. Princeton 

University Press, Princeton, N.J. 

K.S. BOOTH (1976) Problems polynomially equivalent to graph isomorphism. 

In: J.F. TRAUB (ed.)- (1976) Algorithms and Complexity_: New Directions 

and Recent Results. Academic Press, New York, 435. 

N. CHRISTOFIDES (1976) Worst-case analysis of a new heuristic for the 

travelling salesman problem. Math. Programming, to appear. 

E.G. COFFMAN (ed.) (1976) Computer and Job-Shop Scheduling Theory. Wiley, 

New York. 

E.G. COFFMAN, Jr., R.L. GRAHAM (1972) Optimal scheduling for two-processor 

systems. Acta Informat • .!_, 200-213. 

S.A. COOK (1971) The complexity of theorem-proving procedures. Proc. 3rd 

Annual ACM Symp. Theory Comput., 151-158. 

E.A. DINIC (1970) Algorithms for solution of a problem of maximum flow in 

a network with power estimation. Soviet Math. Dokl • .!.!_, 1277-1280. 

J. EDMONDS (1965A) Paths, trees, and flowers. Canad. J. Math . .!2_, 449-467. 

J. EDMONDS (1965B) The Chinese postman's problem. Operations Res. _!iSuppl. 

1,B73. 

J. EDMONDS, E.L. JOHNSON (1973) Matching, Euler tours and the Chinese post­

man. Math. Programming 2_, 88-124. 

S. EVEN (1976) The max flow algorithm of Dinic and Karzanov: an exposition. 

Department of Computer Science, Technion, Haifa. 

M.L. FISHER (1976) Private communication. 

G.N. FREDERICKSON, M.S. HECHT, C.E. KIM (1976) Approximation algorithms for 

some routing problems. Proc. 17th Ann. Symp. Foundations of Computer 

Science, 216-227. 

H.N. GABOW (1976) An efficient implementation of Edmonds' algorithm for 

maximum matching on graphs. J. Assoc. Comput. Mach.~, 221-234. 

M.R. GAREY, R.L. GRAHAM, D.S. JOHNSON (1976A) Some NP-complete geometric 

problems. Proc. 8th Annual ACM Symp. Theory Comput., 10-22. 



M.R. GAREY, D.S. JOHNSON (1975A) Complexity results for multiprocessor 

scheduling under resource const~aints. SIAM J. Comput. ,!, 397-411. 

M.R. GAREY, D.S. JOHNSON (1975B) Two-processor scheduling with start-times 

and deadlines. SIAM J. Comput., to appear. 

M.R. GAREY, D.S. JOHNSON (1976A) The complexity of near-optimal graph 

coloring. J. Assoc. Comput. ~ach. ~, 43-49. 

21 

M.R. GAREY, D.S. JOHNSON (1976B) Approximation algorithms for combinatorial 
', 

problems: an annotated bibliography. In: J.F. TRAUB (ed.) (1976) 

Algorithms and Complexity: New Directions and Recent Results. Academic 

Press, New York, 41-52. 

M.R. GAREY, D.S. JOHNSON (1976C) "Strong" NP-completeness results: 

motivation, examples and implications. To appear. 

M.R. GAREY, D.S. JOHNSON (1978) Computers and Intractability: a Guide to 

the Theory of NP-Completeness. To appear. 

M.R. GAREY, D.S. JOHNSON, R. SETHI (1976B) The complexity of flowshop and 

jobshop scheduling. Math. Operations Res • .!_, 117-129. 

M.R. GAREY, D.S. JOHNSON, L. STOCKMEYER (1976C) Some simplified NP-complete 

graph problems. Theoret. Comput. Sci • .!_, 237-267. 

· R.L. GRAHAM, E.L. LAWLER, J .K. LENSTRA, A •. H.G. RINNOOY KAN (1977) Optimiza­

tion and approximation in deterministic sequencing and scheduling: 

a survey. Presented at Discrete Optimization 1977, Vancouver, August 

8-12. 

T.C. HU (1961) Parallel sequencing and assembly line problems. Operations 

Res.~, 841-848. 

O.H. IBARRA, C.E. KIM (1975) Fast approximation algorithms for the knapsack 

and sum of subset problems. J. Assoc. Comput. Mach.~, 463-468. 

J.R. JACKSON (1956) An extension of Johnson's results on job lot scheduling. 

Naval Res. Logist. Quart .. ~.! 201-203. 

D.S. JOHNSON (1973) Near-optimal bin packing algorithms. Report MAC TR-109, 

Massachusetts Institute of Technology, Cambridge, Mass. 

R.M. KARP (1972) Reducibility among combinatorial problems. In: R.E. MILLER, 

J.W. THATCHER (eds.) (1972) Complexity of Computer Computations. 

Plenum Press, New York, 85-103. 

R.M. KARP (1975) On the computational complexity of combinatorial problems. 

Networks~, 45-68. 



22 

R.M. KARP (1976) The probabilistic analysis of some combinatorial search 

algorithms. In: J.F. TRAUB (ed.} (1976) Algorithms and Complexity: 

New Directions and Recent Results. Academic Press, New York, 1-19. 

A.V. KARZANOV (1974) Determining the maximal flow in a network by the method 

of preflows. Soviet Math. Dokl. ~, 434-437. 

V. KLEE, G.J. MINTY (1972) How good is the simplex algorithm? In: 0. SHISHA 

(ed.) (1972) Inequalities III. Academic Press, New York, 159-175. 
', 

D.E. KNUTH (1974) A terminological proposal. SIGACT News .§_.1, 12-18. 

M.S. KRISHNAMOORTHY (1975) An NP-hard problem in bipartite graphs. SIGACT 

News J_, 1, 26. 

E.L. LAWLER (1976) Combinatorial Optimization: Networks and Matroids. Holt, 

Rinehart, and Winston, New York. 

J.K. LENSTRA, A.H.G. RINNOOY KAN (1976) On general routing problems. Networks 

.§., 273-280. 

J .K. I,ENSTRA, A.H.G. RINNOOY KAN (1977) Complexity of scheduling under 

precedence constraints. Operations Res., to appear. 

J.K. LENSTRA, A.H.G. RINNOOY KAN, P. BRUCKER (1977) Complexity of machine 

scheduling problems. Ann. Discrete Math . .!_, to appear. 

C.H. PAPADIMITRIOU (1975) The euclidean traveling salesman problem is NP­

complete. Theoret. Comput. Sci., to appear. 

C.H. PAPADIMITRIOU (1976) On the complexity of edge traversing. J. Assoc. 

Comput. Mach.~, 544-554. 

E.M. REINGOLD, J. NIEVERGELT, N. DEO (1977) Combinatorial Computing. To appear. 

S. SAHNI, T. GONZALEZ (1976) P-complete approximation problems. J. Assoc. 

Comput. Mach.~, 555-565. 

J.E. SAVAGE (1976) The Complexity of Computing. Wiley, New York. 

P. SCHUSTER (1976) Probleme, die zum Erfullungsproblem der Aussagenlogik 

polynomial aquivalent sind. In: E. SPECKER, V. STRASSEN (eds.) (1976) 

Komplexitat von Entscheidungsproblemen: ein Seminar. Lecture Notes 

in Computer Science 43, Springer, Berlin, 36-48. 

J.D. ULLMAN (1975) NP-complete scheduling problems. J. Comput. System Sci • 

.!.Q., 384-393. 


